首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonmuscle myosin IIs play an essential role during cytokinesis. Here, we explore the function of an alternatively spliced isoform of nonmuscle myosin heavy chain (NMHC) II-C, called NMHC II-C1, in the A549 human lung tumor cell line during cytokinesis. NMHC II-C1 contains an insert of 8 amino acids in the head region of NMHC II-C. First, we show that there is a marked increase in both the mRNA encoding NMHC II-C1 and protein in tumor cell lines compared with nontumor cell lines derived from the same tissue. Quantification of the amount of myosin II isoforms in the A549 cells shows that the amounts of NMHC II-A and II-C1 protein are about equal and substantially greater than NMHC II-B. Using specific siRNAs to decrease NMHC II-C1 in cultured A549 cells resulted in a 5.5-fold decrease in the number of cells at 120 h, whereas decreasing NMHC II-A with siRNA does not affect cell proliferation. This decreased proliferation can be rescued by reintroducing NMHC II-C1 but not NMHC II-A or II-B into A549 cells, although noninserted NMHC II-C does rescue to a limited extent. Time lapse video microscopy revealed that loss of NMHC II-C1 leads to a delay in cytokinesis and prolongs it from 2 to 8-10 h. These findings are consistent with the localization of NMHC II-C1 to the intercellular bridge that attaches the two dividing cells during the late phases of cytokinesis. The results suggest a specific function for NMHC II-C1 in cytokinesis in the A549 tumor cell line.  相似文献   

2.
The purpose of these studies was to learn whether one isoform of nonmuscle myosin II, specifically nonmuscle myosin II-A, could functionally replace a second one, nonmuscle myosin II-B, in mice. To accomplish this, we used homologous recombination to ablate nonmuscle myosin heavy chain (NMHC) II-B by inserting cDNA encoding green fluorescent protein (GFP)-NMHC II-A into the first coding exon of the Myh10 gene, thereby placing GFP-NMHC II-A under control of the endogenous II-B promoter. Similar to B(-)/B(-) mice, most B(a*)/B(a*) mice died late in embryonic development with structural cardiac defects and impaired cytokinesis of the cardiac myocytes. However, unlike B(-)/B(-) mice, 15 B(a*)/B(a*) mice of 172 F2 generation mice survived embryonic lethality but developed a dilated cardiomyopathy as adults. Surprisingly none of the B(a*)/B(a*) mice showed evidence for hydrocephalus that is always found in B(-)/B(-) mice. Rescue of this defect was due to proper localization and function of GFP-NMHC II-A in place of NMHC II-B in a cell-cell adhesion complex in the cells lining the spinal canal. Restoration of the integrity and adhesion of these cells prevents protrusion of the underlying cells into the spinal canal where they block circulation of the cerebral spinal fluid. However, abnormal migration of facial and pontine neurons found in NMHC II-B mutant and ablated mice persisted in B(a*)/B(a*) mice. Thus, although NMHC II-A can substitute for NMHC II-B to maintain integrity of the spinal canal, NMHC II-B plays an isoform-specific role during cytokinesis in cardiac myocytes and in migration of the facial and pontine neurons.  相似文献   

3.
A previously unrecognized nonmuscle myosin II heavy chain (NMHC II), which constitutes a distinct branch of the nonmuscle/smooth muscle myosin II family, has recently been revealed in genome data bases. We characterized the biochemical properties and expression patterns of this myosin. Using nucleotide probes and affinity-purified antibodies, we found that the distribution of NMHC II-C mRNA and protein (MYH14) is widespread in human and mouse organs but is quantitatively and qualitatively distinct from NMHC II-A and II-B. In contrast to NMHC II-A and II-B, the mRNA level in human fetal tissues is substantially lower than in adult tissues. Immunofluorescence microscopy showed distinct patterns of expression for all three NMHC isoforms. NMHC II-C contains an alternatively spliced exon of 24 nucleotides in loop I at a location analogous to where a spliced exon appears in NMHC II-B and in the smooth muscle myosin heavy chain. However, unlike neuron-specific expression of the NMHC II-B insert, the NMHC II-C inserted isoform has widespread tissue distribution. Baculovirus expression of noninserted and inserted NMHC II-C heavy meromyosin (HMM II-C/HMM II-C1) resulted in significant quantities of expressed protein (mg of protein) for HMM II-C1 but not for HMM II-C. Functional characterization of HMM II-C1 by actin-activated MgATPase activity demonstrated a V(max) of 0.55 + 0.18 s(-1), which was half-maximally activated at an actin concentration of 16.5 + 7.2 microm. HMM II-C1 translocated actin filaments at a rate of 0.05 + 0.011 microm/s in the absence of tropomyosin and at 0.072 + 0.019 microm/s in the presence of tropomyosin in an in vitro motility assay.  相似文献   

4.
Human families with single amino acid mutations in nonmuscle myosin heavy chain (NMHC) II-A (MYH9) and II-C (MYH14) have been described as have mice generated with a point mutation in NMHC II-B (MYH10). These mutations (R702C and N93K in human NMHC II-A, R709C in murine NMHC II-B, and R726S in human NMHC II-C) result in phenotypes affecting kidneys, platelets, and leukocytes (II-A), heart and brain (II-B), and the inner ear (II-C). To better understand the mechanisms underlying these defects, we characterized the in vitro activity of mutated and wild-type baculovirus-expressed heavy meromyosin (HMM) II-B and II-C. We also expressed two alternatively spliced isoforms of NMHC II-C which differ by inclusion/exclusion of eight amino acids in loop 1, with and without mutations. Comparison of the actin-activated MgATPase activity and in vitro motility shows that mutation of residues Asn-97 and Arg-709 in HMM II-B and the homologous residue Arg-722 (Arg-730 in the alternatively spliced isoform) in HMM II-C decreases both parameters but affects in vitro motility more severely. Analysis of the transient kinetics of the HMM II-B R709C mutant shows an extremely tight affinity of HMM for ADP and a very slow release of ADP from acto-HMM. Although mutations generally decreased HMM activity, the R730S mutation in HMM II-C, unlike the R730C mutation, had no effect on actin-activated MgATPase activity but decreased the rate of in vitro motility by 75% compared with wild type. Insertion of eight amino acids into the HMM II-C heavy chain increases both actin-activated MgATPase activity and in vitro motility.  相似文献   

5.
A truncated fragment of the nonmuscle myosin II-A heavy chain (NMHC II-A) lacking amino acids 1-591, delta N592, was used to examine the cellular functions of this protein. Green fluorescent protein (GFP) was fused to the amino terminus of full-length human NMHC II-A, NMHC II-B, and delta N592 and the fusion proteins were stably expressed in HeLa cells by using a conditional expression system requiring absence of doxycycline. The HeLa cell line studied normally expressed only NMHC II-A and not NMHC II-B protein. Confocal microscopy indicated that the GFP fusion proteins of full-length NMHC II-A, II-B, and delta N592 were localized to stress fibers. However, in vitro assays showed that baculovirus-expressed delta N592 did not bind to actin, suggesting that delta N592 was localized to actin stress fibers through incorporation into endogenous myosin filaments. There was no evidence for the formation of heterodimers between the full-length endogenous nonmuscle myosin and truncated nonmuscle MHCs. Expression of delta N592, but not full-length NMHC II-A or NMHC II-B, induced cell rounding with rearrangement of actin filaments and disappearance of focal adhesions. These cells returned to their normal morphology when expression of delta N592 was repressed by addition of doxycycline. We also show that GFP-tagged full-length NMHC II-A or II-B, but not delta N592, were localized to the cytokinetic ring during mitosis, indicating that, in vertebrates, the amino-terminus part of mammalian nonmuscle myosin II may be necessary for localization to the cytokinetic ring.  相似文献   

6.
We report a novel isoform of non-muscle myosin II-C (NM II-C), NM II-C2, that is generated by alternative splicing of an exon, C2, encoding 41 amino acids in mice (33 in humans). The 41 amino acids are inserted into loop 2 of the NM II-C heavy chain within the actin binding region. Unlike most vertebrate non-muscle and smooth muscle myosin IIs, baculovirus-expressed mouse heavy meromyosin (HMM) II-C2 demonstrates no requirement for regulatory myosin light chain (MLC20) phosphorylation for maximum actin-activated MgATPase activity or maximum in vitro motility as measured by the sliding actin filament assay. In contrast, noninserted HMM II-C0 and another alternatively spliced isoform HMM II-C1, which contains 8 amino acids inserted into loop 1, are dependent on MLC20 phosphorylation for both actin-activated MgATPase activity and in vitro motility (Kim, K. Y., Kovacs, M., Kawamoto, S., Sellers, J. R., and Adelstein, R. S. (2005) J. Biol. Chem. 280,22769 -22775). HMM II-C1C2, which contains both the C1 and C2 inserts, does not require MLC20 phosphorylation for full activity similar to HMM II-C2. These constitutively active C2-inserted isoforms of NM II-C are expressed only in neuronal tissue. This is in contrast to NM II-C1 and NM II-C0, both of which are ubiquitously expressed. Full-length NM II-C2-GFP expressed in COS-7 cells localizes to filaments in interphase cells and to the cytokinetic ring in dividing cells.Mammalian non-muscle myosin IIs (NM IIs)2 belong to the conventional Class II myosins and are hexameric proteins composed of two heavy chains and two pairs of light chains, referred as the 20-kDa regulatory myosin light chain (MLC20) and the 17-kDa essential myosin light chain (MLC17). These myosins self-associate through their tail regions to form bipolar filaments that pull on actin filaments to produce force to drive important cellular functions such as cytokinesis, cell polarity, and cell migration (1-4). Three isoforms of the non-muscle myosin heavy chain (NMHC), II-A, II-B, and II-C, have been identified in vertebrates. They are products of three different genes, MYH9 (5, 6), MYH10 (6), and MYH14 (7, 8), respectively, in humans. It is well established that the enzymatic activity of these myosins is regulated by phosphorylation of MLC20, which is catalyzed by a number of enzymes, including myosin light chain kinase (MLCK), and Rho kinase (9-14).Alternative splicing of pre-mRNA of NMHC II genes generates multiple mRNAs to enhance protein diversity in the NM II family. Work from this laboratory and others (8, 15-18) has established that both NMHC II-B and II-C undergo alternative splicing to generate several isoforms. In the case of NMHC II-B, 10 amino acids are incorporated into loop 1 at amino acid 212 (NMHC II-B1), and 21 amino acids are inserted into loop 2 at amino acid 622 (NMHC II-B2; see Ref. 15). These isoforms have been expressed as proteins, and their biochemical and functional importance has been studied extensively (19-22). Recently, it has been reported that baculovirus-expressed heavy meromyosin (HMM) II-B2 lacks actin-activated MgATPase activity and cannot propel actin filaments in an in vitro motility assay following MLC20 phosphorylation (22) even though HMM II-B0 and II-B1 show normal phosphorylation-dependent activities (21). These two inserted isoforms (NM II-B1 and NM II-B2) are only expressed in neuronal tissues, and the results of ablating each of them and NM II-B in mice have been reported (23-25).For NMHC II-C, an alternative exon encoding 8 amino acids is incorporated into loop 1 at amino acid 227 (NMHC II-C1) at a location homologous to that of the B1 insert. Unlike NMHC II-B1, which is only expressed in neuronal tissue, NMHC II-C1 is found in a variety of tissues such as liver, kidney, testes, brain, and lung (8). The presence of the C1 insert in baculovirus-expressed HMM II-C1 increases both the actin-activated MgATPase activity and in vitro motility of HMM II-C1 compared with HMM II-C0, the noninserted form. The activity of both HMM II-C0 and HMM II-C1 is dependent on MLC20 phosphorylation (26). NM II-C1 has been shown to be expressed in a number of tumor cell lines, and decreasing its expression using small interfering RNA delays a late step in cytokinesis in the lung tumor cell line A549 (27).In this study, we report that an exon encoding 41 amino acids can be incorporated into loop 2 near the actin binding region at amino acid 636 of NMHC II-C in mice. Expression of NM II-C2 is limited to neural tissue in mice. We used the baculovirus system to express all four isoforms of HMM II-C and found that inclusion of the 41 amino acids in loop 2 results in an HMM with an actin-activated MgATPase activity and in vitro motility that are independent of MLC20 phosphorylation.  相似文献   

7.
Nonmuscle myosin heavy chain II-A is responsible for MYH9-related disease, which is characterized by macrothrombocytopenia, granulocyte inclusions, deafness, cataracts, and renal failure. Since another two highly conserved nonmuscle myosins, II-B and II-C, are known, an analysis of their tissue distribution is fundamental for the understanding of their biological roles. In mouse, we found that all forms are ubiquitously expressed. However, megakaryocytic and granulocytic lineages express only II-A, suggesting that congenital features, macrothrombocytopenia, and leukocyte inclusions correlate with its exclusive presence. In kidney, eye, and ear, where clinical manifestations have a late onset, as well as in other tissues apparently not affected in patients, II-A and at least one of the other two isoforms are expressed, suggesting that II-B and II-C can partially compensate for each other. We hypothesize that cells expressing only II-A manifest the congenital defects, while tissues expressing additional myosin II isoforms show either late onset of abnormalities or no pathological sign.  相似文献   

8.
Saha S  Dey SK  Das P  Jana SS 《The FEBS journal》2011,278(21):4025-4034
Administration of the chemical carcinogen, 3-methylcholanthrene (3MC), in the hind leg induces the progressive formation of tumors in mice within 110 days. Previous reports suggest that transformation of muscle cells to atypical cells is one of the causes of tumor formation. Molecular events that lead to transformation of normal cells to atypical cells are not well understood. Here, we investigate the effect of 3MC on the expression of nonmuscle myosin IIs (NM IIs) which are known to be involved in cell migration, division and adhesion. Mass spectroscopy analysis reveals that tumor tissue contains 64.5% NM II-A, 34% II-B and only 1.5% II-C of total NM IIs, whereas these three isoforms of NM IIs are undetectable by mass spectroscopy in normal tissue associated with the tumor (NTAT) from the hind leg. Quantification of heavy chain mRNAs of NM II suggests that tumor tissue contains 25.7-fold and 19.03-fold more of NM II-A and II-B, respectively, compared with NTAT. Unlike NM II-B, which is detected only after tumor formation, II-A is detectable as early as day 7 after a second dose of 3MC. Immunofluorescence confocal microscopy reveals that fibroblast cells which are sparsely distributed in normal tissue are densely populated but of atypical shape in the tumor. These findings suggest that transformation of fibroblasts or non-fibroblast cells to atypical, cancerous cells is associated with increased levels of NM II-A and NM II-B expression in the 3MC-induced tumor mouse model. 3MC-induced transformation is further demonstrated in C2C12 myotubes.  相似文献   

9.
To understand the role of nonmuscle myosin II in cardiac and skeletal muscle, we used a number of polyclonal antibodies, three detecting nonmuscle myosin heavy chain II-B (NMHC II-B) and two detecting NMHC II-A, to examine the localization of these two proteins in fresh-frozen, acetone-fixed sections of normal human and mouse hearts and human skeletal muscles. Results were similar in both species and were confirmed by examination of fresh-frozen sections of human hearts subjected to no fixation or to treatment with either 4% p-formaldehyde or 50% glycerol. NMHC II-B was diffusely distributed in the cytoplasm of cardiac myocytes during development, but after birth it was localized to the Z-lines and intercalated discs. Dual labeling showed almost complete colocalization of NMHC II-B with alpha-actinin. Whereas endothelial cells, smooth muscle cells and fibroblasts showed strong immunoreactivity for NMHC II-A and NMHC II-B, cardiac myocytes only showed reactivity for the latter. The Z-lines of human skeletal muscle cells, in contrast to those of cardiac myocytes, gave positive reactions for both NMHC II-A and NMHC II-B. The presence of a motor protein in the Z-lines and intercalated discs raises the possibility that these structures may play a more dynamic role in the contraction/relaxation mechanism of cardiac and skeletal muscle than has been previously suspected.  相似文献   

10.
11.
We report the initial biochemical characterization of an alternatively spliced isoform of nonmuscle heavy meromyosin (HMM) II-B2 and compare it with HMM II-B0, the nonspliced isoform. HMM II-B2 is the HMM derivative of an alternatively spliced isoform of endogenous nonmuscle myosin (NM) II-B, which has 21-amino acids inserted into loop 2, near the actin-binding region. NM II-B2 is expressed in the Purkinje cells of the cerebellum as well as in other neuronal cells [X. Ma, S. Kawamoto, J. Uribe, R.S. Adelstein, Function of the neuron-specific alternatively spliced isoforms of nonmuscle myosin II-B during mouse brain development, Mol. Biol. Cell 15 (2006) 2138-2149]. In contrast to any of the previously described isoforms of NM II (II-A, II-B0, II-B1, II-C0 and II-C1) or to smooth muscle myosin, the actin-activated MgATPase activity of HMM II-B2 is not significantly increased from a low, basal level by phosphorylation of the 20 kDa myosin light chain (MLC-20). Moreover, although HMM II-B2 can bind to actin in the absence of ATP and is released in its presence, it cannot propel actin in the sliding actin filament assay following MLC-20 phosphorylation. Unlike HMM II-B2, the actin-activated MgATPase activity of a chimeric HMM with the 21-amino acid II-B2 sequence inserted into the homologous location in the heavy chain of HMM II-C is increased following MLC-20 phosphorylation. This indicates that the effect of the II-B2 insert is myosin heavy chain specific.  相似文献   

12.
Previous work has shown that ablation or mutation of nonmuscle myosin heavy chain II-B (NMHC II-B) in mice results in defects in the heart and brain with death occurring between embryonic day 14.5 (E14.5) and birth (Tullio, A. N., Accili, D., Ferrans, V. J., Yu, Z. X., Takeda, K., Grinberg, A., Westphal, H., Preston, Y. A., and Adelstein, R. S. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 12407-12412). Here we show that mice ablated for NMHC II-A fail to develop a normal patterned embryo with a polarized visceral endoderm by E6.5 and die by E7.5. Moreover, A(-)/A(-) embryoid bodies grown in suspension culture constantly shed cells. These defects in cell adhesion and tissue organization are explained by loss of E-cadherin and beta-catenin localization to cell adhesion sites in both cell culture and in the intact embryos. The defects can be reproduced by introducing siRNA directed against NMHC II-A into wild-type embryonic stem cells. Our results suggest an essential role for a single, specific nonmuscle myosin isoform in maintaining cell-cell adhesions in the early mammalian embryo.  相似文献   

13.
Ablation of nonmuscle myosin (NM) II-A or NM II-B results in mouse embryonic lethality. Here, we report the results of ablating NM II-C as well as NM II-C/II-B together in mice. NM II-C ablated mice survive to adulthood and show no obvious defects compared with wild-type littermates. However, ablation of NM II-C in mice expressing only 12% of wild-type amounts of NM II-B results in a marked increase in cardiac myocyte hypertrophy compared with the NM II-B hypomorphic mice alone. In addition, these hearts develop interstitial fibrosis associated with diffuse N-cadherin and β-catenin localization at the intercalated discs, where both NM II-B and II-C are normally concentrated. When both NM II-C and II-B are ablated the BC/BC cardiac myocytes show major defects in karyokinesis. More than 90% of BC/BC myocytes demonstrate defects in chromatid segregation and mitotic spindle formation accompanied by increased stability of microtubules and abnormal formation of multiple centrosomes. This requirement for NM II in karyokinesis is further demonstrated in the HL-1 cell line derived from mouse atrial myocytes, by using small interfering RNA knockdown of NM II or treatment with the myosin inhibitor blebbistatin. Our study shows that NM II is involved in regulating cardiac myocyte karyokinesis by affecting microtubule dynamics.  相似文献   

14.
Nine representative pairs of heterothallic (=self-sterile, cross-fertile) strains of theClosterium peracerosum-strigosum-littorale complex from the northern Kanto area in Japan have been studied under the defined standard culture conditions. Since a wall thickening at cell apices was observed in vegetative cells of all the strains, these strains turned out to belong to the morphological group II (Ichimura and Watanabe, 1976). The result of statistical analyses of their cell size variations corresponded well with the result of intercrossing experiments between them. It was shown that these strains are virtually composed of three biologically different groups which are morphologically distinct and reproductively isolated completely or at least partially from each other. For convenience, these three groups have been designated as II-A, II-B, and II-C in the order of from smaller to larger cell size. In intra-group crossings, a large number of zygospores were formed, and they germinated well to yield healthy populations of their progenies in all the three groups. In inter-group crossings, no sign of sexual reproduction was observed between Group II-A and Group II-C or Group II-B and Group II-C, and a marked decrease of zygospore formation was observed between Group II-A and Group II-B, especially between Group II-A minus and Group II-B plus. It was concluded that the distinctions between the three groups are biologically sound and that each represents an evolutionary unit. This paper represents a portion of a thesis submitted to the faculty of the Graduate School of Hokkaido University by the senior author in partial fulfillment of the requirements for the degree of Doctor of Science. This study was supported by the Grants in Aid, No. 174233 & No. 034036, from the Scientic Research Fund of the Ministry of Education, Japan.  相似文献   

15.
Epidermal growth factor (EGF) stimulation of prostate metastatic tumor cells results in transient phosphorylation and cellular localization of non-muscle myosin heavy chain II-B (NMHC II-B) with kinetics similar to those seen in chemotaxis. We demonstrate that expression of 18- and 72-kDa fragments derived from the NMHC II-B C terminus that contain EGF-dependent NMHC II-B phosphorylation sites serve as dominant-negative mutations for EGF-dependent NMHC II-B phosphorylation and localization. Both fragments inhibited the EGF-dependent phosphorylation by competing with NMHC II-B on the myosin heavy chain kinase. However, only expression of the 72-kDa fragment resulted in cells with abnormalities in cell shape, focal adhesions, and chemotaxis. We found that the 72-kDa (but not 18-kDa) fragment is capable of self-assembly. To our knowledge, these results provide the first strong evidence that EGF-dependent NMHC II-B phosphorylation is required for the cellular localization of NMHC II-B and that NMHC II-B is required for normal cell attachment and for chemotactic response.  相似文献   

16.
RAW 264.7 macrophages express nonmuscle myosin heavy chain II-A as the only significant nonmuscle myosin heavy chain isoform, with expression of nonmuscle myosin heavy chain II-B and II-C low or absent. Treatment of the cells with sodium butyrate, an inhibitor of histone deacetylase, led to the dose-dependent induction of nonmuscle myosin heavy chain II-C. Trichostatin A, another inhibitor of histone deacetylase, also induced nonmuscle myosin heavy chain II-C. Induction of nonmuscle myosin heavy chain II-C in response to these histone deacetylase inhibitors was attenuated by mithramycin, an inhibitor of Sp1 binding to GC-rich DNA sequences. Bacterial lipopolysaccharide alone had no effect on basal nonmuscle myosin heavy chain II-C expression, but attenuated butyrate-mediated induction of nonmuscle myosin heavy chain II-C. The effects of lipopolysaccharide were mimicked by the nitric oxide donors sodium nitroprusside and spermine NONOate, suggesting a role for nitric oxide in the lipopolysaccharide-mediated down-regulation of nonmuscle myosin heavy chain II-C induction. This was supported by experiments with the inducible nitric-oxide synthase inhibitor 1400W, which partially blocked the lipopolysaccharide-mediated attenuation of nonmuscle myosin heavy chain induction. 8-Bromo-cGMP had no effect on nonmuscle myosin heavy chain induction, consistent with a cGMP-independent mechanism for nitric oxide-mediated inhibition of nonmuscle myosin heavy chain II-C induction.  相似文献   

17.
The 5F9A cell, which is a mesenchymal stem cell-like clone established from rat bone marrow substrate adherent cells, can differentiate into adipocytes and osteoblasts in vitro under the appropriate conditions. Multinucleated cells could be also induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) in 5F9A cells. This effect was mediated by protein kinase C. Possible mechanisms of multinucleation by TPA were hypothesized to be either karyokinesis without cytokinesis or cell-cell fusion. By observation using time-lapse phase-contrast microscopy, we determined that the multinucleated cells were generated mainly by karyokinesis without cytokinesis. Cell fusion was studied using time-lapse photography, and confocal laser scanning microscopy using two differentially labeled cells. These techniques demonstrated that multinucleated 5F9A cells could be produced by cell fusion, albeit at a low frequency. We conclude that multinucleated 5F9A cells are formed primarily by karyokinesis without cytokinesis, although some cells are also formed by cell-cell fusion.  相似文献   

18.
The functional role of the C2 insert of nonmuscle myosin II-C (NM II-C) is poorly understood. Here, we report for the first time that the expression of the C2 insert-containing isoform, NM II-C1C2, is inducible in Neuro-2a cells during differentiation both at mRNA and protein levels. Immunoblot and RT-PCR analysis reveal that expression of NM II-C1C2 peaks between days 3 and 6 of differentiation. Localization of NM II-C1C2 in Neuro-2a cells suggests that the C2 insert-containing isoform is localized in the cytosol and along the neurites, specifically at the adherence point to substratum. Inhibition of endogenous NM II-C1C2 using siRNA decreases the neurite length by 43% compared with control cells treated with nonspecific siRNA. Time lapse image analysis reveals that neurites of C2-siRNA-treated cells have a net negative change in neurite length per minute, leading to a reduction of overall neurite length. During neuritogenesis, NM II-C1C2 can interact and colocalize with β1-integrin in neurites. Altogether, these studies indicate that NM II-C1C2 may be involved in stabilizing neurites by maintaining their structure at adhesion sites.  相似文献   

19.
We propose that the in vivo functions of NM II (non-muscle myosin II) can be divided between those that depend on the N-terminal globular motor domain and those less dependent on motor activity but more dependent on the C-terminal domain. The former, being more dependent on the kinetic properties of NM II to translocate actin filaments, are less amenable to substitution by different NM II isoforms, whereas the in vivo functions of the latter, which involve the structural properties of NM II to cross-link actin filaments, are more amenable to substitution. In light of this hypothesis, we examine the ability of NM II-A, as well as a motor-compromised form of NM II-B, to replace NM II-B and rescue neuroepithelial cell-cell adhesion defects and hydrocephalus in the brain of NM II-B-depleted mice. We also examine the ability of NM II-B as well as chimaeric forms of NM II (II-A head and II-B tail and vice versa) to substitute for NM II-A in cell-cell adhesions in II-A-ablated mice. However, we also show that certain functions, such as neuronal cell migration in the developing brain and vascularization of the mouse embryo and placenta, specifically require NM II-B and II-A respectively.  相似文献   

20.
We report that the alternatively spliced isoforms of nonmuscle myosin heavy chain II-B (NHMC II-B) play distinct roles during mouse brain development. The B1-inserted isoform of NMHC II-B, which contains an insert of 10 amino acids near the ATP-binding region (loop 1) of the myosin heavy chain, is involved in normal migration of facial neurons. In contrast, the B2-inserted isoform, which contains an insert of 21 amino acids near the actin-binding region (loop 2), is important for postnatal development of cerebellar Purkinje cells. Deletion of the B1 alternative exon, together with reduced expression of myosin II-B, results in abnormal migration and consequent protrusion of facial neurons into the fourth ventricle. This protrusion is associated with the development of hydrocephalus. Restoring the amount of myosin II-B expression to wild-type levels prevents these defects, showing the importance of total myosin activity in facial neuron migration. In contrast, deletion of the B2 alternative exon results in abnormal development of cerebellar Purkinje cells. Cells lacking the B2-inserted isoform show reduced numbers of dendritic spines and branches. Some of the B2-ablated Purkinje cells are misplaced in the cerebellar molecular layer. All of the B2-ablated mice demonstrated impaired motor coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号