首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitric oxide (NO) is a mediator of copious biological processes, in many cases through the production of cGMP from the enzyme nitric oxide-sensitive guanylyl cyclase. Natriuretic peptides also elevate cGMP, often with distinct biological effects, raising the issue of how specificity is achieved. Here we show that a recently described alpha(2)beta(1) isoform of guanylyl cyclase is expressed in a number of epithelia, where it is localized to the apical plasma membrane. We measured the functional properties of the alpha(2)beta(1) isoform by utilizing the NO-dependent activation of the ion channel cystic fibrosis transmembrane conductance regulator (CFTR), which occurs by phosphorylation via the membrane-bound type II isoform of cGMP-dependent protein kinase. We found that cGMP generated by NO activation of the alpha(2)beta(1) isoform of guanylyl cyclase is an exceptionally efficient mediator of nitric oxide action on membrane targets, activating CFTR far more effectively than the cytoplasmically located alpha(1)beta(1) guanylyl cyclase isoform. Targeting the alpha(1)beta(1) isoform of guanylyl cyclase to the membrane also dramatically enhanced the effects of nitric oxide on CFTR within the membrane. This was not due to increased enzymatic activity of guanylyl cyclase in a membrane location, but to production of a localised membrane pool of cGMP by membrane-localized NO-dependent guanylyl cyclase that was resistant to degradation by phosphodiesterases. Selective effects of cGMP produced from this enzyme in response to NO are directed at membrane targets and suggest that drugs selectively activating or inhibiting this alpha(2)beta(1) isoform of guanylyl cyclase may have unique pharmacological properties.  相似文献   

2.
The signaling molecule nitric oxide (NO) exerts most of its effects by the stimulation of the NO-sensitive guanylyl cyclase. Two isoforms of the NO receptor molecule exist: the ubiquitously occurring alpha(1)beta(1) and the alpha(2)beta(1) with a more limited distribution. As the isoforms are functionally indistinguishable, the physiological relevance of these isoforms remained unclear. The neuronal NO synthase has been reported to be associated with PSD-95. Here, we demonstrate the interaction of the so far unnoticed alpha(2)beta(1) isoform with PSD-95 in rat brain as shown by coprecipitation. The interaction is mediated by the alpha(2) C-terminal peptide and the third PDZ domain of PSD-95. As a consequence of the PSD-95 interaction, the so far considered "soluble" alpha(2)beta(1) isoform is recruited to the membrane fraction of synaptosomes, whereas the alpha(1)beta(1) isoform is found in the cytosol. Our results establish the alpha(1)beta(1) as the cytosolic and the alpha(2)beta(1) as the membrane-associated NO-sensitive guanylyl cyclase and suggest the alpha(2)beta(1) isoform as the sensor for the NO formed by the PSD-95-associated neuronal NO synthase.  相似文献   

3.
NO-sensitive guanylyl cyclase (GC) acts as the effector molecule for NO and therefore plays a key role in the NO/cGMP signalling cascade. Besides the long known GC isoform (alpha(1)beta(1)), another heterodimer (alpha(2)beta(1)) has recently been identified to be associated with PSD-95 in brain.Here, we report on the tissue distribution of all known guanylyl cyclase subunits to elucidate the isoform content in different tissues of the mouse. The guanylyl cyclase subunit levels were assessed with quantitative real-time PCR, and the most important results were verified in Western blots. We demonstrate the major occurrence of the alpha(2)beta(1) heterodimer in brain, find a significant amount in lung and lower amounts in all other tissues tested. In brain, the levels of the alpha(2)beta(1) and alpha(1)beta(1) isoforms were comparable; in all other tissues, the alpha(1)beta(1) heterodimer was the predominating isoform. The highest guanylyl cyclase content was found in lung; here the GC amounted to approximately twice as much as in brain.In sum, the major occurrence of the alpha(2)beta(1) heterodimer suggests a special role in synaptic transmission; whether this isoform outside the brain also occurs in neuronal networks has to be addressed in future studies.  相似文献   

4.
By the formation of the second messenger cGMP, NO-sensitive guanylyl cyclase (GC) plays a key role within the NO/cGMP signaling cascade which participates in vascular regulation and neurotransmission. The enzyme contains a prosthetic heme group that acts as the acceptor site for NO. High affinity binding of NO to the heme moiety leads to an up to 200-fold activation of the enzyme. Unexpectedly, NO dissociates with a half-life of a few seconds which appears fast enough to account for the deactivation of the enzyme in biological systems. YC-1 and its analogs act as NO sensitizers and led to the discovery of a novel pharmacologically and conceivably physiologically relevant regulatory principle of the enzyme. The two isoforms of the heterodimeric enzyme (alpha1beta1, alpha2beta1) are known that are functionally indistinguishable. The alpha2beta1-isoform mainly occurs in brain whereas the alpha1beta1-enzyme shows a broader distribution and represents the predominantly expressed form of NO-sensitive GC. Until recently, the enzyme has been thought to occur in the cytosol. However, latest evidence suggests that the alpha2-subunit mediates the membrane association of the alpha2beta1-isoform via interaction with a PDZ domain of the post-synaptic scaffold protein PSD-95. Binding to PSD-95 locates this isoform in close proximity to the NO-generating synthases thereby enabling the NO sensor to respond to locally elevated NO concentrations. In sum, the two known isoforms may stand for the neuronal and vascular form of NO-sensitive GC reflecting a possible association to the neuronal and endothelial NO-synthase, respectively.  相似文献   

5.
Soluble guanylyl cyclase is an important target for endogenous nitric oxide and the guanylyl cyclase modulator, YC-1. Recently BAY 41-2272 was identified as a similar but more potent and more specific substance. While YC-1 also acts as non-specific phosphodiesterase inhibitor, BAY 41-2272 is devoid of an effect on phosphodiesterases. BAY 41-2272 has so far only been tested on the alpha(1)/beta(1) heterodimeric isoform of soluble guanylyl cyclase and its binding site has been mapped to a region in the alpha(1) subunit amino-terminal sequence. Although this region is poorly conserved in the alpha(2) subunit, we show in the current study that the alpha(2)/beta(1) heterodimeric enzyme isoform is activated by BAY 41-2272. Deletion analysis of the alpha(2) subunit and co-expression with the beta(1) subunit in the baculovirus/Sf9 system is consistent with the amino-terminal amino acids 104 to 401 of the alpha(2) subunit as binding site for BAY 41-2272.  相似文献   

6.
Soluble guanylyl cyclase is a heterodimeric enzyme consisting of an alpha(1) and a beta(1) subunit and is an important target for endogenous nitric oxide and the guanylyl cyclase modulator YC-1. The activation of the enzyme by both substances is dependent on the presence of a prosthetic heme group. It has been unclear whether this prosthetic heme group is sandwiched between the alpha(1) and beta(1) subunits or whether it exclusively binds to the beta(1) subunit. Here we analyze progressive amino-terminal deletion mutants of the human alpha(1) subunit after co-expression with the human beta(1) subunit in the baculovirus/Sf9 system. Spectral, biochemical, and pharmacological analysis shows that the first 259 amino acids of the alpha(1) subunit can be deleted without loss of sensitivity to nitric oxide (NO) or YC-1 or loss of heme binding of the respective enzyme complex with the beta(1) subunit. This is in contrast to previous data indicating that NO sensitivity and a functional heme binding site requires full-length amino termini of bovine alpha(1) and beta(1) subunits. Further deletion of the first 364 amino acids of the alpha(1) subunit leads to an enzyme complex with preserved heme binding but loss of sensitivity to NO or YC-1 despite induction of the typical spectral shift by NO binding to the prosthetic heme group. We conclude that 1) the amino-terminal part of the alpha(1) subunit is not involved in heme binding and 2) amino acids 259-364 of the alpha(1) subunit represent an important functional domain for the transduction of the NO activation signal and likely represent the target for NO-sensitizing substances like YC-1.  相似文献   

7.
D Koesling  E B?hme  G Schultz 《FASEB journal》1991,5(13):2785-2791
Guanylyl cyclases, which catalyze the formation of the intracellular signal molecule cyclic GMP from GTP, display structural features similar to other signal-transducing enzymes such as protein tyrosine-kinases and protein tyrosine-phosphatases. So far, three isoforms of mammalian membrane-bound guanylyl cyclases (GC-A, GC-B, GC-C), which are stimulated by either natriuretic peptides (GC-A, GC-B) or by the enterotoxin of Escherichia coli (GC-C), have been identified. These proteins belong to the group of receptor-linked enzymes, with different NH2-terminal extracellular receptor domains coupled to a common intracellular catalytic domain. In contrast to the membrane-bound enzymes, the heme-containing soluble guanylyl cyclase is stimulated by NO and NO-containing compounds and consists of two subunits (alpha 1 and beta 1). Both subunits contain the putative catalytic domain, which is conserved in the membrane-bound guanylyl cyclases and is found twice in adenylyl cyclases. Coexpression of the alpha 1- and beta 1-subunit is required to yield a catalytically active enzyme. Recently, another subunit of soluble guanylyl cyclase was identified and designated beta 2, revealing heterogeneity among the subunits of soluble guanylyl cyclase. Thus, different enzyme subunits may be expressed in a tissue-specific manner, leading to the assembly of various heterodimeric enzyme forms. The implications concerning the physiological regulation of soluble guanylyl cyclase are not known, but different mechanisms of soluble enzyme activation may be due to heterogeneity among the subunits of soluble guanylyl cyclase.  相似文献   

8.
Previously characterized mammalian soluble guanylyl cyclases form alpha/beta heterodimers that can be activated by the gaseous messenger, nitric oxide, and the novel guanylyl cyclase modulator YC-1. Four mammalian subunits have been cloned named alpha(1), beta(1), alpha(2), and beta(2). The alpha(1)/beta(1) and alpha(2)/beta(1) heterodimeric enzyme isoforms have been rigorously characterized. The role of the beta(2) subunit has remained elusive. Here we isolate a novel variant of this subunit and show that the beta(2) subunit does not need to form heterodimers for catalytic activity because enzyme activity can be measured when it is expressed alone in Sf9 cells. In analogy to the beta(3) subunit recently isolated from the insect Manduca sexta, activity was dependent on the presence of 4 mm free Mn(2+). The EC(50) values for the NO-donor diethylamine/NO were shifted to the left by 1 order of magnitude as compared with the alpha(1)/beta(1) heterodimeric form. In the presence of the detergent Tween, NO sensitivity of beta(2) was abolished, but the enzyme could be activated by protoporphyrin IX, indicating removal of a prosthetic heme group and exchange for the heme precursor. We suggest that the beta(2) subunit is the first mammalian NO-sensitive guanylyl cyclase lacking a heterodimeric structure.  相似文献   

9.
A cDNA coding for a new subunit of soluble guanylyl cyclase with a calculated molecular mass of 81.7 kDa was cloned and sequenced. On the basis of sequence homology, the new subunit appears to be an isoform of the alpha 1-subunit and was designated alpha 2 as the new subunit is very similar to the alpha 1-subunit in the middle and C-terminal part; it is quite diverse in the N-terminal part. Preceding experiments had shown that coexpression of the alpha 1- and beta 1-subunits is necessary to obtain a catalytically active guanylyl cyclase in COS cells [(1990) FEBS Lett. 272, 221-223]. The finding that the alpha 2-subunit was able to replace the alpha 1- but not the beta 1-subunit in expression experiments demonstrates the interchangeability of the alpha-subunit isoforms of soluble guanylyl cyclase.  相似文献   

10.
By the formation of cGMP the NO-sensitive guanylyl cyclase plays a key role within the NO/cGMP signaling cascade involved in vascular regulation and neurotransmission. The prosthetic heme group of the enzyme acts as the NO sensor, and binding of NO induces conformational changes leading to an up to 200-fold activation of the enzyme. The unexpected fast dissociation half-life of NO of a few seconds is fast enough to account for the deactivation of the enzyme in biological systems. YC-1 and its analogues acting as NO sensitizers uncovered a new pharmacologically and conceivably physiologically relevant regulatory principle of the enzyme.Two existing isoforms of the heterodimeric guanylyl cyclase (11, 21) are known that are functionally indistinguishable. Up to now, the NO-sensitive guanylyl cyclase has been considered as a soluble enzyme. However, recent evidence about the 21 isoform interacting with a PDZ domain of the postsynaptic scaffold protein PSD-95 suggests that the 2 subunit directs a membrane association of this isoform. The interaction with PSD-95 locates the 21 isoform in close proximity to the NO-generating NO synthase thereby enabling the NO sensor to respond to locally raised NO concentrations.  相似文献   

11.
Studying the structure and regulation of soluble guanylyl cyclase   总被引:4,自引:0,他引:4  
Soluble guanylyl cyclase acts as the receptor for the signaling molecule nitric oxide. The enzyme consists of two different subunits. Each subunit shows the cyclase catalytic domain, which is also conserved in the membrane-bound guanylyl cyclases and the adenylyl cyclases. The N-terminal regions of the subunits are responsible for binding of the prosthetic heme group of the enzyme, which is required for the stimulatory effect of nitric oxide (NO). The five-coordinated ferrous heme displays a histidine as the axial ligand; activation of soluble guanylyl cyclase by NO is initiated by binding of NO to the heme iron and proceeds via breaking of the histidine-to-iron bond. Recently, a novel pharmacological and possibly physiological principle of guanylyl cyclase sensitization was demonstrated. The substance YC-1 has been shown to activate the enzyme independent of NO, to potentiate the effect of submaximally effective NO concentrations, and to turn carbon monoxide into an effective activator of soluble guanylyl cyclase.  相似文献   

12.
It is known that the nitric oxide (NO)/cGMP pathway affects neuronal development and the expression of the different proteins is developmentally dependent in several brain areas. However, so far there are no data on the expression of the proteins involved in this signalling system during the development of the cerebellar granule cell, one of the most widely used models of neuronal development. This study was accordingly designed to analyse the developmental regulation of neuronal nitric oxide synthase (nNOS), soluble guanylyl cyclase subunits (alpha1, alpha2 and beta1) and cGMP-dependent protein kinases (cGK I and cGK II) in cerebellar granule cells through real time-polymerase chain reaction (RT-PCR) and Western blotting. We were able to detect guanylyl cyclase subunits and cGK I and cGK II in cerebellar granule cells at every stage of development examined (cells freshly isolated from 7-day-old rat pups, and cells cultured for 7 days or 14 days). Expression levels, nevertheless, varied significantly at each stage. nNOS, alpha2 and beta1 and cGK II levels increased during granule cell development, while alpha1 and cGK I showed an opposite behaviour pattern; the levels of these latter proteins diminished as the cells matured. The functionality of this pathway was assessed by stimulating cells kept in culture for 7 days with DEA/NO or with N-methyl-D-aspartate (NMDA). Cells responded by increasing intracellular cGMP and activating cGMP-dependent protein kinase activity, which effectively phosphorylated two well-known substrates of this activity, the vasodilator stimulated phosphoprotein (VASP) and the cAMP response element binding protein (CREB). In summary, through both functional and biochemical tests, this is the first demonstration of a complete NO/cGMP signalling transduction pathway in cerebellar granule cells. Our results also indicate the developmental regulation of the proteins in this system.  相似文献   

13.
Nitric oxide (NO) stimulates soluble guanylyl cyclase and, thus, enhances cyclic guanosine monophosphate (cGMP) levels. It is a currently prevailing concept that NO inhibits platelet activation. This concept, however, does not fully explain why platelet agonists stimulate NO production. Here we show that a major platelet NO synthase (NOS) isoform, NOS3, plays a stimulatory role in platelet secretion and aggregation induced by low doses of platelet agonists. Furthermore, we show that NOS3 promotes thrombosis in vivo. The stimulatory role of NOS is mediated by soluble guanylyl cyclase and results from a cGMP-dependent stimulation of platelet granule secretion. These findings delineate a novel signaling pathway in which agonists sequentially activate NOS3, elevate cGMP, and induce platelet secretion and aggregation. Our data also suggest that NO plays a biphasic role in platelet activation, a stimulatory role at low NO concentrations and an inhibitory role at high NO concentrations.  相似文献   

14.
Electrophysiological recordings on retinal rod cells, horizontal cells and on-bipolar cells indicate that exogenous nitric oxide (NO) has neuromodulatory effects in the vertebrate retina. We report here endogenous NO formation in mammalian photoreceptor cells. Photoreceptor NO synthase resembled the neuronal NOS type I from mammalian brain. NOS activity utilized the substrate L-arginine (Km = 4 microM) and the cofactors NADPH, FAD, FMN and tetrahydrobiopterin. The activity showed a complete dependence on the free calcium concentration ([Ca2+]) and was mediated by calmodulin. NO synthase activity was sufficient to activate an endogenous soluble guanylyl cyclase that copurified in photoreceptor preparations. This functional coupling was strictly controlled by the free [Ca2+] (EC50 = 0.84 microM). Activation of the soluble guanylyl cyclase by endogenous NO was up to 100% of the maximal activation of this enzyme observed with the exogenous NO donor compound sodium nitroprusside. This NO/cGMP pathway was predominantly localized in inner and not in outer segments of photoreceptors. Immunocytochemically, we localized NO synthase type I mainly in the ellipsoid region of the inner segments and a soluble guanylyl cyclase in cell bodies of cone photoreceptor cells. We conclude that in photoreceptors endogenous NO is functionally coupled to a soluble guanylyl cyclase and suggest that it has a neuromodulatory role in visual transduction and in synaptic transmission in the outer retina.  相似文献   

15.
Many of the physiological effects of the signaling molecule nitric oxide are mediated by the stimulation of the NO-sensitive guanylyl cyclase. Activation of the enzyme is achieved by binding of NO to the prosthetic heme group of the enzyme and the initiation of conformational changes. So far, the rate of NO dissociation of the purified enzyme has only been determined spectrophotometrically, whereas the respective deactivation, i.e. the decline in enzymatic activity, has only been determined in cytosolic fractions and intact cells. Here, we report on the deactivation of purified NO-sensitive guanylyl cyclase determined after addition of the NO scavenger oxyhemoglobin or dilution. The deactivation rate corresponded to a half-life of the NO/guanylyl cyclase complex of approximately 4 s, which is in good agreement with the spectrophotometrically measured NO dissociation rate of the enzyme. The deactivation rate of the enzyme determined in platelets yielded a much shorter half-life indicating either partial damage of the enzyme during the purification procedure or the existence of endogenous deactivation accelerating factors. YC-1, a component causing sensitization of guanylyl cyclase toward NO, inhibited deactivation of guanylyl cyclase, resulting in an extremely prolonged half-life of the NO/guanylyl cyclase complex of more than 10 min. The deactivation of an ATP-utilizing guanylyl cyclase mutant was almost unaffected by YC-1, indicating the existence of a special structure within the catalytic domain required for YC-1 binding or for the transduction of the YC-1 effect. In contrast to the wild type enzyme, YC-1 did not increase NO sensitivity of this mutant, clearly establishing inhibition of deactivation as the underlying mechanism of the NO sensitizer YC-1.  相似文献   

16.
The mechanism of desensitization of the nitric oxide (NO) receptor (alpha1.beta1 isoform of soluble guanylyl cyclase, sGC) is not known. Models of the structure of alpha1.beta1, based on the x-ray crystal structure of adenylyl cyclase (AC) suggest the existence of a nucleotide-like binding site, in addition to the putative catalytic site. We have previously reported that mutating residues that coordinate Mg(2+)GTP (substrate) binding in alpha1.beta1 into those present in AC fully reverts GC activity to AC activity. The wild-type form of alpha1.beta1 (GC-wt) and the mutant form (AC-mut, alpha1R592Q.beta1E473K,C541D) were purified, and their sensitivities to various nucleotides were assessed. In using the AC-mut as well as other mutants that coordinate purine binding, we were able to distinguish allosteric inhibitory effects of guanine nucleotides from competitively inhibitory effects on catalytic activity. Here we report that several nucleotide analogs drastically alter sGC and AC-mut activity by acting at a second nucleotide site, likely pseudosymmetric to the catalytic site. In particular, Mg(2+)GTP gamma S and Mg(2+)ATP gamma S inhibited cyclase activity through a mixed, non-competitive mechanism that was only observable under NO stimulation and not under basal conditions. The non-competitive pattern of inhibition was not present in mutants carrying the substitution beta1D477A, the pseudosymmetric equivalent to alpha1D529 (located in the substrate-binding site and involved in substrate binding and catalysis), or with the double mutations alpha1E525K,C594D, the pseudosymmetric equivalent to beta1E473K,C541D. Taken together these data suggest that occupation of the second site by nucleotides may underlie part of the mechanism of desensitization of sGC.  相似文献   

17.
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme formed by an alpha subunit and a beta subunit, the latter containing the heme where nitric oxide (NO) binds. When NO binds, the basal activity of sGC is increased several hundred fold. sGC activity is also increased by YC-1, a benzylindazole allosteric activator. In the presence of NO, YC-1 synergistically increases the catalytic activity of sGC by enhancing the affinity of NO for the heme. The site of interaction of YC-1 with sGC is unknown. We conducted a mutational analysis to identify the binding site and to determine what residues were involved in the propagation of NO and/or YC-1 activation. Because guanylyl cyclases (GCs) and adenylyl cyclases (ACs) are homologous, we used the three-dimensional structure of AC to guide the mutagenesis. Biochemical analysis of purified mutants revealed that YC-1 increases the catalytic activity not only by increasing the NO affinity but also by increasing the efficacy of NO. Effects of YC-1 on NO affinity and efficacy were dissociated by single-point mutations implying that YC-1 has, at least, two types of interaction with sGC. A structural model predicts that YC-1 may adopt two configurations in one site that is pseudosymmetric with the GTP binding site and equivalent to the forskolin site in AC.  相似文献   

18.
Nitric oxide (NO) transduces most of its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC). Activation of sGC results in the production of cGMP from GTP. In this paper, we demonstrate a novel protein interaction between CCT (chaperonin containing t-complex polypeptide) subunit eta and the alpha1beta1 isoform of sGC. CCTeta was found to interact with the beta1 subunit of sGC via a yeast-two-hybrid screen. This interaction was then confirmed in vitro with a co-immunoprecipitation from mouse brain. The interaction between these two proteins was further supported by a co-localization of the proteins within rat brain. Using the yeast two-hybrid system, CCTeta was found to bind to the N-terminal portion of sGC. In vitro assays with purified CCTeta and Sf9 lysate expressing sGC resulted in a 30-50% inhibition of diethylamine diazeniumdiolate-NO-stimulated sGC activity. The same assays were then performed using BAY41-2272, an NO-independent allosteric sGC activator, and CCTeta had no effect on this activity. Furthermore, CCTeta had no effect on basal or sodium nitroprusside-stimulated alphabeta(Cys-105) sGC, a constitutively active mutant that only lacks the heme group. The N-terminal 94 amino acids of CCTeta seem to be critical for the mediation of this inhibition. Lastly, a 45% inhibition of sGC activity by CCTeta was seen in vivo in BE2 cells stably transfected with CCTeta and treated with sodium nitroprusside. These data suggest that CCTeta binds to sGC and, in cooperation with some other factor, inhibits its activity by modifying the binding of NO to the heme group or the subsequent conformational changes.  相似文献   

19.
20.
Localization of mRNAs for four membrane-bound guanylyl cyclases (membrane GCs; OlGC3, OlGC4, OlGC5, and OlGC-R2), three soluble guanylyl cyclase subunits (soluble GC; OlGCS-alpha(1), OlGCS-alpha(2), and OlGCS-beta(1)), neuronal nitric oxide synthase (nNOS), and cGMP-dependent protein kinase I (cGK I) was examined in the embryonic and adult retinas of the medaka fish Oryzias latipes by in situ hybridization. All of the membrane GC mRNAs were detected in the photoreceptor cells of the adult and embryonic retinas, but in different parts; the OlGC3 and OlGC5 mRNAs were expressed in the proximal part and the OlGC4 and OlGC-R2 mRNAs were expressed in the outer nuclear layer. The mRNA for nNOS was expressed in a scattered fashion on the inner side of the inner nuclear layer in the adult and embryonic retinas. The mRNAs (OlGCS-alpha(2) and OlGCS- beta(1)) of two soluble GC subunits (alpha(2) and beta(1)) were expressed mainly in the inner nuclear layer and the ganglion cell layer of the embryonic retina while the mRNAs of the soluble GC alpha(1) subunit and cGK I were not detected in either the adult or embryonic retina. These results suggest that NO itself and/or the cGMP generated by soluble GC (alpha(2)/beta(1) heterodimer) play a novel role in the neuronal signaling and neuronal development in the medaka fish embryonic retina in addition to the role played by phototransduction through membrane GCs in the adult and embryonic retinas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号