首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to gain insight into the phylogeny and physiological significance of organic-anion-binding proteins in the liver, the hepatic glutathione S-transferases of rat and a typical elasmobranch, the thorny-back shark (Platyrhinoides triseriata), were compared with respect to both glutathione S-transferase activites and organic-anion-binding properties. On gel filtration (Sephadex G-75, Superfine grade) of rat cytosol, the elution volumes of enzyme activities with 1-chloro-2,4-dinitrobenzene and p-nitrobenzyl chloride as substrates were identical (rat Y-fractions; Mr 45000). In contrast, two peaks of enzyme activity for 1-chloro-2,4-dinitrobenzene with elution volumes corresponding to Mr 52000 (PLAT Y1) and Mr 45000 (PLAT Y2) were detected on gel filtration of P. triseriata cytosol. Only fraction PLAT Y2 had enzyme activity with p-nitrobenzyl chloride. Enzyme kinetic studies showed that rat Y-fraction had higher affinities for both 1-chloro-2,4-dinitrobenzene and glutathione than PLAT Y1- and PLAT Y2-fractions. The two forms of P. triseriata glutathione S-transferases differed greatly in affinity for glutathione. At a glutathione concentration that we found to be physiological in P. triseriata, PLAT Y2 accounted for approx. 70% of the total glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene. Binding studies revealed that PLAT Y1 and PLAT Y2 fractions had much lower affinities for sulphobromophthalein and bilirubin than rat Y-fraction. In contrast, binding affinities of PLAT Y1 and PLAT Y2 for Rose Bengal and 1-anilino-8-naphthalenesulphonate were comparable with that of rat Y-fraction. Inhibitory kinetics suggested that sulphobromophthalein and Rose Bengal were non-competitive inhibitors of glutathione S-transferase activities when 1-chloro-2,4-dinitrobenzene was used as substrate for both PLAT Y1 and PLAT Y2. The major glutathione S-transferase from the PLAT Y2 fraction was purified 81-fold by sequential chromatography on Sephadex G-75, DEAE-Sephadex and hydroxyapatite, and consisted of two identical subunits with pI7.7. The highly enriched Y2-fraction retained high affinity binding of Rose Bengal and 1-anilino-8-naphthalenesulphonate.  相似文献   

2.
3.
Hepatic glutathione S-transferase activities were determined with the substrates 1,2-dichloro-4-nitrobenzene and 1-chloro-2,4-dinitrobenzene. Sexual differentiation of glutathione S-transferase activities is not evident during the prepubertal period, but glutathione conjugation with 1,2-dichloro-4-nitrobenzene is 2–3-fold greater in adult males than in females. Glutathione conjugation with 1-chloro-2,4-dinitrobenzene is slightly higher in adult males than adult females. No change in activity was observed after postpubertal gonadectomy of males or females. Neonatal castration of males results in a significant decrease in glutathione conjugation with 1,2-dichloro-4-nitrobenzene. Hypophysectomy, or hypophysectomy followed by gonadectomy did result in significantly higher glutathione S-transferase activities in both sexes. These increases can be reversed by implanting an adult male or female pituitary or four prepubertal pituitaries under the kidney capsule. Postpubertal sexual differentiation of glutathione S-transferase activities is neither dependent on pituitary sexual differentiation nor pituitary maturation. Prolactin concentrations are inversely related to glutathione S-transferase activities in hypophysectomized rats with or without ectopic pituitaries. Somatotropin exogenously administered to hypophysectomized rats results in decreased glutathione S-transferase activities, whereas prolactin has no effect. Adult male rats treated neonatally with monosodium l-glutamate to induce arcuate nucleus lesions of the hypothalamus have decreased glutathione S-transferase activities towards 1,2-dichloro-4-nitrobenzene and decreased somatotropin concentrations. Our experiments suggests that sexual differentiation of hepatic glutathione S-transferase is a result of a hypothalamic inhibiting factor in the male (absent in the female). This postpubertally expressed inhibiting factor acts on the pituitary to prevent secretion of a pituitary inhibiting factor (autonomously secreted by the female), resulting in higher glutathione S-transferase activities in the adult male than the adult female.  相似文献   

4.
Isonuclear triazine-susceptible and triazine-resistant Senecio vulgaris L. biotypes were developed by making reciprocal crosses between susceptible and resistant biotypes to obtain F1 hybrids and backcrossing the hybrids to the appropriate pollen parent. The electrophoretic isozyme patterns of the enzyme aconitase obtained from leaf extracts of triazine-susceptible parental (S) and backcrossed (S×RBC6) biotypes, and triazine-resistant parental (R) and backcrossed (R×SBC6) biotypes verified that the biotypes had the expected nuclear genomes. Atrazine inhibition of chloroplast whole chain electron transport from water to methyl viologen was measured to verify susceptibility or resistance to triazine herbicides. The photosynthetic rate and biomass accumulation of greenhouse grown susceptible and resistant S. vulgaris biotypes were measured 28, 35, 42, 50, 57, and 64 days after planting to determine the effect of altered chloroplast function. S and S×RBC6 biotypes had CO2 assimilation rates of 16.2 and 16.6 micromoles CO2 per square meter per second, respectively, and I50 values (herbicide concentration producing 50% inhibition) of about 0.49 micromolar atrazine. The corresponding values for the R and R×SBC6 biotypes were 14.7 and 14.6 micromoles CO2 per square meter per second with I50 values of 65.0 micromolar atrazine. The S biotype was larger and more productive than the R biotype at all harvests. At the harvest 57 days after planting, mean shoot dry weight was 33.2 and 8.7 grams for the S and R biotypes, respectively. The growth effect associated with chloroplast differences was shown in comparisons of the S biotype with the R×SBC6 biotype and of the S×RBC6 biotype with the R biotype. The R×SBC6 biotype had 72% of the shoot dry weight of the S biotype while the R biotype had 55% of the shoot dry weight of the S×RBC6 biotype. The R×SBC6 and R biotypes produced about 73 and 62% of the leaf area of the S and S×RBC6 biotypes, respectively. Relative growth rate was similar in biotypes with the same nuclear genome; however, instantaneous unit leaf rate was higher in the S compared to the R×SBC6 biotype and in the S×RBC6 compared to the R biotype. At 57 days after planting, the cumulative leaf area duration (i.e. photosynthetic opportunity) of the R×SBC6 and R biotypes was 86 and 66% of that of the S and S×RBC6 biotypes, respectively. Our data indicate that impaired chloroplast function in triazine resistant S. vulgaris biotypes limits growth and productivity at the whole plant level.  相似文献   

5.
An inducible, cytosolic glutathione S-transferase (GST) was purified from Streptomyces griseus. GST isoenzymes with pI values of 6.8 and 7.9 used standard GST substrates including 1-chloro-2,4-dinitrobenzene. GST had subunit and native Mrs of 24 and 48, respectively, and the N-terminal sequence SMILXYWDIIRGLPAH.  相似文献   

6.
The hepatic cytosolic glutathione S-transferase (GST) activity in four strains of the mouse and one strain of the rat was studied with the substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethachrynic acid (ETHA), cumene hydroperoxide (CU) and atrazine as the in vitro substrates. In the mouse, significant gender, strain and age-related differences in the GST activity towards CDNB and atrazine were found between adolescent and sexually mature males and females of the CD-1, C57BL/6, DBA/2 and Swiss-Webster strains, and the differences were larger with atrazine as the substrate. With DCNB and CU a similar tendency was observed, however not significant for all strains. The GST activity towards ETHA was also gender and strain specific, but revealed no age-related differences. The herbicide atrazine seems to be a useful substrate in the study of strain and age-related differences in the mouse GST class Pi.  相似文献   

7.
The single glutathione S-transferase (EC 2.5.1.18) present in rat erythrocytes was purified to apparent homogeneity by affinity chromatography on glutathione-Sepharose and hydroxyapatite chromatography. Approx. 1.86 mg enzyme is found in 100 ml packed erythrocytes and accounts for about 0.01% of total soluble protein. The native enzyme (Mr 48 000) displays a pI of 5.9 and appears to possess a homodimeric structure with a subunit of Mr 23 500. Enzyme activities with ethacrynic acid and cumene hydroperoxide were 24 and 3%, respectively, of that with 1-chloro-2,4-dinitrobenzene. The Km values for 1-chloro-2,4-dinitrobenzene and glutathione were 1.0 and 0.142 mM, respectively. The concentrations of certain compounds required to produce 50% inhibition (I50) were as follows: 12 μM bromosulphophthalein, 34 μM S-hexylglutathione, 339 μM oxidized glutathione and 1.5 mM cholate. Bromosulphophthalein was a noncompetitive inhibitor with respect to 1-chloro-2,4-dinitrobenzene (Ki = 8 μM) and glutathione (Kis = 4 μM; Kii = 11.5 μM) while S-hexylglutathione was competitive with glutathione (Ki = 5 μM).  相似文献   

8.
The mechanism of resistance to paraquat was investigated in biotypes of Hordeum glaucum Steud. and H. leporinum Link. with high levels of resistance. Inhibition of photosynthetic O2 evolution after herbicide application was used to monitor the presence of paraquat at the active site. Inhibition of photosynthetic O2 evolution after paraquat application was delayed in both resistant biotypes compared with the susceptible biotypes; however, this differential was more pronounced in the case of H. glaucum than in H. leporinum. Similar results could be obtained with the related herbicide diquat. Examination of the concentration dependence of paraquat-induced inhibition of O2 evolution showed that the resistant H. glaucum biotype was less affected by herbicide compared with the susceptible biotype 3 h after treatment at most rates. The resistant H. leporinum biotype, in contrast, was as inhibited as the susceptible biotype except at the higher rates. In all cases photosynthetic O2 evolution was dramatically inhibited 24 h after treatment. Measurement of the amount of paraquat transported to the young tissue of these plants 24 h after treatment showed 57% and 53% reductions in the amount of herbicide transported in the case of the resistant H. glaucum and H. leporinum biotypes, respectively, compared with the susceptible biotypes. This was associated with 62% and 66% decreases in photosynthetic O2 evolution of young leaves in the susceptible H. glaucum and H. leporinum biotypes, respectively, a 39% decrease in activity for the resistant H. leporinum biotype, but no change in the resistant H. glaucum biotype. Photosynthetic O2 evolution of leaf slices from resistant H. glaucum was not as inhibited by paraquat compared with the susceptible biotype; however, those of resistant and susceptible biotypes of H. leporinum were equally inhibited by paraquat. Paraquat resistance in these two biotypes appears to be a consequence of reduced movement of the herbicide in the resistant plants; however, the mechanism involved is not the same in H. glaucum as in H. leporinum.  相似文献   

9.
The present study compares the binding and inhibitory activity of two photosystem II inhibitors: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron [DCMU]) and 2-chloro-4-(ethylamine)-6-(isopropyl amine)-S-triazene (atrazine). Chloroplasts isolated from naturally occurring triazine-susceptible and triazine-resistant biotypes of common groundsel (Senecio vulgaris L.) showed the following characteristics. (a) Diuron strongly inhibited photosynthetic electron transport from H2O to 2,6-dichlorophenolindophenol in both biotypes. Strong inhibition by atrazine was observed only with the susceptible chloroplasts. (b) Hill plots of electron transport inhibition data indicate a noncooperative binding of one inhibitor molecule at the site of action for both diuron and atrazine. (c) Susceptible chloroplasts show a strong diuron and atrazine binding (14C-radiolabel assays) with binding constants (K) of 1.4 × 10−8 molar and 4 × 10−8 molar, respectively. In the resistant chloroplasts the diuron binding was slightly decreased (K = 5 × 10−8 molar), whereas no specific atrazine binding was detected. (d) In susceptible chloroplasts, competitive binding between radioactively labeled diuron and non-labeled atrazine was observed. This competition was absent in the resistant chloroplasts.  相似文献   

10.
《Plant science》1986,47(3):173-179
Intermediate biotypes for atrazine herbicide resistance in Chenopodium polyspermum and Amaranthus bouchonii were characterized by a peculiar chlorophyll fluorescence induction curve. The intermediate biotypes were isolated from progenies of susceptible plants in maize grown in alternate years without atrazine. The lethal dose in seedling treatments was lower than that of the resistant plants but higher than for susceptible plants. Atrazine at 10 μM was near the I50-value for in vivo nitrite reductase activity in both intermediate biotypes. The activity of nitrite reducttase in the intermediate biotypes was about 75% of that of susceptible biotypes. These characteristics of intermediate biotypes were maternally inherited in crosses.  相似文献   

11.
R. Edwards  W. J. Owen 《Planta》1986,169(2):208-215
The metabolism of the s-triazine herbicide atrazine has been compared in Zea mays seedlings and cell suspension cultures. The rapid detoxification observed in the shoots of whole plants was not seen in the cultured cells. This difference in metabolism could be accounted for by the varying substrate specificities of the isoenzymes of glutathione S-transferase (EC 2.5.1.18) present in the plant and the cells. A single form of the enzyme isolated from leaf tissue conjugated both atrazine and the chloracetanilide herbicide metolachlor. However, the two isoenzymes present in suspension-cultured cells although active against metolachlor, showed no activity toward atrazine. Following purification, the major form of transferase present in the cells was physically similar to the enzyme isolated from leaf (Mr=55000). Both proteins were dimers of subunit Mr=26300, and with isoelectric points in the range pH 4.3-4.9. The minor form of the enzyme present in culture showed a greater specificity for metolachlor than the major species. In addition the overall activity and ratio of the two isoenzymes varied over the culture growth cycle. These findings illustrate the need for characterizing enzymes involved in herbicide detoxification in plant cell cultures.Abbreviations CDNB 1-chloro-2,4-dinitrobenzene - DEAE diethylaminoethyl - GSH glutathione (reduced) - GST glutathione S-transferase - HPLC high-pressure liquid chromatography - Mr molecular weight - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

12.
Glutathione may be linked to an agarose matrix which has been activated by treatment with epichlorhydrin. The resulting resin displayed group selectivity for the glutathione S-transferases of the housefly Musca domestics (L). The isoenzymes of low isoelectric point, which have little activity with substrates other than 1-chloro-2,4-dinitrobenzene, bound strongly to this matrix and were eluted with 10 mm glutathione at pH 7.4. On the other hand, the group of isoenzymes of higher isoelectric point, showing activity with other substrates such as 3,4-dichloronitrobenzene, did not bind. These isoenzymes did bind to a sulfobromophthalein-glutathione conjugate immobilized on agarose and could be eluted with 5 mm sulfobromophthalein at pH 7.4. The immobilized glutathione resin bound rat liver glutathione S-transferase subunits from all three molecular weight classes.  相似文献   

13.
The nitrite-reducing activity of the normal susceptible biotype of lambsquarters (Chenopodium album L.) was strongly inhibited by atrazine in the assay medium, both in the case of the in vivo assays of leaf discs in light, and in vitro photoreduction assays of crude extracts. In vitro assays of crude extracts with methylviologen or ferredoxin supplying the reducing potential were not inhibited by atrazine. In the resistant biotype, inhibition of nitrite reduction did not occur with any of the above assays. Thus, it appears that atrazine does not inhibit nitrite reductase itself, but rather the availability of photosynthetically supplied electrons for the reduction. Atrazine had no effect when added to the media for either in vivo or in vitro assays of nitrate reduction by either the susceptible or resistant biotype.  相似文献   

14.
The response of photosynthetic carbon assimilation and chlorophyll fluorescence quenching to changes in intercellular CO2 partial pressure (Ci), O2 partial pressure, and leaf temperature (15-35°C) in triazine-resistant and -susceptible biotypes of Brassica napus were examined to determine the effects of the changes in the resistant biotype on the overall process of photosynthesis in intact leaves. Three categories of photosynthetic regulation were observed. The first category of photosynthetic response, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis, was observed at 15, 25, and 35°C leaf temperatures with low Ci. When the carbon assimilation rate was Rubisco-limited, there was little difference between the resistant and susceptible biotypes, and Rubisco activity parameters were similar between the two biotypes. A second category, called feedback-limited photosynthesis, was evident at 15 and 25°C above 300 microbars Ci. The third category, photosynthetic electron transport-limited photosynthesis, was evident at 25 and 35°C at moderate to high CO2. At low temperature, when the response curves of carbon assimilation to Ci indicated little or no electron transport limitation, the carbon assimilation rate was similar in the resistant and susceptible biotypes. With increasing temperature, more electron transport-limited carbon assimilation was observed, and a greater difference between resistant and susceptible biotypes was observed. These observations reveal the increasing importance of photosynthetic electron transport in controlling the overall rate of photosynthesis in the resistant biotype as temperature increases. Photochemical quenching of chlorophyll fluorescence (qP) in the resistant biotype never exceeded 60%, and triazine resistance effects were more evident when the susceptible biotype had greater than 60% qP, but not when it had less than 60% qP.  相似文献   

15.
Glutathione S-transferase activity was found in sperm of the rat and DBA2J and C57 BL6J mice. In rat sperm activities with benzo(a)pyrene 4,5-oxide, styrene 7,8-oxide, and 1-chloro-2,4-dinitrobenzene were 0.88, 1.07, and 26.1 nmoles/min/mg protein, respectively. Δ5-3-Ketosteroid isomerase activity of rat sperm was 4.9 nmoles/min/mg protein. These specific glutathione S-transferase and Δ5-3-ketosteroid isomerase activities in sperm represent 0.4–4.1% of rat liver cytosol values. Human semen also contained significant glutathione S-transferase activity. It is postulated that these enzymes could function in the metabolism and detoxification of certain electrophilic xenobiotics, if present in sperm.  相似文献   

16.
The mechanism of resistance to diquat and paraquat was investigated in a bipyridyl-herbicide-resistant biotype of Arctotheca calendula (L.) Levyns. No differences were observed in the interactions of these herbicides with Photo-system I, the active site, in thylakoids isolated from resistant and susceptible biotypes. Likewise, absorption of herbicide through the cuticle and gross translocation were identical in plants of the two biotypes. Foliar application of either 25 g ha−1 diquat or 200 g ha−1 paraquat rapidly inhibited CO2-dependent O2 evolution of leaf segments of the susceptible biotype. O2 evolution of leaf segments of the resistant biotype was less affected by these treatments. Fluorescence imaging was used to observe visually, as fluorescence quenching, the penetration of herbicide to the active site. These experiments demonstrated that diquat appears at the active site more slowly in the resistant biotype compared to the susceptible biotype. HCO3-dependent O2 evolution of thin leaf slices was less inhibited by diquat in the resistant biotype than in the susceptible biotype. The mechanism of resistance to the bipyridyl herbicides in this biotype of A. calendula is not a result of changes at the active site, decreased herbicide absorption or decreased translocation, but appears to be due to reduced herbicide penetration to the active site.  相似文献   

17.
Glutathione S-transferase activity was determined in rat, rabbit, and guinea pig serum using styrene 7,8-oxide (SO) and benzo (a) pyrene 4,5-oxide (4,5-BPO) as substrates. Of the species tested, rat had the highest transferase activity (62.5 and 3.2 nmol/min/ml serum for SO and 4,5-BPO, respectively) and rabbit had the lowest activity. Glutathione S-transferase activity was 60% higher in serum from male rats than in female rats. In rats, serum enzyme specific activities (nmol/min/mg protein) were less than 1% of hepatic enzyme activities with SO, 4,5-BPO, 1,2-dichloro-4-nitrobenzene (DCNB), and 1-chloro-2,4-dinitrobenzene (DNCB). Glutathione S-transferase activity was also determined in rat serum during perinatal development. Serum from rats at 18 days of gestation or from 1- and 4-day-old animals had barely detectable transferase activity. Activity increased with age and reached a maximum in 140-day-old animals. The intraperitoneal administration of diethyl maleate (DEM) (0.8 ml/kg) or L-methionine-DL-sulfoximine (MS) (200 mg/kg) to male rats had no effect on serum or hepatic glutathione S-transferase activities 2 or 26 hr after dosing. Treatment with carbon tetrachloride (CCl4) (1 m1/kg) caused an 11-fold increase in serum transferase activity and a 40% decrease in liver specific activities 24 hr after administration.  相似文献   

18.
Paraquat-resistant biotypes of the closely-related weed species Hordeum leporinum Link and H. glaucum Steud. are highly resistant to paraquat when grown during the normal winter growing season. However, when grown and treated with paraquat in summer, these biotypes are markedly less resistant to paraquat. This reduced resistance to paraquat in summer is primarily a result of increased temperature following herbicide treatment. The mechanism governing this decrease in resistance at high temperature was examined in H. leporinum. No differences were observed between susceptible and resistant biotypes in the interaction of paraquat with isolated thylakoids when assayed at 15, 25, or 35 °C. About 98 and 65% of applied paraquat was absorbed through the leaf cuticle of both biotypes at 15 and 30 °C, respectively. Following application to leaves, more herbicide was translocated in a basipetal direction in the susceptible biotype compared to the resistant biotype at 15 °C. However, at 30 °C more paraquat was translocated in a basipetal direction in the resistant biotype. Photosynthetic activity of young leaf tissue from within the leaf sheath which had not been directly exposed to paraquat was measured 24 h after treatment of plants with para. quat. This activity was inhibited in the susceptible biotype when plants were maintained at either 15 °C or 30 °C after treatment. In contrast, photosynthetic activity of such tissue of the resistant biotype was not inhibited when plants were maintained at 15 °C after treatment, but was inhibited at 30 °C. The mechanism of resistance in this biotype of H. leporinum correlates with decreased translocation of paraquat and decreased penetration to the active site. This mechanism is temperature sensitive and breaks down at higher temperatures.We are grateful to Zeneca Agrochemicals, Jealotts Hill, Berkshire, UK who provided [14C]paraquat. E.P. was supported through a Ph.D. scholarship from the Australian International Development Assistance Bureau and C.P. was the recipient of an Australian Research Council Postdoctoral Fellowship.  相似文献   

19.
Corn ( Zea mays L.) glutathione S-transferases (EC 2.5.1.18) have attracted interest, in part, due to their involvement in the metabolism of several herbicides, including atrazine and alachlor. Three corn, glutathione S-transferases have been purified, and cDNA clones have been isolated and sequenced for two of these, GST I and GST III. In addition to showing some amino acid sequence similarity to each other, the two sequenced corn glutathione S-transferases also show some similarity to rat and human enzymes. The corn glutathione S-transferases responsible for atrazine tolerance have not yet been purified or cloned, but purification attempts indicate that corn has two glutathione S-transferases with activity towards atrazine. While many glutathione S-transferases from various organisms have been detected by using 1-chloro-2,4-dinitrobenzene as a substrate, the atrazine-specific glutathione S-transferases have very little or no activity with 1-chloro-2,4-dinitrobenzene. This shows the importance of assaying with a variety of substrates when characterizing glutathione S-transferases.  相似文献   

20.
The germination ecology of Ambrosia artemisiifolia and A. trifida glyphosate susceptible biotypes sampled in marginal areas, was compared with that of the same species but different biotypes suspected of glyphosate resistance, common and giant ragweed, respectively. The suspected resistant biotypes were sampled in Roundup Ready® soybean fields. Within each weed species, the seeds of the biotype sampled in marginal area were significantly bigger and heavier than those of the biotype sampled in the soybean fields. A. artemisiifolia biotypes exhibited a similar dormancy and germination, while differences between A. trifida biotypes were observed. A. artemisiifolia biotypes showed similar threshold temperature for germination, whereas, the threshold temperature of the susceptible A. trifida biotype was half as compared to that of the resistant A. trifida biotype. No significant differences in emergence as a function of sowing depth were observed between susceptible A. artemisiifolia and suspected resistant A. trifida biotype, while at a six-cm seedling depth the emergence of the A. artemisiifolia susceptible biotype was 2.5 times higher than that of the A. trifida suspected resistant biotype. This study identified important differences in seed germination between herbicide resistant and susceptible biotypes and relates this information to the ecology of species adapted to Roundup Ready® fields. Information obtained in this study supports sustainable management strategies, with continued use of glyphosate as a possibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号