首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Concerns about the negative effects of chemical control of oilseed rape (Brassica napus L.) pests on non-target species, human safety, and development of insecticide resistance, require alternative control strategies such as the use of trap crops and biocontrol to be developed. Psylliodes chrysocephala(L.) (Coleoptera: Chrysomelidae) (cabbage stem flea beetle) and Ceutorhynchus pallidactylus (Marsh.) (Coleoptera: Curculionidae) (cabbage stem weevil) are two major stem-mining pests of oilseed rape. This study investigated the phenology of these pests and their main parasitoids in the UK, the potential use of turnip rape (Brassica rapa L.) as a trap crop to reduce oilseed rape infestation, and the effects of insecticide treatment on pest incidence and larval parasitism. Water trap samples, plant dissections and pest larval dissections were done to determine: the incidence of adult pests and their parasitoids, the level of plant infestation by the pests and percentage larval parasitism, respectively. The turnip rape trap crop borders reduced P. chrysocephalabut not C. pallidactylus infestation of oilseed rape plots. Treatment of the trap crop with insecticide had little effect on either pest or parasitoid incidence in the oilseed rape. TersilochusmicrogasterSzép. andT. obscurator Aub. (Hymenoptera: Ichneumonidae) were the main larval parasitoids of P. chrysocephalaand C. pallidactylus, respectively. Tersilochus microgasteris reported for the first time in the UK. The implications for integrated pest management are discussed.  相似文献   

2.
The spatio‐temporal distribution of Psylliodes chrysocephala (L.) (Coleoptera: Chrysomelidae), a pest of oilseed rape (Brassica napus) (L.) (Cruciferae) and its potential predators, carabid beetles, within a crop of winter oilseed rape is described. The distribution of Collembola, a potential alternative food source for the predators, is also investigated. Insects were collected from spatially referenced sampling points across the crop and the counts mapped, analysed, and the degree of spatial association between the distributions determined using Spatial Analysis by Distance IndicEs (SADIE). Immigration into the crop by adult P. chrysocephala occurred from two edges and resulted in a non‐uniform distribution of the pest within the crop. Infestation of rape plants by P. chrysocephala larvae was greatest within the central area of the crop. Significant spatial association between adult female P. chrysocephala and the larval infestation of plants occurred throughout October. Three carabid species were active and abundant during peak pest immigration into the crop, viz., Trechus quadristriatus (Schrank) (Coleoptera: Carabidae), Pterostichus madidus (Fabricius) (Coleoptera: Carabidae), and Nebria brevicollis (Fabricius) (Coleoptera: Carabidae). Two of these species, T. quadristriatus and P. madidus, showed significant spatial association with the larvae of P. chrysocephala during October. All three carabid species showed a significant spatial association with Collembola during mid‐September, indicating that the latter may be an important food source for carabids during this period. In laboratory feeding experiments, only T. quadristriatus consumed the eggs of P. chrysocephala suggesting that, in the adult stage, this species may be the most important of the naturally occurring carabids as a predator of P. chrysocephala in the field. Adult T. quadristriatus may be a valuable component of an Integrated Pest Management strategy for winter oilseed rape, and the conservation of this species could be beneficial.  相似文献   

3.
The direction of flight of natural populations of Phradis interstitialis (Thomson), Tersilochus obscurator Aubert (both Hymenoptera: Ichneumonidae), and Platygaster subuliformis (Kieffer) (Hymenoptera: Platygastridae), parasitoids of three crucifer‐specialist herbivores, to and from their hosts’ host plant [oilseed rape, Brassica napus L. (Brassicaceae)] was studied in the field within a heterogeneous arable environment. Double‐sided Malaise traps encircling a plot of winter oilseed rape (cultivar Lutin) were used to sample the parasitoids as they flew towards and away from the plot during spring and summer. Daily trap catch of parasitoids and trap air flow were compared using Spearman's rank correlation. For all 14 insect days analysed, and for each species, the correlations between daily catch of parasitoids into distal halves of traps (relative to the plot) and wind direction were negative, significantly so on half the days analysed. This confirmed that flights towards the plot were by upwind anemotaxis. In contrast, the correlations between daily catch of parasitoids into proximal halves of traps (relative to the plot) and wind direction were most often crosswind; they were never strongly nor significantly either negative or positive. Implications of the results for integrated pest management strategies incorporating biological control with these parasitoids are discussed.  相似文献   

4.
Pollen beetles (Meligethes spp.; Coleoptera: Nitiduliae) are a major pest of oilseed rape, Brassica napus L. (Brassicaceae) in northern Europe. Phradis interstitialis Thomson, P. morionellus Holmgr., and Tersilochus heterocerus Thomson (Hymenoptera: Ichneumonidae) are among the most frequent pollen beetle parasitoids. These three species differ in temporal occurrence, as well as in preferred host stage. The behavioural responses of female parasitoids to odours from oilseed rape at bud and flowering stage were evaluated in two‐choice experiments. The role of visual stimuli was examined by combining green and yellow colours with odour stimuli. All three species were attracted to odours from the bud stage of oilseed rape. Tersilochus heterocerus was attracted to odours of flowering rape, but the two Phradis species avoided the flower odours. However, when the odours of flowering rape were combined with yellow, and odours of the bud stage were combined with green, P. interstitialis was equally attracted to both stimuli, and T. heterocerus showed an increased preference for flower odours, while no effect of colours could be found in P. morionellus. The observed differences in responses between the parasitoids may reflect differences in their biology and may be involved in the niche segregation of these often coexisting species. The volatile blends released from the two phenological stages were identified and compared. Clearly, odours can be reliable cues for differentiating between oilseed rape in the bud and flowering stage. Of 20 identified compounds, 18 were released at a significantly higher rate from flowering plants. The terpenes sabinene, myrcene, limonene, and (E,E)‐α‐farnesene were the dominant volatiles in the bud and flower headspace. A group of aromatic compounds including benzaldehyde, methyl benzoate, and phenyl acetaldehyde were mainly released from flowering rape.  相似文献   

5.
Agar was used as an artificial substrate to investigate the feeding behaviour of the cabbage stem flea beetle,Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae), an important pest of winter oilseed rape (Brassica napus) in Europe. Both glucosinolates and sugars stimulated feeding when added to agar. The amount of feeding that occurred was affected by the type and concentration of glucosinolate and surgar and also by combinations of components. Although glucosinolates were potent feeding stimulants forP. chrysocephala, they were not a prerequisite for feeding, nor does it seem likely that glucosinolate profiles are used by this species to discriminate amongst cruciferous plants at the gustatory level.  相似文献   

6.
7.
Glucosinolates are sulphur‐containing secondary metabolites characteristic of Brassicaceous plants. Glucosinolate breakdown products, which include isothiocyanates, are released following tissue damage when hydrolytic enzymes act on them. The isothiocyanates have toxic effects on generalist herbivores when they attempt to feed on oilseed rape, Brassica napus, and also function as repellents. However, specialist herbivores such as Brevicoryne brassicae aphids, flea beetles, Psylliodes chrysocephala and the Lepidopteran pest, Pieris rapae, are adapted to the presence of glucosinolates and thrive on plants containing them. They may do this by avoiding tissue damage to prevent the formation of isothiocyanates or by metabolising or tolerating glucosinolates. For many specialist herbivores, the isothiocyanates function as attractants and glucosinolates can even be sequestered for defence against predatory insects. Thus, these herbivores have evolved resistance to host‐plant secondary metabolites and this type of evolutionary history may have given some insects an enhanced ability to adapt to xenobiotics. In an agricultural context, this may make pests better able to evolve resistance to artificially applied pesticides. The effect of increased glucosinolate content in making oilseed rape cultivars more susceptible to specialist pests was highlighted in a seminal article in the Annals of Applied Biology in 1995. This review of the literature considers developments in this area since then.  相似文献   

8.
Hymenopterous parasitoids of herbivorous insects can be useful biocontrol agents in integrated pest management strategies. However, the potential effects on these beneficials of new components in such strategies are often neglected. Essential oil of lavender, Lavendula angustifolia (Miller) (Lamiaceae), has recently been identified as a potential repellent in new control strategies being developed for the pollen beetle Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), a major pest of oilseed rape, Brassica napus L. (Brassicaceae). We tested the electrophysiological and behavioural responses of two common parasitoids of M. aeneus: Phradis interstitialis (Thomson) and P. morionellus (Holmgren) (both Ichneumonidae) using coupled gas chromatography-electroantennodetection (GC-EAD) and olfactometry techniques. Both species elicited electrophysiological responses to lavender oil volatiles, including two compounds known to be repellent to M. aeneus. However, the parasitoids gave no significant responses to the odours of lavender oil in behavioural bioassays and there was no evidence to suggest that lavender-treated oilseed rape plants would reduce host habitat location by parasitoids of the target pest.  相似文献   

9.
The feeding acceptability of 40 different plants to Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae) was determined using leaf disc consumption tests for the adult, and stem or petiole penetration tests for the larvae. Only plants that contained glucosinolates were accepted as food, but addition of the glucosinolate sinigrin to rejected food plants did not make them acceptable to adults. Of the 34 plants that contained glucosinolates, nine were either totally or mostly rejected. Solvent extracts of the rejected plants applied to oilseed rape inhibited feeding by adults. The feeding of P. chrysocephala within the group of plants tested is influenced by the presence or absence of glucosinolates, which may act as feeding stimulants, and other, unidentified chemicals which act as feeding inhibitors.  相似文献   

10.
Hausmann  Johannes  Heimbach  Udo  Rostás  Michael  Brandes  Meike 《BioControl》2021,66(6):765-777

Dropleg sprayers apply pesticides below the flower horizon of oilseed rape plants and thus reduce unwanted side effects on pollinating insects. Whether this technique benefits parasitoids of seed and pollen feeding insect pests has not been studied earlier. To answer this question, we first assessed the vertical distribution of pests and parasitoids using a portable aspirator. In addition, parasitism rates of pollen beetle, Brassicogethes aeneus Fabricius (Coleoptera: Nitidulidae), by the larval parasitoid Tersilochus heterocerus Thomson (Hymenoptera: Ichneumonidae) were compared in conventional and dropleg sprayed fields over four years (2016–2019), using the neonicotinoids thiacloprid and acetamiprid. Our results show that seed and pollen feeders were mainly found in the flowering canopy, while the predominant location of parasitoids was species-specific. Among pollen beetle parasitoids, Phradis interstitialis Thomson (Hymenoptera: Ichneumonidae) was more abundant below flowering canopy (63% of total catch), whereas T. heterocerus was mainly caught in the flowering canopy (84% of total catch). In the spraying experiments, average parasitism rates of pollen beetles by T. heterocerus ranged between 55 and 82% in the untreated controls. In the dropleg spray treatments, parasitism rates did not differ significantly from control levels, with the exception of thiacloprid application in 2019. In contrast, conventional spray applications resulted in a reduction of parasitism rates by up to 37% compared to the control for at least one of the insecticides in three out of four years. The impact of conventional application differed between years, which may be explained by the temporal coincidence between spray application and the immigration of parasitoids into the crop. We conclude that dropleg spraying exerts lower non-target effects on the main biological control agent of pollen beetle.

  相似文献   

11.
Tersilochus obscurator Aubert and Tersilochus microgaster (Szépligeti) are larval endoparasitoids of economically-important stem-mining pests of winter oilseed rape (Brassica napus L.) in Europe. They are difficult to separate morphologically. Their hosts are Ceutorhynchus pallidactylus (Marsham) and Psylliodes chrysocephala Linnaeus, respectively. The parasitoids' taxonomic status, identification, host range and phenology were studied using genetic, morphometric and ecological data. The study used 527 female parasitoids from the UK and Germany, either field-collected in emergence traps or reared from field-collected host larvae. Two morphometric characters, the ovipositor sheath to first metasomal tergite ratio and the percentage of the mesopleuron spanned by the sternaulus, were measured. A 440 bp section of mitochondrial DNA cytochrome oxidase subunit I (COI) gene was sequenced from 35 parasitoids reared from C. pallidactylus, 20 reared from P. chrysocephala and individuals from two outgroups, Tersilochus heterocerus Thomson and Phradis interstitialis Thomson. Distinct and invariable COI sequences corresponded exclusively to each parasitoid group, confirming that T. obscurator and T. microgaster are discrete species. Measurements of host-reared and COI-sequenced specimens indicated that the ranges of both morphometric characters overlapped between species. Using these ranges as criteria, all but 3.6% of UK specimens and 2% of German specimens were identifiable to species without reference to host or phenology. There were differences in emergence phenology in the UK, adult T. microgaster emerging from winter diapause by 29 March 2000, T. obscurator emerging between 12 April and 24 May 2000. The value of molecular techniques in the identification of closely-related parasitoid species is discussed.  相似文献   

12.
Production of oilseed rape, Brassica napus L., is affected by various insect pests. The cabbage stem weevil, Ceutorhynchus pallidactylus (Mrsh.) (Col.: Curculionidae), is one of the most damaging pests in Northern and Central Europe that requires regular control measures. Host plant resistance is a key factor in integrated pest management systems. To evaluate a large number of genotypes for their susceptibility to infestation by C. pallidactylus, new screening techniques were developed for testing both, the amount of feeding and the number of eggs deposited by adult C. pallidactylus on accessions of Brassicaceae under controlled conditions. In no‐choice screening tests, the leaf area consumed by adult cabbage stem weevil was quantified on a wide spectrum of 107 brassicaceous genotypes (B. napus, Brassica rapa L. and Brassica oleracea L. cultivars, breeding lines, resynthesized rapeseed lines and wild Brassicaceae). In comparison to feeding on the standard cultivar ‘Express’, the average leaf area consumed by C. pallidactylus on nine oilseed rape cultivars, four resynthesized rapeseed lines and five other accessions [B. oleracea, Camelina alyssum (Mill.) and Lunaria annua L.] was significantly reduced by 44–90%. In dual‐choice screening tests for the evaluation of oviposition preferences on 42 genotypes, female C. pallidactylus laid significantly fewer eggs into plants of two oilseed rape cultivars, five resynthesized rapeseeds and three accessions of B. oleracea and Brassica fruticulosa Cyrillo, respectively, than into plants of the standard cv ‘Express’. Results of both laboratory screening tests were confirmed by results of additional field testing.  相似文献   

13.
New control strategies for insect pests of arable agriculture are needed to reduce current dependence on synthetic insecticides, the use of which is unsustainable. We investigated the potential of a simple control strategy to protect spring‐sown oilseed rape, Brassica napus L. (Brassicaceae), from two major inflorescence pests: the pollen beetle, Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), and the seed weevil, Ceutorhynchus assimilis (Paykull) (Coleoptera: Curculionidae), through exploitation of their host plant preferences. The strategy comprised, for the main crop, Starlight [an oilseed rape cultivar with relatively low proportions of alkenyl glucosinolates in the leaves (thereby releasing lower levels of attractive isothiocyanates than conventional cultivars)] and turnip rape, Brassica rapa (L.) (Brassicaceae), as a trap crop. We tested the system in laboratory, polytunnel semifield arena, and field experiments. The odours of Starlight were less attractive in olfactometer tests to both pests than those from a conventional cultivar, Canyon, and the plants were less heavily colonized in both polytunnel and field experiments. Turnip rape showed good potential as a trap crop for oilseed rape pests, particularly the pollen beetle as its odour was more attractive to both pests than that of oilseed rape. Polytunnel and field experiments showed the importance of relative growth stage in the system. As turnip rape flowers earlier than oilseed rape, beetles would be maintained on turnip rape past the damage‐susceptible growth stage of oilseed rape. The development of a pest control regime based on this strategy is discussed.  相似文献   

14.
In fall, Myzus persicae (Sulzer) (Homoptera: Aphididae) may exhibit population resurgence in winter oilseed rape in France. This resurgence may arise from pyrethroid treatments against Coleoptera (Psylliodes chrysocephala L.) that either kill parasitoids present during treatment or prevent recolonization by off-crop parasitoids. We studied the impact of Diaeretiella rapae (M'Intosh) (Hymenoptera: Braconidae) on populations of M. persicae when parasitoids were introduced on deltamethrin-treated plants at increasing intervals after treatment. Parasitoids were introduced 1, 2, 7, or 14 d posttreatment on individually caged plants infested with established populations of M. persicae. Aphids were counted 7, 14 and 21 d after parasitoid introduction. First, we observed that both the pesticide and the parasitoid reduced aphid population growth and that their effects were additive. Second, there was no mortality of parasitoids exposed to treated leaves in a device with a refuge area, and only 20% of mortality without the refuge area. Furthermore, deltamethrin residues had no effect on the reproduction of D. rapae females. Compared with the known toxicity of deltamethrin to D. rapae on glass, this low mortality may have been due to both the high liposolubility of deltamethrin (leading to a rapid diffusion of residues in the oilseed rape leaf cuticle) and to the existence of a refuge area. This work suggests that D. rapae could limit populations of M. persicae in the fall, even after pyrethroid treatment, because the presence of deltamethrin residues had little impact on the parasitoid.  相似文献   

15.
Twenty eight Brassica napus lines were developed which had contrasting leaf glucosinolate profiles to those found in commercial oilseed rape cultivars. The lines varied both in the total amount of aliphatic glucosinolates and in the ratio of different side chain structures. The lines were used in field experiments to assess the manner by which glucosinolates mediate the interactions between Brasssica and specialist pests (Psylliodes chrysocephala and Pieris rapae) and generalist pests (pigeons and slugs). Increases in the level of glucosinolates resulted in greater damage by adult flea beetles (P. chrysocephala) and a greater incidence of Pieris rapae larvae, but reduced the extent of grazing by pigeons and slugs. Decreasing the side chain length of aliphatic glucosinolates and reducing the extent of hydroxylation of butenyl glucosinolates increased the extent of adult flea beetle feeding. The implications of modifying the glucosinolate content of the leaves of oilseed rape and the role of these secondary metabolites in plant/herbivore interactions are discussed.  相似文献   

16.
17.
  • 1 Understanding the spatio‐temporal dynamics of insects in agroecosystems is crucial when developing effective management strategies that emphasize the biological control of pests.
  • 2 Wild populations of Trichogramma Westwood egg parasitoids are utilized for the biological suppression of the potentially resistant pest species Helicoverpa armigera (Hübner) in Bt‐transgenic cotton Gossypium hirsutum L. crops in the Ord River Irrigation Area (ORIA), Western Australia, Australia.
  • 3 Extensive, spatially‐stratified sampling during a season of relatively high Trichogramma abundance found that spatial patterns of pest egg parasitism in the ORIA tend toward heterogeneity, and do not necessarily coincide with host spatio‐temporal dynamics. Both patterns of host egg density and mean rates of parasitism are not good indicators of parasitoid spatio‐temporal dynamics in ORIA cotton crops.
  • 4 Parasitism rates can be significantly higher within the middle strata of the cotton plant canopy before complete canopy closure, despite a similar number of host eggs being available elsewhere in the plant.
  • 5 Spatial variation in egg parasitism by Trichogramma in Bt‐transgenic cotton is evident at the between‐field, within‐field and within‐plant scale, and is not solely driven by host spatial dynamics. These factors should be considered when estimating Trichogramma impact on pest species during biological control and spatio‐temporal studies of host‐parasitoid interactions in general.
  相似文献   

18.
The cabbage stem flea beetle (CSFB), Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae), is one of the most important pests in European winter oilseed rape production. Adult beetles feed on young leaves whereas larvae mine within the petioles and stems. Larval infestation can cause significant crop damage. In this study, the host quality for CSFB of four oilseed rape (Brassica napus L.) cultivars and seven other brassicaceous species with different glucosinolate (GSL) profiles was assessed under controlled conditions. Larval instar weights and mortality were measured after 14 and 21 days of feeding in the petioles of test plants. To study the impact of GSL on the performance of larvae, the GSL contents in petioles from non-infested and infested plants were analysed before, and 21 days after, the start of larval infestation. Larval performance was not significantly different between the four cultivars of oilseed rape, but differed considerably among the other brassicaceous species tested. In comparison to the weight of larvae in the standard B. napus cv. Robust, the larval weight was higher in turnip rape (Brassica rapa L. var. silvestris) and significantly reduced in white mustard (Sinapis alba L.), oil radish (Raphanus sativa L. var. oleiformis), and cabbage (Brassica oleracea L. convar. capitata var. alba). The duration of larval development increased in white mustard and oilseed radish. The GSL profiles of the petioles showed little difference between non-infested and infested plants of oilseed rape whereas the content of aliphatic GSL increased in the infested turnip rape plants. In contrast, the aliphatic and benzenic GSL decreased in infested Indian rape (B. rapa subsp. dichotoma Roxb.). Larval weight was not correlated with the total GSL content of plants, neither before infestation nor 21 days after. Larval weight was positively correlated with progoitrin and 4-hydroxyglucobrassicin. White mustard, which provides inferior host quality for larval development, has the potential to introduce insect resistance into high-yielding oilseed rape cultivars in breeding programmes.  相似文献   

19.
  • 1 Sown flower habitats not only are employed in agri‐environment schemes in the European Union to enhance pollinators and birds, such as partridges, but also are hypothesized to contribute to the biological control of pests such as the rape pollen beetle Meligethes aeneus Fabr. by improving habitat and resource availability for its specialized parasitoids.
  • 2 In the present study, we selected 20 sown flower fields that included one of the pollen beetles' host plants Sinapis alba L., each centred in a landscape of varying complexity, to test the influence of the surrounding landscape structure on parasitism rate and herbivory by M. aeneus. Additionally, plant cover of S. alba plants within the sown flower fields and numbers of S. alba flowers were also included in the analyses.
  • 3 Landscapes with high proportions of semi‐natural habitats supported higher parasitism rates, and sown flower fields with dense S. alba plant cover hosted more parasitoids and suffered from less herbivory.
  • 4 We conclude that sown flower fields are not only important for pollinators and birds, but also are long‐term undisturbed, unploughed, insecticide‐free habitats with rich food (nectar/pollen) and host resources for parasitoids, contributing to the build‐up and maintenance of large parasitoid populations, which are important biocontrol agents of rape pollen beetles.
  相似文献   

20.
The use of semiochemicals for the manipulation of the pollen beetle, Meliethes aeneus (Fabricius) (Coleoptera: Nitidulidae), is being investigated for potential incorporation into a push‐pull strategy for this pest, which damages oilseed rape, Brassica napus L. (Brassicaceae), throughout Europe. Previous laboratory behavioural studies using volatiles from non‐host plants showed that M. aeneus is repelled by the odour of lavender, Lavendula angustifolia Mill. (Lamiaceae), essential oil. This article reports on semi‐field and field trials to investigate this behaviour under more realistic conditions. Semi‐field experiments were conducted to assess the relative importance of olfaction at different points in host location behaviour by M. aeneus. The results showed that oilseed rape plants treated with lavender odour were less colonised by M. aeneus in comparison with an untreated control, but that the treatment effect was much reduced if the lavender odour was applied after colonisation. The field experiment demonstrated that lavender odour caused a significant reduction in the number of adult M. aeneus infesting the oilseed rape plants in the treatment plots compared to the control plots. Overall, these findings are very encouraging for the future development of a push‐pull pest control system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号