首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of Nox and Duox enzymatic activity and expression   总被引:10,自引:0,他引:10  
In recent years, it has become clear that reactive oxygen species (ROS, which include superoxide, hydrogen peroxide, and other metabolites) are produced in biological systems. Rather than being simply a by-product of aerobic metabolism, it is now recognized that specific enzymes--the Nox (NADPH oxidase) and Duox (Dual oxidase) enzymes--seem to have the sole function of generating ROS in a carefully regulated manner, and key roles in signal transduction, immune function, hormone biosynthesis, and other normal biological functions are being uncovered. The prototypical Nox is the respiratory burst oxidase or phagocyte oxidase, which generates large amounts of superoxide and other reactive species in the phagosomes of neutrophils and macrophages, playing a central role in innate immunity by killing microbes. This enzyme system has been extensively studied over the past two decades, and provides a basis for comparison with the more recently described Nox and Duox enzymes, which generate ROS in a variety of cells and tissues. This review first considers the structure and regulation of the respiratory burst oxidase, and then reviews recent studies relating to the regulation of the activity of the novel Nox/Duox enzymes. The regulation of Nox and Duox expression in tissues and by specific stimuli is also considered here. An accompanying review considers biological and pathological roles of the Nox family of enzymes.  相似文献   

2.

Background  

NADPH-oxidases (Nox) and the related Dual oxidases (Duox) play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS). Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes.  相似文献   

3.
Reactive oxygen species (ROS) are considered to be chemically reactive with and damaging to biomolecules including DNA, protein, and lipid, and excessive exposure to ROS induces oxidative stress and causes genetic mutations. However, the recently described family of Nox and Duox enzymes generates ROS in a variety of tissues as part of normal physiological functions, which include innate immunity, signal transduction, and biochemical reactions, e.g., to produce thyroid hormone. Nature's "choice" of ROS to carry out these biological functions seems odd indeed, given its predisposition to cause molecular damage. This review describes normal biological roles of Nox enzymes as well as pathological conditions that are associated with ROS production by Nox enzymes. By far the most common conditions associated with Nox-derived ROS are chronic diseases that tend to appear late in life, including atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, Alzheimer's disease, and others. In almost all cases, with the exception of a few rare inherited conditions (e.g., related to innate immunity, gravity perception, and hypothyroidism), diseases are associated with overproduction of ROS by Nox enzymes; this results in oxidative stress that damages tissues over time. I propose that these pathological roles of Nox enzymes can be understood in terms of antagonistic pleiotropy: genes that confer a reproductive advantage early in life can have harmful effects late in life. Such genes are retained during evolution despite their harmful effects, because the force of natural selection declines with advanced age. This review discusses some of the proposed physiologic roles of Nox enzymes, and emphasizes the role of Nox enzymes in disease and the likely beneficial effects of drugs that target Nox enzymes, particularly in chronic diseases associated with an aging population.  相似文献   

4.
Nox regulation of smooth muscle contraction   总被引:2,自引:0,他引:2  
The catalytic subunit gp91phox (Nox2) of the NADPH oxidase of mammalian phagocytes is activated by microbes and immune mediators to produce large amounts of reactive oxygen species (ROS) which participate in microbial killing. Homologs of gp91phox, the Nox and Duox enzymes, were recently described in a range of organisms, including plants, vertebrates, and invertebrates such as Drosophila melanogaster. While their enzymology and cell biology are being extensively studied in many laboratories, little is known about in vivo functions of Noxes. Here, we establish and use an inducible system for RNAi to discover functions of dNox, an ortholog of human Nox5 in Drosophila. We report here that depletion of dNox in musculature causes retention of mature eggs within ovaries, leading to female sterility. In dNox-depleted ovaries and ovaries treated with a Nox inhibitor, muscular contractions induced by the neuropeptide proctolin are markedly inhibited. This functional defect results from a requirement for dNox-for the proctolin-induced calcium flux in Drosophila ovaries. Thus, these studies demonstrate a novel biological role for Nox-generated ROS in mediating agonist-induced calcium flux and smooth muscle contraction.  相似文献   

5.
Over the past decade, the capacity of non-phagocytic cells to produce superoxide has been largely documented. As in the case of the well-characterized phagocytic cells context, superoxide formation in non-phagocytic cells depends on the activity of membrane bound NADPH oxidase enzymes. Six mammalian homologues of the classical phagocytic Nox2 enzyme have been described to date, named Nox1, Nox3, Nox4, Nox5, Duox1 and Duox2, which exhibit similar and specific structure and regulation features. Their biological functions are still poorly understood and were initially mostly deduced from their specific tissue expression profiles. However, recent functional data have emerged that suggest the involvement of several of these isoforms in the innate host response to invading microorganisms, including innate immune and proinflammatory responses. Nox2 is well characterized as a key player in the bacterial killing process that takes place in phagocytes. Here, we will discuss the recent advances that revealed alternative roles of Nox1, Nox4, Duox1 and Duox2 isoforms in other aspects of the innate host defense. In particular, we will focus on their implication in the signaling following pathogen recognition by toll like receptors and in the modulation of dendritic cell functions, two key aspects of innate immunity. Moreover, the potential role of Nox/Duox enzymes in the innate response to virus infections will be discussed.  相似文献   

6.
Redox regulation of signaling molecules contributes critically to propagation of intracellular signals. The main source providing reactive oxygen species (ROS) for these physiological processes are activated NADPH oxidases (Nox/Duox family). In a pathophysiological context, some NADPH oxidase complexes produce large amounts of ROS either as part of the antimicrobial immune defense or as pathologic oxidative stress in many chronic diseases. Thus, understanding the switch from a dormant, inactive conformation to the active state of these enzymes will aid the development of inhibitors. As exogenously expressed Nox4 represents the only constitutively active enzyme in this family, analysis of structural determinants that permit this active conformation was undertaken. Our focus was directed toward a cell-based analysis of the first intracellular loop, the B-loop, and the C-terminus, two regions of Nox family enzymes that are essential for electron transfer. Mutagenesis of the B-loop identified several unique residues and a polybasic motif that contribute to the catalytic activity of Nox4. By using a multifaceted approach, including Nox4-Nox2 chimeras, mutagenesis, and insertion of Nox2 domains, we show here that the penultimate 22 amino acids of Nox4 are involved in constitutive ROS generation. The appropriate spacing of the C-terminal Nox4 sequence may cooperate with a discrete arginine-based interaction site in the B-loop, providing an intrinsically active interface that could not be disrupted by peptides derived from the Nox4 C-terminus. These results indicate that accessibility for a Nox4-specific peptide inhibitor might be difficult to achieve in vivo.  相似文献   

7.
NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been shown to function as second messenger molecules. To date, seven members of this family have been reported, including Nox1-5 and Duox1 and -2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and it requires two cytosolic regulators, NoxO1 and NoxA1, as well as the binding of Rac1 GTPase, for its activity. In this study, we investigate the role of the tyrosine kinase c-Src in the regulation of ROS formation by Nox1. We show that c-Src induces Nox1-mediated ROS generation in the HT29 human colon carcinoma cell line through a Rac-dependent mechanism. Treatment of HT29 cells with the Src inhibitor PP2, expression of a kinase-inactive form of c-Src, and c-Src depletion by small interfering RNA (siRNA) reduce both ROS generation and the levels of active Rac1. This is associated with decreased Src-mediated phosphorylation and activation of the Rac1-guanine nucleotide exchange factor Vav2. Consistent with this, Vav2 siRNA that specifically reduces endogenous Vav2 protein is able to dramatically decrease Nox1-dependent ROS generation and abolish c-Src-induced Nox1 activity. Together, these results establish c-Src as an important regulator of Nox1 activity, and they may provide insight into the mechanisms of tumor formation in colon cancers.  相似文献   

8.
NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been implicated in several physiological and pathophysiological processes. To date seven members of this family have been reported, including Nox1-5 and Duox1 and 2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and requires two cytosolic regulators, the organizer subunit NoxO1 and the activator subunit NoxA1, as well as the binding of Rac1 GTPase, for its activity. Recently, we identified the c-Src substrate proteins Tks4 and Tks5 as functional members of a p47phox-related organizer superfamily. As a functional consequence of this interaction, Nox1 localizes to invadopodia, actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior.Here, we report that Tks4 and Tks5 directly bind to NoxA1. Moreover, the integrity of the N-terminal PRR of NoxA1 is essential for this direct interaction with the Tks proteins. When the PRR in NoxA1 is disrupted, Tks proteins cannot bind NoxA1 and lose their ability to support Nox1-dependent ROS generation. Consistent with this, Tks4 and Tks5 are unable to act as organizers for Nox2 because of their inability to interact with p67phox, which lacks the N-terminal PRR, thus conferring a unique specificity to Tks4 and 5.Taken together, these results clarify the molecular basis for the interaction between NoxA1 and the Tks proteins and may provide new insights into the pharmacological design of a more effective anti-metastatic strategy.  相似文献   

9.
Synthesis of reactive oxygen species (ROS) by specific NADPH oxidases (Nox) can serve both defense and differentiation signaling roles in animals and plants. Fungi have three subfamilies of NADPH oxidase. NoxA and NoxB have a structure very similar to the human gp91(phox). NoxC has in addition a Ca(2+) binding motif as found in the human Nox5 and plant Rboh families of NADPH oxidases. A survey of fungal genomes identified up to four Nox genes in some fungal species, but Nox genes are absent from available genomes of the hemiascomycete yeasts, unicellular Basidiomycetes and Zygomycetes, reflecting the diversity of fungal life forms. Specific isoforms of Nox have been shown by genetic analysis to be required for various physiological processes and cellular differentiations, including development of sexual fruiting bodies, ascospore germination, hyphal defense, hyphal growth in both mutualistic and antagonistic plant-fungal interactions. This review provides an overview of our current knowledge of fungal NADPH oxidases, including Nox distribution in the fungal kingdom, Nox structure and regulation, and known biological functions of this important group of enzymes.  相似文献   

10.
Dual oxidase 2 is a member of the NADPH oxidase (Nox) gene family that plays a critical role in the biosynthesis of thyroid hormone as well as in the inflammatory response of the upper airway mucosa and in wound healing, presumably through its ability to generate reactive oxygen species, including H2O2. The recently discovered overexpression of Duox2 in gastrointestinal malignancies, as well as our limited understanding of the regulation of Duox2 expression, led us to examine the effect of cytokines and growth factors on Duox2 in human tumor cells. We found that exposure of human pancreatic cancer cells to IFN-γ (but not other agents) produced a profound up-regulation of the expression of Duox2, and its cognate maturation factor DuoxA2, but not other members of the Nox family. Furthermore, increased Duox2/DuoxA2 expression was closely associated with a significant increase in the production of both intracellular reactive oxygen species and extracellular H2O2. Examination of IFN-γ-mediated signaling events demonstrated that in addition to the canonical Jak-Stat1 pathway, IFN-γ activated the p38-MAPK pathway in pancreatic cancer cells, and both played an important role in the induction of Duox2 by IFN-γ. Duox2 up-regulation following IFN-γ exposure is also directly associated with the binding of Stat1 to elements of the Duox2 promoter. Our findings suggest that the pro-inflammatory cytokine IFN-γ initiates a Duox2-mediated reactive oxygen cascade in human pancreatic cancer cells; reactive oxygen species production in this setting could contribute to the pathophysiologic characteristics of these tumors.  相似文献   

11.
The discovery of superoxide-generating enzymes homologues of phagocytic NAD(P)H oxidase, the Nox family, has led to the concept that reactive oxygen species (ROS) are 'intentionally' generated with biological functions in various cell types. In this study, by treating an acute leukaemic cell line with different antioxidants, ROS generation was shown to be crucially involved in the modulation of glucose transport (mediated by Glut1), which is frequently up-regulated in cancer cells. Then, this study tried to elucidate ROS source(s) and mechanisms by which ROS are involved in Glut1 activity regulation. Results prove that Nox2 and Nox4 are the candidates and that phosphorylation processes are important in the regulation of glucose uptake on which cancer cells rely. On the whole, data suggest that both Glut1 and Nox homologues may be considered new potential targets in the treatment of leukaemia.  相似文献   

12.
The discovery of superoxide-generating enzymes homologues of phagocytic NAD(P)H oxidase, the Nox family, has led to the concept that reactive oxygen species (ROS) are ‘intentionally’ generated with biological functions in various cell types. In this study, by treating an acute leukaemic cell line with different antioxidants, ROS generation was shown to be crucially involved in the modulation of glucose transport (mediated by Glut1), which is frequently up-regulated in cancer cells. Then, this study tried to elucidate ROS source(s) and mechanisms by which ROS are involved in Glut1 activity regulation. Results prove that Nox2 and Nox4 are the candidates and that phosphorylation processes are important in the regulation of glucose uptake on which cancer cells rely. On the whole, data suggest that both Glut1 and Nox homologues may be considered new potential targets in the treatment of leukaemia.  相似文献   

13.
NADPH oxidases are enzymes that produce reactive oxygen species. Studies in mammals, plants and fungi have shown that they play important roles in differentiation, defence, host/pathogen interaction and mutualistic symbiosis. In this paper, we have identified a Podospora anserina mutant strain impaired for processes controlled by PaNox1 and PaNox2, the two Nox isoforms characterized in this model ascomycete. We show that the gene mutated is PaNoxR , the homologue of the gene encoding the regulatory subunit p67phox, conserved in mammals and fungi, and that PaNoxR regulates both PaNox1 and PaNox2. Genome sequence analysis of P. anserina reveals that this fungus posses a third Nox isoform, PaNox3, related to human Nox5/Duox and plant Rboh. We have generated a knock-out mutant of PaNox3 and report that PaNox3 plays a minor role in P. anserina , if any. We show that PaNox1 and PaNox2 play antagonist roles in cellulose degradation. Finally, we report for the first time that a saprobic fungus, P. anserina , develops special cell structures dedicated to breach and to exploit a solid cellulosic substrate, cellophane. Importantly, as for similar structures present in some plant pathogens, their proper differentiation requires PaNox1, PaNox2, PaNoxR and the tetraspanin PaPls1.  相似文献   

14.
NADPH oxidases (Nox enzymes) are critical mediators of both physiologic and pathophysiologic processes. Nox enzymes catalyze NADPH-dependent generation of reactive oxygen species (ROS), including superoxide and hydrogen peroxide. Until recently, Nox4 was proposed to be involved exclusively in normal physiologic functions. Compelling evidence, however, suggests that Nox4 plays a critical role in fibrosis, as well as a host of pathologies and diseases. These considerations led to a search for novel, small molecule inhibitors of this important enzyme. Ultimately, a series of novel tertiary sulfonylureas (2325) was designed using pharmacophore modeling, synthesized, and evaluated for inhibition of Nox4-dependent signaling.  相似文献   

15.
16.
Sumimoto H 《The FEBS journal》2008,275(13):3249-3277
NADPH oxidases of the Nox family exist in various supergroups of eukaryotes but not in prokaryotes, and play crucial roles in a variety of biological processes, such as host defense, signal transduction, and hormone synthesis. In conjunction with NADPH oxidation, Nox enzymes reduce molecular oxygen to superoxide as a primary product, and this is further converted to various reactive oxygen species. The electron-transferring system in Nox is composed of the C-terminal cytoplasmic region homologous to the prokaryotic (and organelle) enzyme ferredoxin reductase and the N-terminal six transmembrane segments containing two hemes, a structure similar to that of cytochrome b of the mitochondrial bc(1) complex. During the course of eukaryote evolution, Nox enzymes have developed regulatory mechanisms, depending on their functions, by inserting a regulatory domain (or motif) into their own sequences or by obtaining a tightly associated protein as a regulatory subunit. For example, one to four Ca(2+)-binding EF-hand motifs are present at the N-termini in several subfamilies, such as the respiratory burst oxidase homolog (Rboh) subfamily in land plants (the supergroup Plantae), the NoxC subfamily in social amoebae (the Amoebozoa), and the Nox5 and dual oxidase (Duox) subfamilies in animals (the Opisthokonta), whereas an SH3 domain is inserted into the ferredoxin-NADP(+) reductase region of two Nox enzymes in Naegleria gruberi, a unicellular organism that belongs to the supergroup Excavata. Members of the Nox1-4 subfamily in animals form a stable heterodimer with the membrane protein p22(phox), which functions as a docking site for the SH3 domain-containing regulatory proteins p47(phox), p67(phox), and p40(phox); the small GTPase Rac binds to p67(phox) (or its homologous protein), which serves as a switch for Nox activation. Similarly, Rac activates the fungal NoxA via binding to the p67(phox)-like protein Nox regulator (NoxR). In plants, on the other hand, this GTPase directly interacts with the N-terminus of Rboh, leading to superoxide production. Here I describe the regulation of Nox-family oxidases on the basis of three-dimensional structures and evolutionary conservation.  相似文献   

17.
NAD(P)H oxidases (Nox) generate reactive oxygen species (ROS) that function in host defense and cellular signaling. While analyzing the expression of Nox4 at the protein and the mRNA levels, we identified four novel Nox4 splice-variants Nox4B, Nox4C, Nox4D, and Nox4E, which are expressed in human lung A549 cell line and lung tissues. One Nox4 isoform lacks the first NAD(P)H binding site (Nox4B) while another lacks all FADH and NAD(P)H binding sites (Nox4C). Cells over-expressing NoxB or Nox4C exhibited a decrease in ROS levels. Thus, these isoforms have dominant negative characteristics for ROS generation. Two other splice-variants (Nox4D, Nox4E) lack the transmembrane domains, suggesting these as non-membrane associated isoforms. Nox4D contains all FADH and NAD(P)H binding domains and shows the same rate of ROS generation as Nox4 prototype. Taken together, we suggest that Nox4 exists as several isoforms that may have different functions in ROS-related cell signaling.  相似文献   

18.
Inhibitory action of NoxA1 on dual oxidase activity in airway cells   总被引:1,自引:0,他引:1  
Imbalance between pro- and antioxidant mechanisms in the lungs can compromise pulmonary functions, including blood oxygenation, host defense, and maintenance of an anti-inflammatory environment. Thus, tight regulatory control of reactive oxygen species is critical for proper lung function. Increasing evidence supports a role for the NADPH oxidase dual oxidase (Duox) as an important source for regulated H(2)O(2) production in the respiratory tract epithelium. In this study Duox expression, function, and regulation were investigated in a fully differentiated, mucociliary airway epithelium model. Duox-mediated H(2)O(2) generation was dependent on calcium flux, which was required for dissociation of the NADPH oxidase regulatory protein Noxa1 from plasma membrane-bound Duox. A functional Duox1-based oxidase was reconstituted in model cell lines to permit mutational analysis of Noxa1 and Duox1. Although the activation domain of Noxa1 was not required for Duox function, mutation of a proline-rich domain in the Duox C terminus, a potential interaction motif for the Noxa1 Src homology domain 3, caused up-regulation of basal and stimulated H(2)O(2) production. Similarly, knockdown of Noxa1 in airway cells increased basal H(2)O(2) generation. Our data indicate a novel, inhibitory function for Noxa1 in Duox regulation. This represents a new paradigm for control of NADPH oxidase activity, where second messenger-promoted conformational change of the Nox structure promotes oxidase activation by relieving constraint induced by regulatory components.  相似文献   

19.
Reactive oxygen species (ROS) play key roles in mucosal defense, yet how they are induced and the consequences for pathogens are unclear. We report that ROS generated by epithelial NADPH oxidases (Nox1/Duox2) during Campylobacter jejuni infection impair bacterial capsule formation and virulence by altering bacterial signal transduction. Upon C. jejuni invasion, ROS released from the intestinal mucosa inhibit the bacterial phosphotyrosine network that is regulated by the outer-membrane tyrosine kinase Cjtk (Cj1170/OMP50). ROS-mediated Cjtk inactivation results in an overall decrease in the phosphorylation of C. jejuni outer-membrane/periplasmic proteins, including UDP-GlcNAc/Glc 4-epimerase (Gne), an enzyme required for N-glycosylation and capsule formation. Cjtk positively regulates Gne by phosphorylating an active site tyrosine, while loss of Cjtk or ROS treatment inhibits Gne activity, causing altered polysaccharide synthesis. Thus, epithelial NADPH oxidases are an early antibacterial defense system in the intestinal mucosa that modifies virulence by disrupting bacterial signaling.  相似文献   

20.
The NADPH oxidase family, consisting of Nox1-5 and Duox1-2, catalyzes the regulated formation of reactive oxygen species (ROS). Highly expressed in the colon, Nox1 needs the organizer subunit NoxO1 and the activator subunit NoxA1 for its activity. The tyrosine kinase c-Src is necessary for the formation of invadopodia, phosphotyrosine-rich structures which degrade the extracellular matrix (ECM). Many Src substrates are invadopodia components, including the novel Nox1 organizer Tks4 and Tks5 proteins. Nox1-dependent ROS generation is necessary for the maintenance of functional invadopodia in human colon cancer cells. However, the signals and the molecular machinery involved in the redox-dependent regulation of invadopodia formation remain unclear. Here, we show that the interaction of NoxA1 and Tks proteins is dependent on Src activity. Interestingly, the abolishment of Src-mediated phosphorylation of Tyr110 on NoxA1 and of Tyr508 on Tks4 blocks their binding and decreases Nox1-dependent ROS generation. The contemporary presence of Tks4 and NoxA1 unphosphorylable mutants blocks SrcYF-induced invadopodia formation and ECM degradation, while the overexpression of Tks4 and NoxA1 phosphomimetic mutants rescues this phenotype. Taken together, these results elucidate the role of c-Src activity on the formation of invadopodia and may provide insight into the mechanisms of tumor formation in colon cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号