首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombin-mediated changes in endothelial cell adherens junctions modulate vascular permeability. We demonstrate that the nonreceptor protein-tyrosine phosphatase SHP2 co-precipitates with VE-cadherin complexes in confluent, quiescent human umbilical vein endothelial cells. Ligand-binding blots using a SHP2-glutathione S-transferase fusion peptide established that SHP2 associates selectively with beta-catenin in VE-cadherin complexes. Thrombin treatment of human umbilical vein endothelial cells promotes SHP2 tyrosine phosphorylation and dissociation from VE-cadherin complexes. The loss of SHP2 from the cadherin complexes correlates with a dramatic increase in the tyrosine phosphorylation of beta-catenin, gamma-catenin, and p120-catenin complexed with VE-cadherin. We propose that thrombin regulates the tyrosine phosphorylation of VE-cadherin-associated beta-catenin, gamma-catenin, and p120-catenin by modulating the quantity of SHP2 associated with VE-cadherin complexes. Such changes in adherens junction complex composition likely underlie thrombin-elicited alterations in endothelial monolayer permeability.  相似文献   

2.
The adherens junctional molecule, vascular endothelial cadherin (VE-cadherin), functions to maintain adherens junction stability and to suppress apoptosis of endothelial cells by forming a complex with vascular endothelial growth factor (VEGF) receptor 2 and members of the armadillo family of cytoplasmic proteins. In order to investigate the dynamics of the association of VE-cadherin with adherens junctions during the initial stages of angiogenesis, human umbilical cord endothelial cells (HUVECs) were stimulated with VEGF to undergo angiogenesis in type-I collagen three-dimensional culture. In confluent monolayers of HUVECs, VE-cadherin and its signaling partner, beta-catenin, as well as the paracellular transmembrane adhesion molecule platelet-endothelial cell adhesion molecule (PECAM-1), were all present in regions of cell-cell contact. Within 3 h of stimulation of angiogenesis, VE-cadherin and beta-catenin were lost from these regions. In contrast, the distribution pattern of PECAM-1 did not alter. After 6 h the majority of endothelial cells had migrated to form a network of capillary cords with cell-cell contacts that contained all three molecules. By metabolic labeling of HUVECs it was found that de novo synthesis of VE-cadherin was not essential for the formation of new adherens junctions. Coimmunoprecipitation and immunoblotting experiments showed that the VE-cadherin and beta-catenin remained associated after they were lost from adherens junctions. Detergent extraction of cells with Triton X-100 indicted that the majority of VE-cadherin and beta-catenin was Triton soluble, indicating that they are only weakly associated with the actin-based cytoskeleton.  相似文献   

3.
The actin cytoskeleton and associated proteins play a vital role in cell-cell adhesion. However, the procedure by which cells establish adherens junctions remains unclear. We investigated the dynamics of cell-cell junction formation and the corresponding architecture of the underlying cytoskeleton in cultured human umbilical vein endothelial cells. We show that the initial interaction between cells is mediated by protruding lamellipodia. On their retraction, cells maintain contact through thin bridges formed by filopodia-like protrusions connected by VE-cadherin-rich junctions. Bridges share multiple features with conventional filopodia, such as an internal actin bundle associated with fascin along the length and vasodilator-stimulated phosphoprotein at the tip. It is striking that, unlike conventional filopodia, transformation of actin organization from the lamellipodial network to filopodial bundle during bridge formation occurs in a proximal-to-distal direction and is accompanied by recruitment of fascin in the same direction. Subsequently, bridge bundles recruit nonmuscle myosin II and mature into stress fibers. Myosin II activity is important for bridge formation and accumulation of VE-cadherin in nascent adherens junctions. Our data reveal a mechanism of cell-cell junction formation in endothelial cells using lamellipodia as the initial protrusive contact, subsequently transforming into filopodia-like bridges connected through adherens junctions. Moreover, a novel lamellipodia-to-filopodia transition is used in this context.  相似文献   

4.
Role of vascular endothelial-cadherin in vascular morphogenesis   总被引:24,自引:0,他引:24  
Vascular endothelial (VE)-cadherin is an adhesive transmembrane protein specifically expressed at interendothelial junctions. Its extracellular domain exhibits Ca2+-dependent homophilic reactivity, promoting cell-cell recognition. Mice deficient in VE-cadherin die at mid-gestation resulting from severe vascular defects. At the early phases of vascular development (E8.5) of VE-cadherin-deficient embryos, in situ differentiation of endothelial cells was delayed although their differentiation program appeared normal. Vascularization was defective in the anterior part of the embryo, while dorsal aortae and vitelline and umbilical arteries formed normally in the caudal part. At E9.25, organization of endothelial cells into large vessels was incomplete and angiogenesis was impaired in mutant embryos. Defects were more severe in extraembryonic vasculature. Blood islands of the yolk sac and clusters of angioblasts in allantois failed to establish a capillary plexus and remained isolated. This was not due to defective cell-cell recognition as endothelial cells formed intercellular junctions, as shown by electron microscopy. These data indicate that VE-cadherin is dispensable for endothelial homophilic adhesion but is required for vascular morphogenesis.  相似文献   

5.
6.
We review here our work on the molecular and functional organization of endothelial cell-to-cell junctions. The first part of the review is dedicated to VE-cadherin, characterized by our group few years ago. This protein is a member of the large family of transmembrane adhesion proteins called cadherins. It is endothelial cell specific and plays a major role in the organization of adherens junctions. Inactivation of VE-cadherin gene or in vivo truncation of its cytoplasmic tail leads to a lethal phenotype due to the lack of correct organization of the vasculature in the embryo. We found that the defect was due to apoptosis of endothelial cells, which became unresponsive to the survival signal induced by vascular endothelial cell growth factor. Our data indicate that VE-cadherin may act as a scaffolding protein able to associate vascular endothelial cell growth factor receptor and to promote its signaling. In the second part of the review we consider another protein more recently discovered by us and called junctional adhesion molecule (JAM). This protein is a small immunoglobulin which is located at tight junctions in the endothelium and in epithelial cells. Evidence is discussed indicating that JAM takes part in the organization of tight junctions and modulates leukocyte extravasation through endothelial intercellular junctions in vitro and in vivo. The general role of tight junctions in endothelial cells is also discussed.  相似文献   

7.
The integrity of the vascular endothelium is mainly dependent upon the organization of interendothelial adherens junctions (AJ). These junctions are formed by the homotypic interaction of a transmembrane protein, vascular endothelial cadherin (VE-cadherin), which is complexed to an intracellular protein network including α-, β-, and γ-catenin. Additional proteins such as vinculin and α-actinin have been suggested to link the VE-cadherin/catenin complex to the actin-based cytoskeleton. During the process of hematogenous metastasis, circulating tumor cells must disrupt these intercellular junctions in order to extravasate. In the present study, we have investigated the influence of tumor cell–endothelial cell interaction upon interendothelial AJ. We show that human breast adenocarcinoma cells (MCF-7), but not normal human mammary epithelial cells, induce a rapid endothelial cell (EC) dissociation which correlates with the loss of VE-cadherin expression at the site of tumor cell–EC contact and with profound changes in vinculin distribution and organization. This process could not be inhibited by metalloproteinase nor serine protease inhibitors. Immunoprecipitations and Western blot analysis demonstrate that the overall expression of VE-cadherin and vinculin as well as the composition of the VE-cadherin/catenins complex are not affected by tumor cells while the tyrosine phosphorylation status of proteins within the complex is significantly altered. Our data suggest that tumor cells modulate AJ protein distribution and phosphorylation in EC and may, thereby, facilitate EC dissociation.  相似文献   

8.
Vascular endothelial (VE) cadherin is the surface glycoprotein cadherin specific to the endothelium that mediates cell-cell adhesion and plays a major role in the remodeling, gating, and maturation of vascular vessels. To investigate the contribution of individual VE-cadherins to endothelial cell-cell interactions and investigate whether different classical cadherins display different kinetics and micromechanical properties, we characterize the binding properties of VE-cadherin/VE-cadherin bonds at single-molecule resolution and in living human umbilical vein endothelial cells (HUVECs). Our single-molecule force spectroscopy measurements reveal that type II VE-cadherin molecules form bonds that are less prone to rupture and display a higher tensile strength than bonds formed by classical type I neuronal (N) cadherin and epithelial (E) cadherin. The equilibrium lifetime of the VE-cadherin/VE-cadherin bond is significantly longer than formed by N-cadherin/N-cadherin bonds and E-cadherin/E-cadherin bonds. These results indicate that VE-cadherins form bonds that have kinetics and mechanical properties that are significantly different from those formed by classical type I cadherins, properties that are particularly well adapted to the barrier and adhesive functions of VE-cadherin in endothelial cell-cell junctions.  相似文献   

9.
Sphingosine 1-phosphate (S1P) rapidly increases endothelial barrier function and induces the assembly of the adherens junction proteins vascular endothelial (VE)-cadherin and catenins. Since VE-cadherin contributes to the stabilization of the endothelial barrier, we determined whether the rapid, barrier-enhancing activity of S1P requires VE-cadherin. Ca(2+)-dependent, homophilic VE-cadherin binding of endothelial cells, derived from human umbilical veins and grown as monolayers, was disrupted with EGTA, an antibody to the extracellular domain of VE-cadherin, or gene silencing of VE-cadherin with small interfering RNA. All three protocols caused a reduction in the immunofluorescent localization of VE-cadherin at intercellular junctions, the separation of adjacent cells, and a decrease in basal endothelial electrical resistance. In all three conditions, S1P rapidly increased endothelial electrical resistance. These findings demonstrate that S1P enhances the endothelial barrier independently of homophilic VE-cadherin binding. Junctional localization of VE-cadherin, however, was associated with the sustained activity of S1P. Imaging with phase-contrast and differential interference contrast optics revealed that S1P induced cell spreading and closure of intercellular gaps. Pretreatment with latrunculin B, an inhibitor of actin polymerization, or Y-27632, a Rho kinase inhibitor, attenuated cell spreading and the rapid increase in electrical resistance induced by S1P. We conclude that S1P rapidly closes intercellular gaps, resulting in an increased electrical resistance across endothelial cell monolayers, via cell spreading and Rho kinase and independently of VE-cadherin.  相似文献   

10.
During embryogenesis, endothelial cells are a source of hematopoietic cells. Vascular endothelial (VE)-cadherin modulates adherens junctions between endothelial cells. How endothelial cells, integrated into the vascular bed via adherens junctions, give rise to free-floating hematopoietic cells has been examined. Contrary to our previous reports, in this report a cell type simultaneously expressing VE-cadherin and the hematopoietic marker CD45 was identified, without rigorous enzymatic dissociation of embryonic tissues. In spite of expressing several other endothelial markers such as endothelial cell nitrous oxide synthase (ECNOS) and MECA-32, this newly defined population failed to produce endothelial colonies when cultured on OP9 stroma, in direct contrast to enzymatically dissociated VE-cadherin+ cells. When isolated from 9.5 days post coitus (d.p.c.) embryos, VE-cadherin+ CD45+ cells generated erythroid, myeloid, but not B lymphoid, cells, also in contrast to VE-cadherin+ cells obtained by enzymatic dissociation. Runx1 null mutant embryos lacked this novel population. Collectively, these results introduce a novel VE-cadherin+ population within the developing embryo, which may represent an intermediate cell type in the transition of hemogenic endothelial cells into blood.  相似文献   

11.
Occludin is an integral membrane protein within tight junctions. Previous studies suggest it functions as a sealing element, which promotes barrier in endothelial and epithelial cell layers. Here, we examine the role of occludin in neutrophil chemotaxis, using cyclic occludin peptide antagonists that incorporate a conserved occludin cell adhesion recognition (CAR) sequence. Human umbilical vein endothelial cells were pre-treated with occludin specific cyclic peptide antagonists to examine effects on neutrophil migration towards a chemotactic gradient of 10(-7) M fMLP. The spatial organization of occludin and VE-cadherin were also assessed in control and occludin peptide-treated monolayers by immunofluorescent staining. The cyclic peptide, peptide B, which contains the CAR sequence of occludin, increased neutrophil chemotaxis in a time and dose dependent manner. Scrambled sequence peptide controls and linear peptides did not. The cyclic occludin antagonist, peptide B, disorganized junctional occludin, but apparently not VE-cadherin as assessed by immunofluorescence. The correlation between diminished occludin organization and increased neutrophil trans-endothelial chemotaxis provides additional support for occludin in the maintenance of the tight junctional barrier.  相似文献   

12.
Endothelial cells express two classic cadherins, VE-cadherin and N-cadherin. The importance of VE-cadherin in vascular development is well known; however, the function of N-cadherin in endothelial cells remains poorly understood. Contrary to previous studies, we found that N-cadherin localizes to endothelial cell-cell junctions in addition to its well-known diffusive membrane expression. To investigate the role of N-cadherin in vascular development, N-cadherin was specifically deleted from endothelial cells in mice. Loss of N-cadherin in endothelial cells results in embryonic lethality at mid-gestation due to severe vascular defects. Intriguingly, loss of N-cadherin caused a significant decrease in VE-cadherin and its cytoplasmic binding partner, p120ctn. The down-regulation of both VE-cadherin and p120ctn was confirmed in cultured endothelial cells using small interfering RNA to knockdown N-cadherin. We also show that N-cadherin is important for endothelial cell proliferation and motility. These findings provide a novel paradigm by which N-cadherin regulates angiogenesis, in part, by controlling VE-cadherin expression at the cell membrane.  相似文献   

13.

Background

Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is expressed and secreted by endothelial cells. Patients with PAI-1 deficiency show a mild to moderate bleeding diathesis, which has been exclusively ascribed to the function of PAI-1 in down-regulating fibrinolysis. We tested the hypothesis that PAI-1 function plays a direct role in controlling vascular integrity and permeability by keeping endothelial cell-cell junctions intact.

Methodology/Principal Findings

We utilized PAI-039, a specific small molecule inhibitor of PAI-1, to investigate the role of PAI-1 in protecting endothelial integrity. In vivo inhibition of PAI-1 resulted in vascular leakage from intersegmental vessels and in the hindbrain of zebrafish embryos. In addition PAI-1 inhibition in human umbilical vein endothelial cell (HUVEC) monolayers leads to a marked decrease of transendothelial resistance and disrupted endothelial junctions. The total level of the endothelial junction regulator VE-cadherin was reduced, whereas surface VE-cadherin expression was unaltered. Moreover, PAI-1 inhibition reduced the shedding of VE-cadherin. Finally, we detected an accumulation of VE-cadherin at the Golgi apparatus.

Conclusions/Significance

Our findings indicate that PAI-1 function is important for the maintenance of endothelial monolayer and vascular integrity by controlling VE-cadherin trafficking to and from the plasma membrane. Our data further suggest that therapies using PAI-1 antagonists like PAI-039 ought to be used with caution to avoid disruption of the vessel wall.  相似文献   

14.
Kooistra MR  Corada M  Dejana E  Bos JL 《FEBS letters》2005,579(22):4966-4972
We have previously shown that Rap1 as well as its guanine nucleotide exchange factor Epac1 increases cell-cell junction formation. Here, we show that activation of Epac1 with the exchange protein directly activated by cAMP (Epac)-specific cAMP analog 8CPT-2'O-Me-cAMP (007) resulted in a tightening of the junctions and a decrease in the permeability of the endothelial cell monolayer. In addition, 007 treatment resulted in the breakdown of actin stress fibers and the formation of cortical actin. These effects were completely inhibited by siRNA against Epac1. In VE-cadherin knock-out cells Epac1 did not affect cell permeability, whereas in cells re-expressing VE-cadherin this effect was restored. Finally, the effect of Epac activation on the actin cytoskeleton was independent of junction formation. From these results we conclude that in human umbilical vein endothelial cells Epac1 controls VE-cadherin-mediated cell junction formation and induces reorganization of the actin cytoskeleton.  相似文献   

15.
Cell–cell junctions play crucial roles in the organization and function of epithelial and endothelial cellular sheets. Here, we have identified the protein product for KIAA1462 gene, whose single nucleotide polymorphisms (SNPs) have recently reported to be associated with coronary artery disease, as a novel component of cell–cell junctions. We propose the name of KIAA1462 protein junctional protein associated with coronary artery disease (JCAD). JCAD is a ∼145 kDa protein without any known domains but contains a proline-rich region. Immunolocalization studies revealed that JCAD is specifically localized at cell–cell junctions in endothelial cells but not in epithelial cells. The accumulation of JCAD at cell–cell junctions in cultured endothelial cells was impaired by RNAi-mediated suppression of VE-cadherin expression. In cell adhesion-deficient mouse L fibroblasts, JCAD was recruited to cell–cell contacts when cadherin-mediated cell–cell adhesion was induced. These results indicate that JCAD is a component of VE-cadherin-based cell–cell junctions in endothelial cells. This study also suggests the implication of endothelial cell–cell adhesion in coronary artery disease.  相似文献   

16.
The ultrastructure of human umbilical cord vein endothelium in situ, after isolation by collagenase treatment, and in primary culture is described. The cultured cells formed a monolayer with typical "butt" and interdigitated junctions with specialized areas, and contained Weibel-Palade bodies, rod-shaped tubular organelles considered specific of endothelial cells. These morphological features were not present in cultures of human skin fibroblasts and fibroblast-like cells derived from umbilical cords. It is thus concluded that endothelial cells retain their characteristic fine structure in primary culture. Simple ultrastructural studies can thus be used to identify endothelial cells in culture.  相似文献   

17.
Sialic acids, occupying a terminal position in cell surface glycoconjugates, are major contributors to the net negative charge of the vascular endothelial cell surface. As integral membrane glycoproteins, LDL receptors also bear terminal sialic acid residues. Pretreatment of near-confluent, cultured bovine aortic endothelial cells (BAEC) with neuraminidase (50 mU/ml, 30 min, 37 degrees C) stimulated a significant increase in receptor-mediated 125I-LDL internalization and degradation relative to PBS-treated control cells. Binding studies at 4 degrees C revealed an increased affinity of LDL receptor sites on neuraminidase-treated cells compared to control BAEC (6.9 vs. 16.2 nM/10(6) BAEC) without a change in receptor site number. This enhanced LDL endocytosis in neuraminidase-treated cells was dependent upon the enzymatic activity of the neuraminidase and the removal of sialic acid from the cell surface. Furthermore, enhanced endocytosis due to enzymatic alteration of the 125I-LDL molecules was excluded. In contrast to BAEC, neuraminidase pretreatment of LDL receptor-upregulated cultured normal human fibroblasts resulted in an inhibition of 125I-LDL binding, internalization, and degradation. Specifically, a significant inhibition in 125I-LDL internalization was observed at 1 hr after neuraminidase treatment, which was associated with a decrease in the number of cell surface LDL receptor sites. Like BAEC, neuraminidase pretreatment of human umbilical vein endothelial cells resulted in enhanced receptor-mediated 125I-LDL endocytosis. These results indicate that sialic acid associated with either adjacent endothelial cell surface molecules or the endothelial LDL receptor itself may modulate LDL receptor-mediated endocytosis and suggest that this regulatory mechanism may be of particular importance to endothelial cells.  相似文献   

18.
The vascular endothelial cell cadherin complex (VE-cadherin, alpha-, beta-, and gamma-catenin, and p120/p100) localizes to adherens junctions surrounding vascular endothelial cells and may play a critical role in the transendothelial migration of circulating blood leukocytes. Previously, we have reported that neutrophil adhesion to human umbilical vein endothelial cell (HUVEC) monolayers, under static conditions, results in a dramatic loss of the VE-cadherin complex. Subsequent studies by us and others (Moll, T., E. Dejana, and D. Vestweber. 1998. J. Cell Biol. 140:403-407) suggested that this phenomenon might reflect degradation by neutrophil proteases released during specimen preparation. We postulated that some form of disruption of the VE-cadherin complex might, nonetheless, be a physiological process during leukocyte transmigration. In the present study, the findings demonstrate a specific, localized effect of migrating leukocytes on the VE-cadherin complex in cytokine-activated HUVEC monolayers. Monocytes and in vitro differentiated U937 cells induce focal loss in the staining of VE-cadherin, alpha-catenin, beta-catenin, and plakoglobin during transendothelial migration under physiological flow conditions. These events are inhibited by antibodies that prevent transendothelial migration and are reversed following transmigration. Together, these data suggest that an endothelial-dependent step of transient and focal disruption of the VE-cadherin complex occurs during leukocyte transmigration.  相似文献   

19.
The endothelial adherens junction is formed by complexes of transmembrane adhesive proteins, of which beta-catenin is known to connect the junctional protein vascular endothelial (VE)-cadherin to the cytoskeleton and to play a signaling role in the regulation of junction-cytoskeleton interaction. In this study, we investigated the effect of neutrophil activation on endothelial monolayer integrity and on beta-catenin and VE-cadherin modification. Treatment of cultured bovine coronary endothelial monolayers with C5a-activated neutrophils resulted in an increase in permeability as measured by albumin clearance across the monolayer. Furthermore, large scale intercellular gap formation was observed in coincidence with the hyperpermeability response. Immunofluorescence analysis showed that beta-catenin and VE-cadherin staining changed from a uniform distribution along the membrane of control cells to a diffuse pattern for both proteins and finger-like projections for beta-catenin in neutrophil-exposed monolayers. Correlatively, there was an increase in actin stress fiber formation in treated cells. Finally, beta-catenin and VE-cadherin from neutrophil-treated endothelial cells showed a significant increase in tyrosine phosphorylation. Our results are the first to link neutrophil-mediated changes in adherens junctions with intercellular gap formation and hyperpermeability in microvascular endothelial cells. These data suggest that neutrophils may regulate endothelial barrier function through a process conferring conformational changes to beta-catenin and VE-cadherin.  相似文献   

20.
Histamine increases microvascular permeability by creating small transitory (100-400 nm) gaps between adjacent endothelial cells at sites of vascular endothelial (VE)-cadherin-based adhesion. We examined the effects of histamine on the proteins within the VE-cadherin-based adherens junction in primary human umbilical vein endothelial cells. VE-cadherin is linked not only by beta- and alpha-catenin to cortical actin but also by gamma-catenin to the intermediate filament vimentin. In mature human umbilical vein cultures, the VE-cadherin immunoprecipitate contained equivalent amounts of alpha- and beta-catenin, 130% as much beta- as gamma-catenin, and 50% as much actin as vimentin. Within 60 s, histamine decreased the fraction of VE-cadherin in the insoluble portion of the cell lysate by 35 +/- 1.5%. At the same time, histamine decreased the amount of vimentin that immunoprecipitated with VE-cadherin by 50 +/- 6%. Histamine did not affect the amount of actin or the amount of alpha-, beta-, or gamma-catenin that immunoprecipitated with VE-cadherin. Within 60 s, histamine simulated a doubling in the phosphorylation of VE-cadherin and beta- and gamma-catenin. The VE-cadherin immunoprecipitate contained kinase activity that phosphorylated VE-cadherin and gamma-catenin in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号