首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eighty percent of bladder cancers present as superficial disease. Many are multifocal, and apparently successful treatment is frequently followed by recurrence. The use of monoclonal antibodies (MAbs) to target radiotherapy to these tumors offers great potential, especially since they can be administered directly into the bladder (intravesically) bypassing many of the side effects encountered to date with systemic MAb-based therapy. Implantation of human bladder cancer cell lines in the bladder wall of nude rats results in tumor formation, providing an excellent model to test this. Tumor size can be monitored by X-ray analysis after administration of urograffin. Comparative studies of two murine MAbs, BLCA-8, IgG3, and C1-137, IgG1, against malignant human bladder cancer cells have been performed. Radio-immunoconjugates produced with125Iodine (125I) have been used for biodistribution studies following administration directly into rat bladder. Radioiodinated intact MAbs or Fabs administered intravesically into nontumor bearing rats did not leak into the systemic circulation and were stable in urine for up to 100 h. Biodistribution studies carried out following intravesical administration of radio-immunoconjugates to tumor-bearing nude rats indicate better tumor uptake of C1-137 than BLCA-8. Further studies to test two-step intravesical administration of biotinylated MAb followed by radioiodinated streptavidin are in progress. Our studies indicate that the C1-137 MAb may have considerable potential for intravesical radioimmunotherapy of patients with superficial bladder tumors.  相似文献   

2.
A mathematical model simulation was performed to estimate the amount of radioactivity in plasma, normal tissues, and tumor tissue through three delivery approaches: one step radiolabeled monoclonal antibody (MAb) CC49 i.v. bolus injection, two step method with biotin conjugated CC49 i.v. bolus injection followed 72 hours later by i.v. bolus radiolabeled streptavidin injection, and gene therapy method to express biotin on the tumor cell surface followed by i.v. bolus radiolabeled streptavidin injection. The mathematical model was built based on a system of ordinary differential equations consisting of inputs and outputs of model components in plasma, normal tissues, and tumor tissue. Through computer modeling, we calculated concentrations of each component for plasma, tumor and normal tissues at various time points. Radioactivity ratios of tumor to plasma and tumor to normal tissues increased with time. The increase of tumor to normal tissue ratios was much faster for the gene therapy approach than for single step and two step approaches, e.g., a ratio of 24.26 vs. 2.06 and 6.24 at 72 hours after radioligand injection. Radioactivity ratios predicted by the model varied with the amount of radioactivity injected and the time interval between injections. The model could be used to evaluate different radioimmunotherapy strategies and to predict radioactivity biodistribution using other receptor-ligand systems.  相似文献   

3.
We evaluated the efficacy of murine monoclonal antibodies (MAbs) targeted to the Aβ amyloid of Alzheimer's disease for development of procedures for the in vivo identification of amyloid angiopathy (AA). MAbs to Aβ were prepared and screened for effectiveness in visualizing AA and neuritic plaques in postmortem AD brain sections. They were assessed again after enzymatic cleavage to produce Fab fragments and after labeling with technetium-99m (99mTc) using a diamide dimercaptide ligand system. Modified and radiolabeled Fab fragments retained activity and specificity toward amyloid-laden blood vessels and neuritic plaques. A highly specific murine MAb, 10H3, was identified and characterized that fulfills criteria necessary for the development of an in vivo diagnostic imaging agent. Toxicity studies in rats showed the MAb to be safe. Biodistribution studies in mice demonstrated desirable properties for use as an imaging agent. Expansion and adaptation of these strategies may provide the methods and materials for the noninvasive analysis of AA in living patients, and permit assessment of the contribution of AA to the clinical and pathological features of AD.  相似文献   

4.
Tumor stroma contains much fibrin and monoclonal antifibrin antibody targeting is possible in tumors. In this study, nude mouse human ovarian carcinoma xenograft specimens were investigated after treatment with90Y-labeled monoclonal antifibrin antibody Fab fragment or with90Y-labeled OC125-monoclonal antibody F(ab′)2 fragments. The mice received the radioimmunotherapy activity either intratumorally, intraperitoneally, or intravenously. Beta-camera imaging (BCI) is a novel device for studying activity distribution in tissue specimens and, together with immunohistochemistry (IHC) with OC125, antifibrin, anticarcinoembryonic antigen, anti-cytokeratin, and anti-placental alkaline phosphatase antibodies, was used for correlation of activity distribution of tissue specimens. These results were in concordance: Antigen distribution measured with IHC and radioactivity distribution were similar with the same antibodies, antifibrin, and OC125: However, these antigens demonstrated rather different distribution. Tissue studies revealed that activity was concentrated also in the necrotic tumor tissue, indicating that cell death was also caused by radiation. Differences in the tumor cell morphology were observed using different routes of administration. With BCI, it is possible to quantitate activities in frozen sections (microdosimetry), and these results were in concordance with absolute activities as measured by tissue sampling and well-counting. Three-dimensional reconstruction of tissue slices combined with radioactivity distribution measured with BCI allows estimation of total absorbed radiation dose in tumor after an appropriate dose planning.  相似文献   

5.
A murine monoclonal antibody 3H3 recognizes the basic fibroblast growth factor (FGF) and inhibits the growth of human glioblastoma cells both in vitro and in vivo. We studied the potential of a scintigraphic technique using the 3H3 antibody to detect tumors that produce basic FGF.125I- and111In-labeled 3H3 bound to U87MG human glioblastoma cells in vitro. U87MG cells were inoculated subcutaneously into nude mice. After development of the tumor, radiolabeled 3H3 was injected into the subcutaneous space surrounding the tumor. A high level of radioactivity from 3H3 was retained at the tumor, whereas an irrelevant antibody cleared rapidly from the injected site. Radiolabeled 3H3 was not retained in tumors that did not produce basic FGF. Scintigraphic detection of tumors expressing basic FGF would be valuable for the therapeutic application of the antibody.  相似文献   

6.
Localization of gastrointestinal tumors by means of labeled monoclonal antibodies is a new, sensitive and suitable technique currently used in several centers. Encouraging results have been documented with several monoclonal antibodies by different authors. This article reviews our experience with radioimmunoscintigraphy in 59 patients with colorectal cancer in follow-up, using 131I and 111In labeled B72.3, and in 16 patients with primary gastrointestinal tumors using 99mTc anti-CEA monoclonal antibody (type F023C5). The sensitivity of both B72.3 and anti-CEA was greater than 70% either for primary tumors and abdominal recurrences or distant metastases except hepatic ones. A significant gradient in antibody uptake was measured on surgical biopsies between tumors and normal tissues allowing a good in vivo contrast for gamma detection. We have defined the impact of some factors affecting in vivo tumor targeting. In fact, pharmacodynamics of MAbs, percentage of injected dose bound to tissues were measured, and in particular antigenic content in tumor nodules was quantified. Furthermore, the results of RIS were compared to those obtained by CT and other imaging modalities.  相似文献   

7.
Hitherto anti-CEA monoclonal antibodies (MAbs), normally of mouse origin, have been used primarily for clinical diagnosis of colorectal cancer, either as a tumor marker in serum to monitor tumor recurrence, or latterly as a means to localize in vivo CEA-bearing tumors, and metastases in patients. In vivo diagnosis using mouse anti-CEA MAbs has so far had limited clinical utility because the antibodies elicit a strong anti-mouse immunoglobulin immune response on repeated administration in man. This problem has been addressed by the development of various strategies for "humanization" of mouse anti-CEA MAbs by genetic manipulation of immunoglobulin genes. Such humanized, engineered antibodies markedly attenuate the antigenic response directed against the MAb, such that safe, repeated administration to patients has become feasible. Such humanized anti-CEA antibodies can thus be radioactively-labelled and applied for in vivo monitoring and detection of recurrent malignant disease, or used for therapeutic strategies which similarly take advantage of the ability of the antibodies to target cytotoxic agents selectively to tumor cells. The application of these novel procedures for manipulating MAb structure presents entirely new opportunities for diagnosis and treatment of human colorectal cancer.  相似文献   

8.
Summary The targeting of monoclonal antibodies to human tumor xenografts in nude mice was investigated by analysis of the cellular distribution of two radioiodinated monoclonal antibodies, B6.2 and B72.3, which recognize different tumor-associated antigens. The time course of distribution of each antibody within Clouser human mammary carcinoma (B6.2 positive, B72.3 negative) and LS174T human colorectal carcinoma (B6.2 positive, B72.3 positive) following i. v. injections was compared using autoradiographic techniques, which were also used to determine the pattern of binding after in vitro incubation with radiolabeled antibody. Both in vivo and in vitro localization of 125I-B72.3 in LS174T were characterized by the binding of antibody to antigen-rich mucin globules. In contrast, in vivo localization of B6.2 was restricted to groups of cells in well vascularized regions. Thus, the in vivo accumulations of B6.2 and B72.3 although quantitatively similar showed very different spatial distributions within LS174T tumors. The in vivo binding of B6.2 in Clouser tumors was restricted to small clusters of cells scattered fairly evenly throughout the tumor. There was no evidence for the presence of such antigen-rich foci after in vitro incubation of tumor sections with B6.2 suggesting that heterogeneity of regional uptake may be due to differences in antibody delivery. This type of information may provide a rational basis for the selection of appropriate therapeutic isotopes for radioimmunotherapy studies using these and other tumor models.  相似文献   

9.
After demonstrating enhanced tumor cell binding with a mixture of monoclonal antibodies (MAbs) in vitro, biodistribution and immunoscintigraphy studies with 3 radioiodinated anti-colon cancer MAbs and a non-specific control MAb (MOPC) were conducted in a human colon cancer (GW-39)-hamster model system. Each of the specific MAbs, but not MOPC, demonstrated extensive tumor binding and in scintigrams affected visualization of all large tumors (>0.85 g) over background. Using single MAbs, few small tumors (0.19–0.50 g) were defined above background (0–29%). However, with combinations of these specific MAbs small tumors were more frequently defined in scintigrams (43–67%). Radioimages using higher doses of MAbs and small, younger tumors more clearly demonstrated the superiority of a MAb mixture. These results confirmed that combinations of MAbs to different antigens can detect smaller tumors with better tumor localization when compared to component MAbs used singly. This study supports the concept that tumor targeting and detection may be enhanced with appropriate mixtures of MAbs.  相似文献   

10.
Two monoclonal anti-idiotypic antibodies (ab2 MAbs), designated 1.13A112 (immunoglobulin G type 2a [IgG2a]) and 1.13A321 (IgG1), were prepared against Semliki Forest virus (SFV)-neutralizing ab1 MAb UM 1.13. They were identified in hybridoma supernatant fluid by their capacity to block UM 1.13-mediated neutralization of SFV. Although the neutralization-blocking capacities of the ab2 MAbs did not differ, only 1.13A321 evoked SFV-neutralizing ab3 antibodies upon intracutaneous and subcutaneous immunization of BALB/c mice with 1.13A321 chemically cross-linked to keyhole limpet hemocyanin and combined with the adjuvant Quil A. SFV-neutralizing ab3 antibodies appeared in serum within 10 days after primary immunization, and neutralizing antibody titers could be as high as 1/1,000 at day 35. All mice who had developed SFV-neutralizing antibodies upon anti-idiotypic immunization survived an otherwise lethal challenge with virulent SFV. However, induction of SFV-neutralizing ab3 antibodies by ab2 MAb 1.13A321 proved to be genetically restricted to BALB/c mice; even haplotype-identical (H-2d) DBA/2 mice did not respond, and consequently those animals died after infection with virulent SFV.  相似文献   

11.
In vivo tumor targetting with radiolabelled monoclonal antibodies is a promising approach for the diagnosis and therapy of tumors. A specific monoclonal antibody (mAb), DLAB was generated to the Dalton's lymphoma associated antigen (DLAA) from Haemophilus paragallinarum-induced spontaneous fusion. In order to study the tumor localisation and biodistribution properties of the monoclonal antibody, scintigraphic studies were performed using the radiolabelled DLAB. 131-labelled DLAB was administered intravenously into Swiss mice bearing Dalton's lymphoma and external scintiscanning was performed at different time intervals. Clear tumor images were obtained which revealed selective and specific uptake of radiolabel and the results were compared with biodistribution data. The radioiodinated monoclonal antibody showed fast tumor uptake which increased significantly to 14.6% injected dose (ID)/g at 12 hr post-injection. Enhanced blood clearance of radioactivity resulted in higher tumor/blood ratio of 5.96 at 48 hr. 131I-labelled DLAB resulted in selective and enhanced uptake of the radioactivity by the tumor compared to the non-specific antibody and the results suggest the potential use of spontaneous fusion for producing specific monoclonal antibodies for tumor detection and therapy.  相似文献   

12.
Ten patients with transitional cell carcinoma (TCC) of the bladder received 3–6 mCi of HMFG1 monoclonal antibody (MAb) intravesically. The antibody was labeled with Tc-99m using the 2-Iminothiolane method. All patients underwent transurethral resection of the bladder tumor within 12–20 h following intravesical administration of99m-Tc-HMFG1. The presence of the radiolabeled MAb in the circulation was studied by measuring the radioactivity in the serum for a period up to 20 h. Three of 10 patients underwent immunoscintigraphy (SPECT) 2–3 h postadministration and cancerous areas could be easily localized. Biopsies were taken from the tumor sites as well as from normal bladder mucosa. Absolute uptake of the administered MAb expressed as percent administered dose/kg of tissue could be evaluated only in eight patients. Multiple specimen taken from various tumor sites in every patient gave a wide range of uptake values ranging from 0 to 9.29% adm. dose/kg, whereas normal tissue uptake values ranged from 0 to 1.63, respectively.  相似文献   

13.
Summary Nonspecific uptake of radiolabeled monoclonal antibodies in normal tissues is a significant problem for tumor imaging. A potential means of decreasing nonspecific antibody binding is to blockade nonspecific antibody binding sites by predosing with cold, nonspecific isotypematched antibody, before injecting specific antibody. Nontumor-specific murine monoclonal antibody LK2H10 (IgG1) or Ab-1 (IgG2a) was given i.v. at doses of 0 to 3.5 mg to nude mice with xenografts of human melanoma. These mice were then given i.v. 4 g of 131I anti-high molecular weight antigen of melanoma (HMWMAA) monoclonal antibody 763.24T (IgG1) or 225.28S (IgG2a), respectively. These mice were also given a tracer dose of 125I LK2H10 or Ab-1, respectively. Specific tumor uptake of anti-HMWMAA antibodies was see in all cases. No drop in tumor or nontumor uptake was demonstrated for either of the tumor-specific or nonspecific monoclonal antibodies due to nonspecific monoclonal antibody pretreatment. These data suggest that high doses of isotype-matched unlabeled nonspecific monoclonal antibody given before 131I tumor-specific monoclonal antibody, will not enhance tumor imaging. Present address: Hybritech, San Diego, CA, USA  相似文献   

14.
Host immunity influences clinical manifestations of human T-cell leukemia virus type 1 (HTLV-1) infection. In this study, we demonstrated that HTLV-1-transformed tumors could develop in immunocompetent rats by blocking a costimulatory signal for T-cell immune responses. Four-week-old WKA/HKm rats were treated with monoclonal antibodies (MAbs) to CD80 and CD86 and subcutaneously inoculated with syngeneic HTLV-1-infected TARS-1 cells. During MAb treatment for 14 days, TARS-1 inoculation resulted in the development of solid tumors at the site of inoculation, which metastasized to the lungs. In contrast, rats not treated with MAbs promptly rejected tumor cells. Splenic T cells from MAb-treated rats indicated impairment of proliferative and cytotoxic T-lymphocyte responses against TARS-1 in vitro compared to untreated rats. However, tumors grown in MAb-treated rats regressed following withdrawal of MAb therapy. Recovery of TARS-1-specific T-cell immune responses was associated with tumor regression in these rats. Our results suggest that HTLV-1-specific cell-mediated immunity plays a critical role in immunosurveillance against HTLV-1-transformed tumor development in vivo.  相似文献   

15.
Monoclonal antibody (MAb) 6A.C3 neutralizes transmissible gastroenteritis coronavirus (TGEV) and is specific for a conserved epitope within subsite Ac of the spike (S) glycoprotein of TGEV. Six hybridomas secreting anti-idiotypic (Ab2) MAbs specific for MAb 6A.C3 (Ab1) have been selected. All six MAbs inhibited the binding of Ab1 to TGEV and specifically cross-linked MAb1-6A.C3. Four of these hybridomas secreted gamma-type anti-idiotypic MAbs. The other two Ab2s (MAbs 9A.G3 and 9C.E11) were recognized by TGEV-specific antiserum induced in two species. This binding was inhibited by viruses of the TGEV group but not by serologically unrelated coronaviruses. These results indicate that MAb2-9A.G3 and MAb2-9C.E11 mimic an antigenic determinant present on the TGEV surface, and they were classified as beta-type ("internal-image") MAbs. TGEV-binding Ab3 antiserum was induced in 100% of mice immunized with the two beta-type MAb2s and in 25 to 50% of mice immunized with gamma-type MAb2. Both beta- and gamma-type Ab2s induced neutralizing Ab3 antibodies in mice that were mainly directed to antigenic subsite Ac of the S protein.  相似文献   

16.
PSP94 has shown potential to be a serum biomarker for evaluating prostate cancer. Studies of the epitope structure is crucial for this endeavour. In this article, we have used 15 different monoclonal antibodies (MAb) to analyse the epitope structure of PSP94 and to compare with the results obtained from our previous work using polyclonal antibody and recombinant PSP94. Firstly, we determined the relative activities of the 15 MAb population by direct and competitive ELISA. The two predominant MAbs (MAb PSP-6 and -19) in 15 MAbs were selected for further studies of the epitope structure. By comparing the binding activities of recombinant GST-PSP94 and natural PSP94 with MAbs, and by comparing their affinity with MAbs in an in vitro denaturing experiment, PSP94 was shown to have a similar, prevalently linear epitope structure as we demonstrated by polyclonal antibody. Using recombinant GST fusion protein with PSP94 and with each half of the N- and C-terminal 47 amino acids (GST-PSP-N47/C47) in E. coli cells, the different epitopes recognized by 15 monoclonal antibodies were delineated and the polar distribution of the epitope structure of PSP94 was characterized. Results of direct ELISA of recombinant N47 and C47 and their competitive binding against natural PSP94 (competitive ELISA) showed that the N- and C-termini represent the immuno-dominant and immuno-recessive area separately. A majority of the monoclonal antibodies (12/15) showed preferential binding of the N-terminal sequence of the PSP94 protein. Using GST-PSP-N47 as a standard protein, an epitope map of the 15 monoclonal antibodies was obtained. The results of this study will help to define the clinical utility of PSP94. J. Cell. Biochem. 65:186–197. © 1997 Wiley-Liss, Inc.  相似文献   

17.
目的:制备天然属性抗低密度脂蛋白(LDL)及抗氧化低密度脂蛋白(oxLDL)IgM亚类抗体。方法:给予Babl/c小鼠高胆固醇饮食,4周后取脾细胞直接与SP2/0细胞融合,以纯化的LDL及oxLDL为抗原,对阳性杂交瘤细胞生长孔进行间接ELISA筛选。鉴定杂交瘤上清的免疫球蛋白亚类,进而采用免疫沉淀和免疫印迹法对获得的抗体进行免疫学反应性鉴定。结果:杂交瘤细胞分泌的抗LDL及抗oxLDL的天然抗体通过ELISA法被筛选出来,可以与LDL或oxLDL发生高亲和力结合,经过4次克隆化,最终获得2株稳定分泌天然抗LDL的抗体,命名为5G8和2H7,及1株稳定抗oxLDL的抗体,命名为3A6,3株抗体均属于IgM亚类,无交叉反应,可以满足免疫印迹、免疫沉淀等实验要求。结论:成功制备了抗LDL及抗oxLDL IgM亚类抗体,为研究天然抗体在体内脂质代谢和相关心脑血管疾病如动脉粥样硬化等发生发展中的作用提供了重要的研究工具。  相似文献   

18.
Bispecific antibodies are currently being used in clinical trials in increasing numbers in the areas of breast cancer, prostate cancer, non-Hodgkin's lymphoma and Hodgkin's lymphoma. We have previously performed two clinical trials in patients with Hodgkin's disease with an anti-CD30/anti-CD16 bispecific antibody and demonstrated a 30% response rate in a cohort of patients otherwise resistant to standard therapeutic modalities. However, no surrogate marker could be defined in these trials indicative of optimal antibody dosing/scheduling or predictive for favorable response. In order to evaluate accurately the potential biodistribution properties of bispecific antibody in patients, we have performed a detailed analysis of the binding properties and animal model in vivo characteristics of these constructs. For this purpose, the parental antibodies (anti-CD30 and anti-CD16) and the bispecific antibody (anti-CD30/anti-CD16) were radiolabeled with either 125I or 111In. Antibody integrity and binding properties after labeling were confirmed by Scatchard plot and Lindmo analysis. 111In-labeled antibodies revealed superior targeting properties in a standard SCID mouse tumor model. Both the bivalent parental anti-CD30 monoclonal antibody and the monovalent anti-CD30/anti-CD16 bispecific antibody showed excellent uptake in CD30+ tumors which did not differ significantly between the two (maximum uptake 16.5% ± 4.2% vs. 18.4% ± 3.8% injected dose/gram tissue). The equivalent targeting properties of the bispecific antibody compared with the parental anti-CD30 antibody encourages the further clinical development of this bispecific antibody, and might help to explain the clinical responses seen with this antibody so far in patients suffering from Hodgkin's disease. Received: 26 October 2000 / Accepted: 15 December 2000  相似文献   

19.
Serotonin binding protein (SBP) is a constituent of the synaptic vesicles of serotonergic neurons. Two types of SBP, with molecular masses of 45 kDa and 56 kDa, have been purified. To determine whether there are shared epitopes between the two forms of SBP, we raised and tested for cross-reactivity monoclonal antibodies (MAbs) against each form of SBP. We obtained 12 MAbs, all of which recognize both forms of SBP. Hybridoma clones were produced by fusing P3 X 63Ag8.653 mouse myeloma cells with spleen cells from a mouse that had been immunized with 45-kDa or 56-kDa SBP. Culture supernatants were screened for the presence of anti-SBP antibodies. MAb isotypes were determined by immunodiffusion, using immunoglobulin type-specific antisera. Each antibody to SBP consisted of only a single subclass of immunoglobulin (IgM). We obtained 12 MAbs, each of which interacted with both forms of SBP, as judged by enzyme-linked immunosorbent assay and immunoblot analysis. Ascites fluid to one clone (44-10) was obtained and affinity-purified. In the presence of goat anti-mouse IgM, the partially purified 44-10 antibodies quantitatively immunoprecipitated SBP from crude brain extracts. Immunoblotting revealed two major bands corresponding to 45 kDa and 56 kDa and a minor band corresponding to 68 kDa. MAb 44-10 blocked the binding of [3H]serotonin ([3H]5-HT) to 45-kDa and 56-kDa SBP in a concentration-dependent manner. The 68-kDa protein was found to bind [3H]5-HT. Sites reacting with MAB 44-10 were located immunocytochemically in sections of rat brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
This study describes, for the first time, the production and use of an "internal-image" anti-idiotypic monoclonal antibody (MAb) to elicit a rotavirus-specific antibody response. An immunoglobulin G2a MAb, designated RQ31 (MAb1), specific for the outer capsid protein VP4 of bovine Q17 rotavirus and capable of neutralizing viral infection in vitro was used to generate an anti-idiotypic MAb (MAb2). This MAb2, designated RQA2, was selected by enzyme-linked immunosorbent assay (ELISA) using F(ab')2 fragments of RQ31. RQA2 (MAb2) inhibited the binding of RQ31 (MAb1) to the virus but had no effect on the binding of other rotavirus-specific MAbs. The MAb2 also inhibited virus neutralization mediated by MAb1 in a dose-dependent fashion. Naive guinea pigs immunized with the MAb2 produced anti-anti-idiotypic antibodies (Ab3) that reacted with bovine Q17 rotavirus in an ELISA and neutralized rotavirus infection in vitro. The Ab3 response was characterized as MAb1-like because the Ab3 recognizes only the Q17 and neonatal calf diarrhea virus rotavirus strains in ELISA, as did RQ31 (MAb1). The Ab3 response also possessed two other characteristics of RQ31: the abilities to bind the 1.36 (double-capsid) but not the 1.38 (single-capsid) purified rotavirus fraction in ELISA and to immunoprecipitate the VP4 rotavirus protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号