首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Atlantic blue crab, Callinectes sapidus (Rathbun), lives in a bacteria-rich environment that experiences daily fluctuations in water quality. In the present study, we tested the hypothesis that crustaceans with prior or ongoing exposure to bacteria in their hemolymph have an increased susceptibility to subsequent infections, and that acute exposure to low dissolved oxygen (hypoxia) and elevated carbon dioxide levels (hypercapnia) may further confound the ability of blue crabs to counter a subsequent infection. Adult male blue crabs held in well-aerated (normoxic; P O2=20.7 kPA; CO(2)<0.06 kPa; pH 7.8-8.0) or hypercapnic hypoxic (HH; P O2=4 kPa; CO(2)=1.8 kPa; pH 6.9-7.2) seawater received an injection (pre-challenge dose) of 1 x 10(5)Vibrio campbellii g(-1) crab. Control animals were injected with an equivalent dose of HEPES-buffered saline (1 microl g(-1) crab). At 2h or 24h after the pre-challenge injection, both Vibrio and saline-pre-challenged animals were injected with a dose of live V. campbellii (1 x 10(5)g(-1) crab). This second injection will be referred to as a second injection or challenge injection. Degradation in or physical removal of intact bacteria from hemolymph was quantified using real-time PCR; bacteriostasis was quantified as the percentage of intact bacteria that could not be recovered by selective plating. We demonstrated that bacteriostasis occurs in the hemolymph of blue crabs. Furthermore, blue crabs that received a challenge injection 2h after a pre-challenge dose of V. campbellii cleared culturable bacteria from their hemolymph more rapidly when compared to animals that received a pre-challenge dose of saline. This enhanced clearance of culturable bacteria was associated with an increase in antibacterial activity in the cell-free hemolymph. However, the enhanced clearance of culturable bacteria disappeared when the time interval between the pre-challenge and challenge dose was extended to 24h and when crabs were held in HH seawater throughout the experiment. Neither the time interval between the pre-challenge and the challenge dose nor exposure to HH altered the pattern of intact bacterial clearance in blue crabs. These results demonstrate that prior exposure to bacteria does not increase the susceptibility of C. sapidus to a second, sublethal dose of V. campbellii. In fact, a recent exposure to V. campbellii enhances the ability of blue crabs to render bacteria non-culturable and the immune mechanisms/effectors responsible for this are short lived and appear to be sensitive to low dissolved oxygen and high carbon dioxide concentrations in the environment.  相似文献   

2.
Callinectes sapidus, the Atlantic blue crab, encounters hypoxia, hypercapnia (elevated CO(2)), and bacterial pathogens in its natural environment. We tested the hypothesis that acute exposure to hypercapnic hypoxia (HH) alters the crab's ability to clear a pathogenic bacterium, Vibrio campbellii 90-69B3, from the hemolymph. Adult male crabs were held in normoxia (well-aerated seawater) or HH (seawater with PO(2) = 4 kPa; PCO(2) = 1.8 kPa; and pH = 6.7-7.1) and were injected with 2.5 x 10(4) Vibrio g(-1) body weight. The animals were held in normoxia or in HH for 45, 75, or 210-240 min before being injected with Vibrio, and were maintained in their respective treatment conditions for the 120-min duration of the experiment. Vibrio colony-forming units (CFU) ml(-1) hemolymph were quantified before injection, and at 10, 20, and 40 min afterward. Total hemocytes (THC) ml(-1) of hemolymph were counted 24 h before (-24 h), and at 10 and 120 min after injection. Sham injections of saline produced no change in the bacterial or hemocyte counts in any treatment group. Among the groups that received bacterial injections, Vibrio was almost completely cleared within 1 h, but at 10-min postinjection, Vibrio CFU ml(-1) hemolymph was significantly higher in animals held in HH for 75 and 210-240 min than in those held in normoxia. Within 10 min after crabs were injected with bacteria, THC ml(-1) significantly decreased in control and HH45 treatments, but not in the HH75 and HH210-240 treatments. By 120 min after injection of bacteria, hemocyte counts decreased in all but the HH45 group. These data demonstrate that HH significantly impairs the ability of blue crabs to clear Vibrio from the hemolymph. These results also suggest that HH alters the normal role of circulating hemocytes in the removal of an invading pathogen.  相似文献   

3.
To study the inhibitory effect of hypoxia on the cold defense mechanism, pigeons were exposed at low ambient temperature (5 degrees C) to various inhaled gas mixtures: normoxia [0.21 fractional concentration of O2 (FIO2)], hypoxia (0.07 FIO2), and normocapnic hypoxia (0.07 FIO2 + 0.045 FICO2). Electromyographic (EMG) activity indicative of shivering thermogenesis was inhibited during hypoxia, and body temperature (Tre) fell by 0.09 degrees C/min. Respiratory frequency (f) and minute ventilation (VE) increased by 143 and 135%, respectively, compared with normoxia, but tidal volume (VT) was not changed. PO2, PCO2, and O2 contents in the arterial and mixed venous blood were decreased and pH was enhanced. During normocapnic hypoxia, shivering EMG was present at approximately 50% of the normoxic intensity; Tre fell by only 0.04 degrees C/min. Arterial and mixed venous PCO2 and pH were the same as during normoxia, but VE increased by 430% because of twofold increases in both f and VT. During normocapnic hypoxia, arterial PO2 and O2 content were higher than during hypoxia alone. We conclude that the persistence of shivering during normocapnic hypoxia is due to maintenance of critical levels of arterial PO2 and O2 content.  相似文献   

4.
We examined the possibility that decreased environmental oxygen can elevate the levels of indigenous bacteria in the hemolymph of Cancer magister. Crabs were exposed to air-saturated and hypoxic (50% air-saturation) water for 3 days and levels of culturable bacteria in hemolymph were measured every 24 h as the total number of colony-forming units (CFU) per milliliter of hemolymph. Bacteremia increased after 24 h of exposure to hypoxia and persisted for 72 h, whereas crabs exposed to normoxia had no measurable change in number of culturable bacteria. The predominant persistent bacteria in the hemolymph was isolated and identified by DNA sequence-based methods as Psychrobacter cibarus. Crabs were injected with P. cibarus or with buffered saline as a control after 3 h of hypoxia. Levels of culturable bacteria were significantly higher in hypoxic crabs than in normoxic ones (about 2500 versus 1000 CFU ml(-1) 80 min post-injection, respectively), and circulating levels of oxygen were significantly reduced in infected animals compared to uninfected ones after 48 h in hypoxia and after 72 h in air-saturated water post-injection. These data demonstrate that P. cibarius is present in Dungeness crabs, that environmental hypoxia can dramatically elevate levels of persistent bacteria, and that hypoxia in the presence of hemolymph bacteria may ultimately reduce immune and respiratory ability.  相似文献   

5.
The consequences of a decreased O2 supply to a contracting canine gastrocnemius muscle preparation were investigated during two forms of hypoxia: hypoxic hypoxia (HH) (n = 6) and CO hypoxia (COH) (n = 6). Muscle O2 uptake, blood flow, O2 extraction, and developed tension were measured at rest and at 1 twitch/s isometric contractions in normoxia and in hypoxia. No differences were observed between the two groups at rest. During contractions and hypoxia, however, O2 uptake decreased from the normoxic level in the COH group but not in the HH group. Blood flow increased in both groups during hypoxia, but more so in the COH group. O2 extraction increased further with hypoxia (P less than 0.05) during concentrations in the HH group but actually fell (P less than 0.05) in the COH group. The O2 uptake limitation during COH and contractions was associated with a lesser O2 extraction. The leftward shift in the oxyhemoglobin dissociation curve during COH may have impeded tissue O2 extraction. Other factors, however, such as decreased myoglobin function or perfusion heterogeneity must have contributed to the inability to utilize the O2 reserve more fully.  相似文献   

6.
With the arrival of the monsoonal rains and after months of inactivity during the dry season, the terrestrial crab Gecarcoidea natalis embarks on its annual breeding migration to the coast. The physiological demands of the migration were assessed by determining respiratory gases in the hemolymph, key metabolites, and energy stores in G. natalis during two migratory seasons. At the end of each day of migration the pulmonary hemolymph PO2 decreased by 1-2.5 kPa, but the hemocyanin remained saturated with O2 and the venous reserve was largely unchanged (O2 > 0.4 mmol x l(-1)). The breeding migration of red crabs was accomplished without recourse to anaerobiosis, even though at times walking speeds (up to 6.2 +/- 0.5 m x min(-1)) exceeded those that promoted anaerobiosis in non-migrating crabs and in crabs exercised in the laboratory. In contrast to all previous studies, at the end of each day of migrating, red crabs experienced an alkalosis (up to 0.1 pH units) rather than any acidosis. This alkalosis was removed overnight when the crabs were inactive. Although there were seasonal fluctuations in the glycogen, glucose, and triglyceride stores, crabs engaging in the migration did not draw on these stores and must have fed along the way. In contrast, crabs returning from breeding activities on the shore terraces had significantly depleted glycogen stores. Additionally, in 1993, the male crabs returning from the breeding activities on the terraces were dehydrated and experienced a decrease in muscle tissue water of 11%. In contrast to the breeding migration per se, fighting for burrows in which breeding occurs produced severe anaerobiosis in males, especially the victors: after 135 s of combat, the maximum L-lactate concentration in the hemolymph was 35 mmol x l(-1). It appears that burrowing, courtship, and mating are more demanding than the migration itself. Furthermore, the data provide evidence that the metabolic responses of migrating individuals of G. natalis might be different from those at other times of the year.  相似文献   

7.
The hypothesis is tested that methionine-enkephalin, a hormone produced in and released from eyestalk of crustaceans, produces hyperglycemia indirectly by stimulating the release of hyperglycemic hormone from the eyestalks. Injection of methionine-enkephalin leads to hyperglycemia and hyperglucosemia in the estuarine crab Scylla serrata in a dose-dependent manner. Decreases in total carbohydrate (TCHO) and glycogen levels of hepatopancreas and muscle with an increase in phosphorylase activity were also observed in intact crabs after methionine-enkephalin injection. Eyestalk ablation depressed hemolymph glucose (19%) and TCHO levels (22%), with an elevation of levels of TCHO and glycogen of hepatopancreas and muscle. Tissue phosphorylase activity decreased significantly during bilateral eyestalk ablation. Administration of methionine-enkephalin into eyestalkless crabs caused no significant alterations in these parameters when compared to eyestalk ablated crabs. These results support the hypothesis that methionine-enkephalin produces hyperglycemia in crustaceans by triggering release of hyperglycemic hormone from the eyestalks.  相似文献   

8.
Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia.   总被引:2,自引:0,他引:2  
To test the role of blood flow in tissue hypoxia-related increased veno-arterial PCO(2) difference (DeltaPCO(2)), we decreased O(2) delivery (&Ddot;O(2)) by either decreasing flow [ischemic hypoxia (IH)] or arterial PO(2) [hypoxic hypoxia (HH)] in an in situ, vascularly isolated, innervated dog hindlimb perfused with a pump-membrane oxygenator system. Twelve anesthetized and ventilated dogs were studied, with systemic hemodynamics maintained within normal range. In the IH group (n = 6), hindlimb DO(2) was progressively lowered every 15 min by decreasing pump-controlled flow from 60 to 10 ml. kg(-1). min(-1), with arterial PO(2) constant at 100 Torr. In the HH group (n = 6), hindlimb DO(2) was progressively lowered every 15 min by decreasing PO(2) from 100 to 15 Torr, when flow was constant at 60 ml. kg(-1). min(-1). Limb DO(2), O(2) uptake (VO(2)), and DeltaPCO(2) were obtained every 15 min. Below the critical DO(2), VO(2) decreased, indicating dysoxia, and O(2) extraction ratio (VO(2)/DO(2)) rose continuously and similarly in both groups, reaching a maximal value of approximately 90%. DeltaPCO(2) significantly increased in IH but never differed from baseline in HH. We conclude that absence of increased DeltaPCO(2) does not preclude the presence of tissue dysoxia and that decreased flow is a major determinant in increased DeltaPCO(2).  相似文献   

9.
The Eastern oyster, Crassostrea virginica, inhabits shallow coastal waters that frequently experience periods of low dissolved oxygen (hypoxia) and elevated CO(2) (hypercapnia) levels. Bacteria are extremely abundant in these environments and accumulate in large numbers in filter-feeding oysters, which can act as passive carriers of human pathogens. Although hypercapnic hypoxia (HH) can affect certain specific immune mechanisms, its direct effect on the inactivation, degradation and elimination of bacteria in oysters is unknown. This research was conducted to determine whether exposure to HH reduces the ability of C. virginica to inactivate and eliminate Vibrio campbellii following its injection into the adductor muscle. Oysters were held in fully air-saturated (normoxic; partial O(2) pressure [P(O2)] = 20.7 kPa, CO(2) < 0.06 kPa, pH 7.8 to 8.0) or HH (P(O2) = 4 kPa, CO(2) = 1.8 kPa, pH 6.5 to 6.8) seawater at 25 degrees C for 4 h before being injected in the adductor muscle with 10(5) live Vibrio campbellii bacteria and remained under these conditions for the remainder of the experiment (up to 24 h postinjection). Real-time PCR was used to quantify the number of intact V. campbellii bacteria, while selective plating was used to quantify the number of injected bacteria remaining culturable in whole-oyster tissues, seawater, and feces/pseudofeces at 0, 1, 4, and 24 h postinjection. We found that oysters maintained under normoxic conditions were very efficient at inactivating and degrading large numbers of injected bacteria within their tissues. Moreover, a small percentage ( approximately 10%) of injected bacteria were passed into the surrounding seawater, while less than 1% were recovered in the feces/pseudofeces. In contrast, HH increased the percentage of culturable bacteria recovered from the tissues of oysters, suggesting an overall decrease in bacteriostasis. We suggest that poor water quality may increase the risk that oysters will harbor and transmit bacterial pathogens hazardous to human and ecosystem health.  相似文献   

10.
Polycythemia increases blood viscosity so that systemic O2 delivery (QO2) decreases and its regional distribution changes. We examined whether hypoxia, by promoting local vasodilation, further modified these effects in resting skeletal muscle and gut in anesthetized dogs after hematocrit had been raised to 65%. One group (CON, n = 7) served as normoxic controls while another (HH, n = 6) was ventilated with 9% O2--91% N2 for 30 min between periods of normoxia. Polycythemia decreased cardiac output so that QO2 to both regions decreased approximately 50% in both groups. In compensation, O2 extraction fraction increased to 65% in muscle and to 50% in gut. When QO2 was reduced further during hypoxia, blood flow increased in muscle but not in gut. Unlike previously published normocythemic studies, there was no initial hypoxic vasoconstriction in muscle. Metabolic vasodilation during hypoxia was enhanced in muscle when blood O2 reserves were first lowered by increased extraction with polycythemia alone. The increase in resting muscle blood flow during hypoxia with no change in cardiac output may have decreased O2 availability to other more vital tissues. In that sense and under these experimental conditions, polycythemia caused a maladaptive response during hypoxic hypoxia.  相似文献   

11.
The metabolic response of the crab Carcinus maenas to short‐term hypoxia (60% and 35% saturated seawater) was studied at 17.5°C in fed, 3 day‐unfed and 6 day‐unfed crabs.

Ammonia excretion rate decreased under hypoxia: a 40% and 45% decrease in the normoxic rate was observed in fed crabs at 35% saturation and in 3 day‐unfed crabs at both hypoxic levels respectively. In the 6 day‐unfed crabs, the effect of hypoxia was concealed by the effect of starvation.

Oxygen consumption rate was directly related to the external O2 tension irrespective of the crab's nutritional state. Stressed crabs behaved as a whole, as oxygen‐conformers.

A strong relationship was observed between ammonia excretion and oxygen consumption rates in fed crabs under hypoxia but not in starved crabs.  相似文献   

12.
Hypoxia is a major stressor in coastal ecosystems, yet generalizing its impacts on fish and shellfish populations across hypoxic events is difficult due to variability among individuals in their history of exposure to hypoxia and related abiotic variables, and subsequent behavioral and survival responses. Although aquatic animals have diverse physiological responses to cope with hypoxia, we know little about how inter-individual variation in physiological state affects survival and behavioral decisions under hypoxic conditions. Laboratory experiments coupled with molecular techniques determined how extrinsic factors (e.g., water body and temperature) and respiratory physiology (hemocyanin concentration and structure) affected survival and behavior of adult blue crabs (Callinectes sapidus) exposed to different levels of hypoxia over a 30-h time period. Nearly 100% of crabs survived the 1.3 mg dissolved oxygen (DO) l?1 treatment (18.4% air saturation), suggesting that adult blue crabs are tolerant of severe hypoxia. Probability of survival decreased with increasing hypoxic exposure time, lower DO, and increasing temperature. Individual-level differences in survival correlated with water body and crab size. Crabs collected from the oligo/mesohaline and hypoxic Neuse River Estuary (NRE), North Carolina, USA survived hypoxic exposures longer than crabs from the euhaline and normoxic Bogue and Back Sounds, North Carolina. Furthermore, small NRE crabs survived longer than large NRE crabs. Hemocyanin (Hcy) concentration did not explain these individual-level differences, however, hypoxia-tolerant crabs had Hcy structures indicative of a high-O2-affinity form of Hcy, suggesting Hcy “quality” (i.e., structure) may be more important for hypoxia survival than Hcy “quantity” (i.e., concentration). The geographic differences in survival we observed also highlight the importance of carefully selecting experimental animals when planning to extrapolate results to the population level.  相似文献   

13.
To compare the arterial PO2 (PaO2) at which adrenocorticotropic hormone (ACTH) secretion and ventilation are stimulated, conscious rats with chronic femoral arterial catheters were exposed for 50 min to 21, 18, 15, 12, or 9% O2. Decreases in arterial PCO2 (PaCO2) and increases in arterial pH and adrenocortical system activity occurred consistently throughout the exposure period in rats exposed to 9 or 12% O2. In contrast, changes in PaCO2 or pH were only transient or delayed, plasma ACTH did not change, and plasma corticosterone only increased after 20 min in rats exposed to 15 or 18% O2 relative to those breathing 21% O2. Omitting the large blood sample at 20 min for ACTH eliminated the increase in corticosterone in the 15% O2 group. Overall, ACTH increased, and PaCO2 decreased, below PaO2 of approximately 60 Torr. We conclude that ACTH secretion increases at a similar PaO2 as hyperventilation-induced decreases in PaCO2 and thus represents a primary physiological response to acute hypoxia; hemodynamic stimuli may also interact with hypoxia to augment adrenocortical system activity.  相似文献   

14.
本文的目的是研究长时间低氧对离体培养的大鼠颈动脉体球细胞(glomuscell)的影响。对实验组Sprague-Dawley(SD)大鼠,首先将其置于模拟5000m高度低氧环境的低压舱中饲养7—10d,然后麻醉动物,取出颈动脉体,将其分离成单个细胞和细胞群体(clusters)。这些细胞在低氧条件(11%O2,5%CO2,84%N2)下培养2—3d。取自正常SD大鼠的颈动脉体细胞被分为两组,分别将其培养在常氧(21%O2,5%CO2,74%N2)或低氧环境中。球细胞的细胞内pH(pHi)和膜电位(MP)分别用H+选择性微电极和常规微电极同时测量。结果表明:长时间低氧降低球细胞的pHi,增加MP,其变化程度远远大于急性低氧的影响,而且当将细胞置于常氧中测量时其值不恢复。  相似文献   

15.
目的:观察黄连对正常氧和慢性间歇性低压低氧(CIHH)大鼠离体胸主动脉收缩活动的影响并探讨其作用机制。方法:取青年雄性SD大鼠,随机分为正常氧组和CIHH组。前者不予任何处理,后者于低压氧舱接受28d模拟海拔5000m高度的低压低氧(PB=404mmHg,PO2=84mmHg,11.1%O2)处理,每天6h。制备大鼠离体胸主动脉环并将其恒温灌流,记录黄连对动脉环收缩活动的影响并研究其作用机制。结果:黄连使去甲肾上腺素(NE)和氯化钾(KCl)诱发的正常氧和CIHH大鼠离体动脉环收缩活动明显减弱,但其对两组大鼠动脉收缩的抑制作用无明显差异。除去内皮后各组收缩幅度均无显著变化。以收缩幅度为指标,用Logit法计算正常氧组黄连对NE和KCl诱发收缩的ICso分别为2.99g/L和6.14g/L,CIHH组则分别为3.45g/L和5.81g/L。格列苯脲、左旋硝基精氨酸甲酯可部分阻断黄连对两组大鼠动脉环收缩活动的抑制作用,吲哚美辛还能抑制黄连对正常氧大鼠动脉的舒张作用。黄连明显抑制NE诱发的两组血管细胞内钙性和细胞外钙性收缩。结论:黄连对正常氧和CIHH大鼠离体胸主动脉环具有明显舒张作用,该作用不依赖血管内皮,且在两组之间无显著差异。其抑制CIHH大鼠血管收缩的机制可能是通过激活ATP敏感型钾通道,增加一氧化氮浓度,抑制肌浆网释放Ca2+及细胞外Ca2+内流;对正常氧大鼠动脉的舒张作用可能还通过增加局部前列环素。  相似文献   

16.
Crustacean gills function in gas exchange, ion transport, and immune defense against microbial pathogens. Hemocyte aggregates that form in response to microbial pathogens become trapped in the fine vasculature of the gill, leading to the suggestion by others that respiration and ion regulation might by impaired during the course of an immune response. In the present study, injection of the pathogenic bacterium Vibrio campbellii into Callinectes sapidus, the Atlantic blue crab, caused a dramatic decline in oxygen uptake from 4.53 to 2.56 micromol g-1 h-1. This decline in oxygen uptake is associated with a large decrease in postbranchial PO2, from 16.2 (+/-0.46 SEM, n=7) to 13.1 kPa (+/-0.77 SEM, n=9), while prebranchial PO2 remains unchanged. In addition, injection of Vibrio results in the disappearance of a pH change across the gills, an indication of reduced CO2 excretion. The hemolymph hydrostatic pressure change across the gill circulation increases nearly 2-fold in Vibrio-injected crabs compared with a negligible change in pressure across the gill circulation in saline-injected, control crabs. This change, in combination with stability of heart rate and branchial chamber pressure, is indicative of a significant increase in vascular resistance across the gills that is induced by hemocyte nodule formation. A healthy, active blue crab can eliminate most invading bacteria, but the respiratory function of the gills is impaired. Thus, when blue crabs are engaged in the immune response, they are less equipped to engage in oxygen-fueled activities such as predator avoidance, prey capture, and migration. Furthermore, crabs are less fit to invade environments that are hypoxic.  相似文献   

17.
Acute hypoxia can cause massive fish and shellfish mortality. Less clear is the role that chronic sublethal hypoxia might play in aquatic animal health. This study tested whether production of reactive oxygen species (ROS) and bactericidal activity of fish phagocytic cells are suppressed under the conditions of decreased oxygen and pH and increased carbon dioxide which occur in the blood and tissue of animals exposed to sublethal hypoxia. Anterior head kidney (AHK) cells of the mummichog, Fundulus heteroclitus, were exposed in parallel to normoxic (pO2=45 torr, pCO2=3.8 torr, pH=7.6) or hypoxic (pO2=15 torr, pCO2=8.0 torr, pH=7.0) conditions and stimulated with a yeast cell wall extract, zymosan. or live Vibrio parahaemolyticus. Hypercapnic hypoxia suppressed zymosan-stimulated ROS production by 76.0% as measured in the chemiluminescence assay and by 58.5% in the nitroblue tetrazolium (NBT) assay. The low O2, high CO2 and low pH conditions also suppressed superoxide production by 75.0 and 47.3% as measured by the NBT assay at two different challenge ratios of cells:bacteria (1:1 and 1:10, respectively). In addition to its effects on ROS production, hypercapnic hypoxia also reduced bactericidal activity by 23.6 and 72.5% at the 1:1 and 1:10 challenge ratios, respectively. Low oxygen levels alone (pO2=15 torr, pCO2=0.76 torr, pH=7.6) did not significantly compromise the killing activity of cells challenged with equal numbers of V. parahaemolyticus. At the higher 1:10 AHK:bacteria challenge ratio, low oxygen caused a small (26.3%) but significant suppression of bactericidal activity as compared to aerial conditions (pO2=155 torr, pCO2=0.76 torr, pH=7.6). This study demonstrates that while hypoxia alone has detrimental effects on immune function, suppression of phagocytic cell activity is compounded by naturally occurring conditions of hypercapnia and low pH, creating conditions that might be exploited by opportunistic pathogens. These results indicate that the adverse health effects of chronic hypercapnic hypoxia might greatly exceed the effects of low oxygen alone.  相似文献   

18.
During the summer, groups of blue crabs, Callinectes sapidus, collected in commercial crab traps in Chincoteague Bay, Virginia, often undergo heavy mortalities during the first week to 10 days in the laboratory. Gram-negative bacteria are seen in hemolymph and tissues of many of the sick and dying crabs. The bacterial infections appear to be acquired during capture and transport, suggesting that potentially pathogenic bacteria in water or on the exoskeleton may be introduced into tissues by wounding or other means during the stressful conditions suffered at that time. The pathology caused by bacterial infection includes diminution in numbers of hemocytes, reduced clotting ability of the hemolymph, and progressive formation of hemocyte aggregations with necrotic centers in the heart, arteries, and hemal sinuses and spaces. By the third day, aggregations, often with many bacteria visible in the centers, occur especially in the gills, antennal gland, and Y organ. There are large premortem plasma clots in some animals. The focal and massive necroses that occur may be due to hypoxia resulting from obstruction of hemolymph flow by cellular aggregations and plasma clots and to toxic products of necrotic cells and/or bacteria.  相似文献   

19.
This study used an inexpensive and versatile environmental exposure system to test the hypothesis that hypoxia promoted free radical production in primary cultures of rat main pulmonary artery smooth muscle cells (PASMCs). Production of reactive species was detected by fluorescence microscopy with the probe 2', 7'-dichlorodihydrofluorescein, which is converted to the fluorescent dichlorofluorescein (DCF) in the presence of various oxidants. Flushing the airspace above the PASMC cultures with normoxic gas (20% O(2), 75% N(2), and 5% CO(2)) resulted in stable PO(2) values of approximately 150 Torr, whereas perfusion of the airspace with hypoxic gas (0% O(2), 95% N(2), and 5% CO(2) ) was associated with a reduction in PO(2) values to stable levels of approximately 25 Torr. Hypoxic PASMCs became increasingly fluorescent at approximately 500% above the normoxic baseline after 60 min. Hypoxia-induced DCF fluorescence was attenuated by the addition of the antioxidants dimethylthiourea and catalase. These findings show that PASMCs acutely exposed to hypoxia exhibit a marked increase in intracellular DCF fluorescence, suggestive of reactive oxygen or nitrogen species production.  相似文献   

20.
Progressive hyperoxia caused a gradual increase in arterial blood oxygen tension (PaO2). Initially there was no change in venous O2 tension (PvO2) but in extreme hyperoxia (PO2 650 mmHg) it increased to 2.5 times the normoxic (PO2 150 mmHg) level (Table 1). Ventilation frequency gradually decreased down to 73% of the normoxic value as PO2 rose towards a maximum at 700 mmHg (Fig. 1). In moderately hyperoxic water (mean PO2 233 mmHg) heart rate (fH) increased significantly above the normoxic level. Further increases in ambient PO2 caused a progressive reduction in fH to a level significantly below the normoxic rate in extreme hyperoxia (Fig. 2). Injection of atropine abolished these changes, and the atropinized fH was similar to that measured during moderate hyperoxia. The initial increase in fH during progressive hyperoxia is attributed to release of vagal tone, due to removal of normoxic stimulation of peripheral oxygen receptors; whereas, the secondary bradycardia is attributed to the stimulation of oxygen receptors located in the venous system. Injection of 5 ml of hyperoxaemic blood into the venous system of normoxic fish caused a transient bradycardia (Fig. 3), lasting a mean of 73 sec, which is the approximate time for passage of the blood volume of the venous system through the heart. This bradycardia was neither pH dependent nor a pressor response and provides supporting evidence for the existence of a venous oxygen receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号