首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 870 毫秒
1.
In the African cichlid fish, Haplochromis burtoni, males are either territorial or nonterritorial. Territorial males suppress reproductive function in the nonterritorial males, and have larger gonads and larger gonadotropin-releasing hormone- (GnRH) containing neurons in the preoptic area (POA). We describe an experiment designed to establish the causal relationship between large GnRH neurons and large testes in these males by determining the feedback effects of gonadal sex steroids on the GnRH neurons. Territorial males were either castrated or sham-operated, 4 weeks after which they were sacrificed. Circulating steroid levels were measured, and the GnRH-containing neurons were visualized by staining sagittal sections of the brains with an antibody to salmon GnRH. The soma areas of antibody-stained neurons were measured with a computer-aided imaging system. Completely castrated males had markedly reduced levels of circulating sex steroids [11-ketotestosterone (11 KT) and testosterone (T)], as well as 17β-estradiol (E2). POA GnRH neurons in castrates showed a significant increase in mean soma size relative to the intact territorial males. Hence, in mature animals, gonadal steroids act as a brake on the growth of GnRH-containing neurons, and gonadal products are not responsible for the large GnRH neurons characteristic of territorial males. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
Effects of noradrenaline (NA) and dopamine (DA) on apoptosis of nonapeptidergic neurons of supraoptic (SON) and paraventricular (PVN) nuclei of hypothalamus of male Wistar rats was studied in experiments in vitro. Incubation of hypothalamic sections in the medium with added NA was shown to induce an increase of the amount of pro-apoptotic protein caspase-9 in the nonapeptidergic neurons of the SON and PVN. A comparison of the level of neuronal NO-synthase with the level of caspase-9 expression in these neurons allows concluding that NA leads to initiation of apoptosis in neurons of the SON with mediation by nitric oxide (NO). In the PVN, the NA-induced initiation of apoptosis does not depend on the NO level. Addition of DA to the incubation medium results in an increase of the caspase-9 amount only in PVN neurons regardless of the NO content. The absence of neuronal death after the NA-induced increase of the caspase-9 level in the cells of SON and PVN seems to be due to increased expression of the anti-apoptotic protein bcl-2. Protection of the PVN neurons from death after addition of DA to the incubation medium is probably independent of the expression level of bcl-2. Thus, in the nonapeptidergic neurons of the SON and PVN, which are related by origin and by performed functions, modulation of the process of apoptosis by elevated concentrations of NA and DA is realized by different mechanisms.  相似文献   

3.
This study examined the localized action of neuropeptide Y (NPY) on monoamine transmitter activity in the hypothalamus of the unrestrained rat as this peptide induced hypothermia, spontaneous feeding or both responses simultaneously. A guide tube was implanted in the anterior hypothalamic pre-optic area (AH/POA) of Sprague-Dawley rats. Then either control CSF vehicle or NPY in a dose of either 100 ng/μl or 250 ng/μl was perfused by push-pull cannulae in this structure in the fully sated, normothermic rat. Successive perfusions were carried out at a rate of 20 μl/min for 6.0 min with an interval of 6.0 min elapsing between each. Samples of perfusate were assayed by HPLC for their levels of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their respective metabolites. Whereas control CSF was without effect on body temperature (Tb) or feeding, repeated perfusions of NPY over 3.0 hr caused dose—dependent eating from 4 to 39 g of food, hypothermia of 0.9 to 2.3°C or both responses concurrently. As the rats consumed 11–39 g of food, the efflux of NE, MHPG, DOPAC and 5-HT was enhanced significantly, whereas during the fall in Tb the efflux of NE, DOPAC and 5-HIAA from the AH/POA increased. When the Tb of the rat declined simultaneously with eating behavior, the levels in perfusate of DOPAC and HVA increased significantly while MHPG declined. During perfusion of the AH/POA with NPY the turnover of NE declined while DA and 5-HT turnover increased during hypothermia alone or when accompanied by feeding. These results demonstrate that the sustained elevation in NPY within the AH/POA causes a selective alteration in the activity of the neurotransmitters implicated in thermoregulation, satiety and hunger. These findings suggest that both DA and NE comprise intermediary factors facilitating the action of NPY on neurons involved in thermoregulatory and ingestive processes. The local activity of NPY on hypothalamic neurons apparently shifts the functional balance of serotonergic and catecholaminergic neurons now thought to play a primary role in the control of energy metabolism and caloric intake.  相似文献   

4.
Rat hypothalamic neurons were cultured in the presence of fluorodeoxyuridine to inhibit nonneuronal cell proliferation. Under these conditions, neuronal cell survival was dependent on contact with homologous nonneuronal cells. This phenomenon did not seem to be due to the release of diffusable trophic factors, since neither growth on polylysine in the close proximity of nonneuronal cells nor the use of preconditioned medium significantly increased neuronal survival. However, metabolically active cell layers were required, since growth on heat-killed or fixed homologous nonneuronal cells did not increase neuronal survival. The increased survival of neurons seen here in the presence of homologous nonneuronal cells therefore appears to be due to metabolic co-operation mediated by specific, direct cell-cell contact.  相似文献   

5.
A Cell Culture Model for Androgen Effects in Motor Neurons   总被引:8,自引:2,他引:6  
Abstract: Androgens are known to alter the morphology, survival, and axonal regeneration of lower motor neurons in vivo. To understand better the molecular mechanisms of androgen action in neurons, we created a model system by stably expressing the human androgen receptor (AR) in motor neuron hybrid cells. Motor neuron hybrid cells express markers consistent with anterior horn cells and can be differentiated into a neuronal phenotype. When differentiated in the presence of androgen, AR-expressing cells, but not control cells, exhibit a dose-dependent change in morphology: androgen-treated cells develop larger cell bodies and broader neuritic processes while continuing to express neuronal markers. In addition, androgen promotes the survival of AR-expressing cells, but not control cells, under low-serum conditions. Our results demonstrate a direct trophic effect of androgens on lower motor neurons, mediated through the AR expressed in this population of neurons.  相似文献   

6.
The role of dopamine D2 and D3 receptors (D2R/D3R), located on midbrain dopaminergic (DA) neurons, in the regulation of DA synthesis and release and in DA neuron homeostasis has been extensively investigated in rodent animal models. By contrast, the properties of D2R/D3R in human DA neurons have not been elucidated yet. On this line, the use of human-induced pluripotent stem cells (hiPSCs) for producing any types of cells has offered the innovative opportunity for investigating the human neuronal phenotypes at the molecular levels. In the present study, hiPSCs generated from human dermal fibroblasts were used to produce midbrain DA (mDA) neurons, expressing the proper set of genes and proteins typical of authentic, terminally differentiated DA neurons. In this model, the expression and the functional properties of the human D2R/D3R were investigated with a combination of biochemical and functional techniques. We observed that in hiPSC-derived mDA neurons, the activation of D2R/D3R promotes the proliferation of neuronal progenitor cells. In addition, we found that D2R/D3R activation inhibits nicotine-stimulated DA release and exerts neurotrophic effects on mDA neurons that likely occur via the activation of PI3K-dependent mechanisms. Furthermore, D2R/D3R stimulation counteracts both the aggregation of alpha-synuclein induced by glucose deprivation and the associated neuronal damage affecting both the soma and the dendrites of mDA neurons. Taken together, these data point to the D2R/D3R-related signaling events as a biochemical pathway crucial for supporting both neuronal development and survival and protection of human DA neurons.  相似文献   

7.
Iron, a transition metal possibly involved in the pathogenesis of Parkinson's disease, was tested for its toxic effects toward cultures of dissociated rat mesencephalic cells. When cultures were switched for 24 h to serum-free conditions, the effective concentrations of ferrous iron (Fe2+) producing a loss of 50% of dopaminergic neurons, as quantified by tyrosine hydroxylase (TH) immunocytochemistry, TH mRNA in situ hybridization, and measurement of TH activity, were on the order of 200 microM. High-affinity dopamine (DA) uptake, which reflects integrity and function of dopaminergic nerve terminals, was impaired at significantly lower concentrations (EC50 = 67 microM). Toxic effects were not restricted to dopaminergic neurons inasmuch as trypan blue dye exclusion index and gamma-aminobutyric acid uptake, two parameters used to assess survival of other types of cells present in these cultures, were also affected. Protection against iron cytotoxicity was afforded by desferrioxamine and apotransferrin, two ferric iron-chelating agents. Normal supplementation of the culture medium by serum proteins during treatment was also effective, presumably via nonspecific sequestration. Potential interactions with DA were also investigated. Fe2+ at subtoxic concentrations and desferrioxamine in the absence of exogenous iron added to the cultures failed to potentiate or reduce DA cytotoxicity for mesencephalic cells, respectively. Transferrin, the glycoprotein responsible for intracellular delivery of iron, was ineffective in initiating selective cytotoxic effects toward dopaminergic neurons preloaded with DA. Altogether, these results suggest (a) that ferrous iron is a potent neurotoxin for dopaminergic neurons as well as for other cell types in dissociated mesencephalic cultures, acting likely via autoxidation into its ferric form, and (b) that the presence of intra- and extracellular DA is not required for the observed toxic effects.  相似文献   

8.
In seasonally breeding songbirds, the brain regions that control song behavior undergo dramatic structural changes at the onset of each annual breeding season. As spring approaches and days get longer, gonadal testosterone (T) secretion increases and triggers the growth of several song control nuclei. T can be converted to androgenic and estrogenic metabolites by enzymes expressed in the brain. This opens the possibility that the effects of T may be mediated via the androgen receptor, the estrogen receptor, or both. To test this hypothesis, we examined the effects of two bioactive T metabolites on song nucleus growth and song behavior in adult male white‐crowned sparrows. Castrated sparrows with regressed song control nuclei were implanted with silastic capsules containing either crystalline T, 5α‐dihydrotestosterone (DHT), estradiol (E2), or a combination of DHT+E2. Control animals received empty implants. Song production was highly variable within treatment groups. Only one of seven birds treated with E2 alone was observed singing, whereas a majority of birds with T or DHT sang. After 37 days of exposure to sex steroids, we measured the volumes of the forebrain song nucleus HVc, the robust nucleus of the archistriatum (RA), and a basal ganglia homolog (area X). All three steroid treatments increased the volumes of these three song nuclei when compared to blank‐implanted controls. These data demonstrate that androgen and estrogen receptor binding are sufficient to trigger seasonal song nucleus growth. These data also suggest that T's effects on seasonal song nucleus growth may depend, in part, upon enzymatic conversion of T to bioactive metabolites. © 2003 Wiley Periodicals, Inc. J Neurobiol 57:130–140, 2003  相似文献   

9.
In vitro study of testosterone (T) metabolism shows that formation of estradiol-17β (E2) is regionally specific within the preoptic area (POA) of the male ring dove. The POA is known to be involved in the formation of E2 required for specific components of male sexual behavior. Two sub-areas of high aromatase activity, anterior (aPOA) and posterior preoptic (pPOA) areas, have been identified. Aromatase activity is higher in aPOA than in pPOA. The aromatase activity within the aPOA is also more sensitive to the inductive effects of low circulating T, derived from subcutaneous silastic implants, than the enzyme activity in pPOA. Kinetic analysis of preoptic fractions indicates that a similar high-affinity enzyme occurs in both areas (apparent Km < 14nM), but the Vmax of aPOA enzyme activity is higher than pPOA. Cells containing estrogen receptors (ER) are localized in areas of high aromatase activity. There is overlap between immunostained cells in the aPOA and in samples containing inducible aromatase activity measured in vitro. Within the aPOA there is a higher density of ER cells in the nucleus preopticus medialis. The pPOA area also contains ER, notably in the nucleus interstitialis, but at a lower density. We conclude that the hormonal regulation of the male preoptic-anterior hypothalamic region, which is a target for the behavioral action of T, involves at least two inducible aromatase systems with associated estrogen receptor cells.  相似文献   

10.
Specific binding sites for 3H dihydrotestosterone are demonstrated by autoradiography in brain nuclei of sex reversed mice heterozygous for testicular feminization (Tfm) which are phenotypically intersexes with testes and accessory sex glands that consist of a mosaic of androgen insensitive Tfm cells which lack specific dihydrotestosterone binding and androgen sensitive normal cells. The nuclear group evaluated include: nucleus (n.) septi lateralis, n. interstitialis striae terminalis, n. medialis amygdalae, the hypothalamic n. arcuatus, n. ventromedialis lateralis, n. pre-mammillaris ventralis, n. preopticus medialis, and nuclei of the cranial nerves VII, X, and XII. In the sex reversed males and the female, used as controls, the frequency of neurons with specific DHT binding show a distinct male-female difference in the caudal part of the arcuate nucleus. In the sex reversed Tfm heterozygotes, in all brain nuclei studied, the frequency of labeled neurons is reduced. The extent of reduction of androgen binding in the different brain nuclei varies among as well as within individual sex reversed Tfm heterozygotes, suggesting variations of the ratio of normal to Tfm neurons in sex reversed Tfm heterozygotes. The differentially reduced androgen binding of different brain systems corresponds to a differentially reduced androgen dependent behaviour reported in the literature.  相似文献   

11.
Sex-specific peculiarities of catecholamine (CA) content and turnover in neuroendocrine brain areas and their modification with neonatal steroids or prenatal stress (PS) in Wistar rats were studied. No changes in noradrenaline (NA) content and turnover rate were found in the preoptic area (POA), meanwhile dopamine (DA) turnover rates in the POA and mediobasal hypothalamus (MBH) were increased in neonatally androgenized 10-day-old females. Treatment of female neonates with various catecholestrogens increased hypothalamic NA content by 30–95% but only 4-hydroxyestradiol-17β induced anovulation. 6-Hydroxydopamine had no significant impact on hypothalamic CA content in neonates and did not prevent testosterone-induced persistent estrous. Maternal stress (restriction for 1 h a day, 15–21st days of pregnancy) resulted in a decrease of hypothalamic NA and blood plasma corticosterone response to acute stress in adult male offspring. Sex differences in CA content in the POA and MBH disappeared in 10-day-old prenatally stressed rats. Conclusions: (1) sexual brain differentiation needs co-operative actions of sex steroids and CA to be completed; and (2) early changes in CA content and turnover induced by PS or neonatal steroid exposure predetermine long-term alterations of the stress responsiveness, reproductive behaviour and neuroendocrine control of ovulation.  相似文献   

12.
The properties of the hyperpolarization-activated cation current (Ih) were investigated in rat substantia nigra - pars compacta (SNc) principal neurons using patch-clamp recordings in thin slices. A reliable identification of single dopaminergic neurons was made possible by the use of a transgenic line of mice expressing eGFP under the tyrosine hydroxylase promoter. The effects of temperature and different protocols on the Ih kinetics showed that, at 37°C and minimizing the disturbance of the intracellular milieu with perforated patch, this current actually activates at potentials more positive than what is generally indicated, with a half-activation potential of −77.05 mV and with a significant level of opening already at rest, thereby substantially contributing to the control of membrane potential, and ultimately playing a relevant function in the regulation of the cell excitability. The implications of the known influence of intracellular cAMP levels on Ih amplitude and kinetics were examined. The direct application of neurotransmitters (DA, 5-HT and noradrenaline) physiologically released onto SNc neurons and known to act on metabotropic receptors coupled to the cAMP pathway modify the Ih amplitude. Here, we show that direct activation of dopaminergic and of 5-HT receptors results in Ih inhibition of SNc DA cells, whereas noradrenaline has the opposite effect. Together, these data suggest that the modulation of Ih by endogenously released neurotransmitters acting on metabotropic receptors –mainly but not exclusively linked to the cAMP pathway- could contribute significantly to the control of SNc neuron excitability.  相似文献   

13.
Summary Specific binding sites for 3H dihydrotestosterone are demonstrated by autoradiography in brain nuclei of sex reversed mice heterozygous for testicular feminization (Tfm) which are phenotypically intersexes with testes and accessory sex glands that consist of a mosaic of androgen insensitive Tfm cells which lack specific dihydrotestosterone binding and androgen sensitive normal cells. The nuclear group evaluated include: nucleus (n.) septi lateralis, n. interstitialis striae terminalis, n. medialis amygdalae, the hypothalamic n. arcuatus, n. ventromedialis lateralis, n. premammillaris ventrialis, n. preopticus medialis, and nuclei of the cranial nerves VII, X, and XII. In the sex reversed males and the female, used as controls, the frequency of neurons with specific DHT binding show a distinct male-female difference in the caudal part of the arcuate nucleus. In the sex reversed Tfm heterozygotes, in all brain nuclei studied, the frequency of labeled neurons is reduced. The extent of reduction of androgen binding in the different brain nuclei varies among as well as within individual sex reversed Tfm heterozygotes, suggesting variations of the ratio of normal to Tfm neurons in sex reversed Tfm heterozygotes. The differentially reduced androgen binding of different brain systems corresponds to a differentially reduced androgen dependent behaviour reported in the literature.Supported by US PHS grant NSO9914 to W.E.S. and Deutsche Forschungsgemeinschaft Dr94/4 to U.D.. The work of Dr. Schleicher and his stay in Chapel Hill were sponsored by Studienstiftung des Deutschen Volkes and Boehringer-Ingelheim Fonds  相似文献   

14.
Only male zebra finches sing, and several brain regions implicated in song behavior exhibit marked sex differences in neuron number. In one region, the high vocal center (HVC), this dimorphism develops because the incorporation of new neurons is greater in males than in females during the first several weeks after hatching. Although estrogen (E2) exposure stimulates neuron addition in females, it is not known where (E2) acts, or to what extent sexual differentiation influences the production, specification, or survival of HVC neurons. In the present study we first reassessed sex and (E2)-induced differences in cell degeneration within the HVC using the TUNEL technique to identify cells undergoing DNA fragmentation indicative of apoptosis. HVC neuron number, as well as the density and number of TUNEL-labeled and pyknotic cells within the HVC were measured in normal 20- and 30-day-old males and females, and in 30-day-old females implanted with E2 on posthatch day 18. Although HVC neuron number was greater in males than in females, and was masculinized in E2 females, no group differences were evident in the absolute number of dying cells. These results indicate that sex differences in cell survival within the HVC do not entirely account for sexually dimorphic neuron addition to this region. Rather, sexual differentiation acts on some HVC neurons before they complete their migration and/or early differentiation. Although the migratory route of HVC neurons is not known, a large number of E2 receptor-containing cells (ER cells) reside just ventromedial to the HVC and adjacent to the proliferative ventricular zone. Next, we investigated whether these ER cells contribute to early-arising sex differences in HVC neuron addition. By combining [3H] thymidine autoradiography with immunocytochemistry for ERs, we first established that ER-expressing cells are not generated during posthatch sexually dimorphic HVC neuron addition, and thus are not young HVC neurons that transiently express ERs during their migration. Furthermore, in 25-day-old birds we found no sex difference in the density of pyknotic cells among this group of ER cells, suggesting that these cells do not promote the differential survival of HVC neuronal precursors migrating through this region. Rather, ER cells or other cell populations may establish sex differences in HVC neuron number by creating dimorphisms in cellular specification. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 61–71, 1997  相似文献   

15.
Striatal transplantation of dopaminergic (DA) neurons or neural stem cells (NSCs) has been reported to improve the symptoms of Parkinson’s disease (PD), but the low rate of cell survival, differentiation, and integration in the host brain limits the therapeutic efficacy. We investigated the therapeutic effects of intracranial co-transplantation of mesencephalic NSCs stably overexpressing human glial-derived neurotrophic factor (GDNF-mNSCs) together with fetal DA neurons in the 6-OHDA rat model of PD. Striatal injection of mNSCs labeled by the contrast enhancer superparamagnetic iron oxide (SPIO) resulted in a hypointense signal in the striatum on T2-weighted magnetic resonance images that lasted for at least 8 weeks post-injection, confirming the long-term survival of injected stem cells in vivo. Co-transplantation of GDNF-mNSCs with fetal DA neurons significantly reduced apomorphine-induced rotation, a behavioral endophenotype of PD, compared to sham-treated controls, rats injected with mNSCs expressing empty vector (control mNSCs) plus fetal DA neurons, or rats injected separately with either control mNSCs, GDNF-mNSCs, or fetal DA neurons. In addition, survival and differentiation of mNSCs into DA neurons was significantly greater following co-transplantation of GDNF-mNSCs plus fetal DA neurons compared to the other treatment groups as indicated by the greater number of cell expressing both the mNSCs lineage tracer enhanced green fluorescent protein (eGFP) and the DA neuron marker tyrosine hydroxylase. The success of cell-based therapies for PD may be greatly improved by co-transplantation of fetal DA neurons with mNSCs genetically modified to overexpress trophic factors such as GDNF that support differentiation into DA cells and their survival in vivo.  相似文献   

16.

Spinal motor neurons have the longest axons that innervate the skeletal muscles of the central nervous system. Motor neuron diseases caused by spinal motor neuron cell death are incurable due to the unique and irreplaceable nature of their neural circuits. Understanding the mechanisms of neurogenesis, neuritogenesis, and synaptogenesis in motor neurons will allow investigators to develop new in vitro models and regenerative therapies for motor neuron diseases. In particular, small molecules can directly reprogram and convert into neural stem cells and neurons, and promote neuron-like cell differentiation. Prostaglandins are known to have a role in the differentiation and tissue regeneration of several cell types and organs. However, the involvement of prostaglandins in the differentiation of motor neurons from neural stem cells is poorly understood. The general cell line used in research on motor neuron diseases is the mouse neuroblastoma and spinal motor neuron fusion cell line NSC-34. Recently, our laboratory reported that prostaglandin E2 and prostaglandin D2 enhanced the conversion of NSC-34 cells into motor neuron-like cells with neurite outgrowth. Moreover, we found that prostaglandin E2-differentiated NSC-34 cells had physiological and electrophysiological properties of mature motor neurons. In this review article, we provide contemporary evidence on the effects of prostaglandins, particularly prostaglandin E2 and prostaglandin D2, on differentiation and neural conversion. We also discuss the potential of prostaglandins as candidates for the development of new therapeutic drugs for motor neuron diseases.

  相似文献   

17.
The neuroendocrine hypothalamus has been the object of intensive study in vivo and in tissue slices. However, using these models it is difficult to approach questions at the molecular and cellular level and to differentiate between direct effects and those mediated by other neurons. By using the regulatory domain of the rat gonadotropin-releasing hormone (GnRH) gene to target expression of the oncogene SV40 T antigen in transgenic mice, we have produced hypothalamic tumors which were cultured to produce clonal cell lines (GT1 cells). These cells express GnRH and many other neuronal markers, but do not express glial cell markers or other hypothalamic hormones. They have a distinctive neuronal phenotype, process the GnRH peptide accurately, and secrete GnRH in a pulsatile pattern. They respond to many neurotransmitters and neuromodulators including activin, norepinephrine, dopamine, nitric oxide, NMDA, and GABA, as well as GnRH itself. Thus, we have immortalized GnRH neurons by targeting oncogenesis to a defined population of neurons using the regulatory region of a gene which is expressed late in the differentiation of that cell lineage. The GT1 cell lines serve as an excellent model for molecular, pharmacological, electrophysiological, and biochemical investigations into the regulation of GnRH and the characteristics of a pure CNS neuronal population. Moreover, their derivation demonstrates the success of targeting tumorigenesis to specific differentiated neurons of the central nervous system in transgenic mice.  相似文献   

18.
The aim of this study was to determine in the ring dove, the effects of aromatase inhibition on the expression of aggressive courtship and nest-soliciting behaviours in relation to the distribution of cells containing immunoreactive androgen (AR) and progesterone (PR) receptor in the hypothalamus and pituitary gland. Isolated sexually experienced ring doves were transferred in opposite sex pairs to individual breeding cages, and then injected with the aromatase inhibitor, fadrozole (four males and four females), or saline vehicle (four males and four females) for 3 days at 12 hourly intervals. Saline-injected control males displayed aggressive courtship behaviours (bow-cooing and hop-charging) and nest-soliciting throughout the study, and control females displayed nest-soliciting. By day 3, fadrozole treatment resulted in the disappearance of all these behaviours and in a decrease or disappearance of AR and PR in the anterior pituitary gland, and in the nucleus preopticus paraventricularis magnocellularis (PPM), nucleus preopticus medialis (POM), nucleus hypothalami lateralis posterioris (PLH), and ventral, lateral and dorsal nucleus tuberalis in the hypothalamus (VTu, LTu, DTu). In the nucleus preopticus anterior (POA), fadrozole treatment decreased AR in both sexes and decreased PR in females but not in males. Cells containing co-localized nuclear AR and PR were found in all hypothalamic areas examined, and in the anterior pituitary gland. Fadrozole is suggested to reduce the local availability of estrogen required indirectly for the induction of AR, and except in cells containing PR in the male POA, for the direct induction of PR. It is suggested that aggressive courtship behaviour is terminated by “cross talk” between aromatase-independent PR and aromatase-dependent AR co-localized in neurons in the POA. Aromatase-independent PR may increase in the male POA in response to visual cues provided by a partner. Aromatase-dependent PR in the POM, and basal hypothalamus may play a role in the facilitatory effect of progesterone on estrogen-induced nest-orientated behaviours. (Mol Cell Biochem 276: 193–204, 2005)  相似文献   

19.
The adipocyte-derived, anorectic hormone leptin was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of reactive oxygen species (ROS) levels in arcuate nucleus (ARC) neurons. Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity. Here we investigated the possibility of a negative regulation by CB1 receptors of leptin-mediated ROS formation in the ARC. Through pharmacological and molecular biology experiments we report data showing that leptin-induced ROS accumulation is 1) blunted by arachidonyl-2′-chloroethylamide (ACEA) in a CB1-dependent manner in both the mouse hypothalamic cell line mHypoE-N41 and ARC neuron primary cultures, 2) likewise blocked by a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, troglitazone, in a manner inhibited by T0070907, a PPAR-γ antagonist that also inhibited the ACEA effect on leptin, 3) blunted under conditions of increased endocannabinoid tone due to either pharmacological or genetic inhibition of endocannabinoid degradation in mHypoE-N41 and primary ARC neuronal cultures from MAGL−/− mice, respectively, and 4) associated with reduction of both PPAR-γ and catalase activity, which are reversed by both ACEA and troglitazone. We conclude that CB1 activation reverses leptin-induced ROS formation and hence possibly some of the ROS-mediated effects of the hormone by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity. This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels.  相似文献   

20.
Breathing and vigilance are regulated by pH and CO2 levels in the central nervous system. The hypocretin/orexin (Hcrt/Orx)- and histamine (HA)-containing hypothalamic neurons synergistically control different aspects of the waking state. Acidification inhibits firing of most neurons but these two groups in the caudal hypothalamus are excited by hypercapnia and protons, similar to the chemosensory neurons in the brain stem. Activation of hypothalamic wake-on neurons in response to hypercapnia, seen with the c-Fos assay, is supported by patch-clamp recordings in rodent brain slices: Hcrt/Orx and HA neurons are excited by acidification in the physiological range (pH from 7.4 to 7.0). Multiple molecular mechanisms mediate wake-promoting effects of protons in HA neurons in the tuberomamillary nucleus (TMN): among them are acid-sensing ion channels, Na+,K+-ATPase, group I metabotropic glutamate receptors (mGluRI). HA neurons are remarkably sensitive to the mGluRI agonist DHPG (threshold concentration 0.5 µM) and mGluRI antagonists abolish proton-induced excitation of HA neurons. Hcrt/Orx neurons are excited through block of a potassium conductance and release glutamate with their peptides in TMN. The two hypothalamic nuclei and the serotonergic dorsal raphe cooperate toward CO2/acid-induced arousal. Their interactions and molecular mechanisms of H+/CO2-induced activation are relevant for the understanding and treatment of respiratory and metabolic disorders related to sleep-waking such as obstructive sleep apnea and sudden infant death syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号