首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA is a remarkable macromolecule that functions primarily as the carrier of the genetic information of organisms ranging from viruses to bacteria to eukaryotes. The ability of DNA polymerases to efficiently and accurately replicate genetic material represents one of the most fundamental yet complex biological processes found in nature. The central dogma of DNA polymerization is that the efficiency and fidelity of this biological process is dependent upon proper hydrogen-bonding interactions between an incoming nucleotide and its templating partner. However, the foundation of this dogma has been recently challenged by the demonstration that DNA polymerases can effectively and, in some cases, selectively incorporate non-natural nucleotides lacking classic hydrogen-bonding capabilities into DNA. In this review, we describe the results of several laboratories that have employed a variety of non-natural nucleotide analogs to decipher the molecular mechanism of DNA polymerization. The use of various non-natural nucleotides has lead to the development of several different models that can explain how efficient DNA synthesis can occur in the absence of hydrogen-bonding interactions. These models include the influence of steric fit and shape complementarity, hydrophobicity and solvation energies, base-stacking capabilities, and negative selection as alternatives to rules invoking simple recognition of hydrogen-bonding patterns. Discussions are also provided regarding how the kinetics of primer extension and exonuclease proofreading activities associated with high-fidelity DNA polymerases are influenced by the absence of hydrogen-bonding functional groups exhibited by non-natural nucleotides.  相似文献   

2.
3.
4.
In a validation trial of a DNA microarray test for chlamydiae we repeatedly observed false-positive PCR amplicons from truly negative samples and non-template controls. Various PCR tests, microarray hybridization and DNA sequencing, revealed that residual Escherichia coli DNA from thermostable DNA polymerases was the cause of this cross-reaction. A subsequent survey showed that only five out of 23 commercial polymerases were free of E. coli DNA. When designing generic oligonucleotide sequences for PCR and PCR microarray-based assays one should be aware of such possible internal contamination, particularly when the target organism is E. coli.  相似文献   

5.
6.
7.
8.
A negatively supertwisted substrate is required for site-specific recombination of baeteriophage λ in vitro under conditions of high ionic strength. This requirement is eliminated under conditions of low ionic strength. Both integrative (attB × attP) and excisive (attR × attL) recombinations display this property. Either nicked or hydrogen-bonded circular forms of DNA recombine in low ionic strength environments in the absence of DNA gyrase activity.  相似文献   

9.
A rapid, simple, and highly sensitive method for sequence analysis of RNA was developed, which consists of the following steps: (i) controlled hydrolysis of the RNA by brief heating in water; (ii) (32P)-labeling of 5'-hydroxyl groups of the fragments produced in (i); (iii) resolution of labeled fragments by size on polyacrylamide gels giving the familiar "ladder"; (iv) contact transfer ("print") of the ladder from the gel to a PEI-cellulose thin layer; (v) in situ treatment of the ladder with RNase T2 resulting in the release of 5'-(32P)-labeled nucleoside-3',5' diphosphates; (vi) contact transfer and thin-layer separation of (32P)-labeled nucleotides on PEI-cellulose in ammonium sulfate and ammonium formate solvents; (vii) autoradiography. The chromatographic behavior of the 4 major and 18 modified nucleotides was determined. The positions of major and modified nucleotides in the sequence can be read directly from the separation patterns displayed on X-ray film. As this is the only sequencing method presently available that allows one to display and identify directly the positions in the RNA chain of major and modified nucleotides, no additional procedures are required to analyze the latter.  相似文献   

10.
11.
The preparation of a novel phosphoramidite monomer based on thyminyl acetic acid coupled to the secondary nitrogen of 2-(2-amino-ethylamino)ethanol is described. This monomer can be used to attach a deoxynucleotide to the carboxy terminus of a PNA oligomer by solid-phase synthesis. The resulting PNA primer is recognized as a substrate by various DNA polymerases.  相似文献   

12.
Several modified nucleoside 5'-triphosphates were synthesized containing adenine-mimicking pyrimidine derivatives as an aglycone. The study of substrate properties of these compounds towards DNA-synthesizing enzymes showed their ability of being incorporated into the growing DNA chain in place of dATP.  相似文献   

13.
Most, although not all, samples of commercial calf thymus DNA were strongly inhibitory to DNA polymerase alpha; the inhibition made the DNA useless as a template for this enzyme. In a pre-assembled DNA polymerase assay mixture (minus enzyme but including activated DNA) the inhibition tended to diminish with time but at a rate that was not predictable, and some inhibition usually persisted. It was concluded that the inhibition was the result of contamination of the DNA by a heparin-like material on the basis of the following: 1) the inhibition could be reversed by treatment of the DNA with heparinase; 2) both the endogenous inhibitory effect of calf thymus DNA as well as the inhibitory effect of heparin on DNA polymerase alpha are reversed by protamine (which is known to prevent the antithrombin activity of heparin); 3) both the endogenous inhibition and inhibition by heparin are also reversed by ampholyte (which also prevents the antithrombin activity of heparin); and 4) both the endogenous and the heparin-induced inhibitory effects display the same spectrum of activity against mammalian DNA polymerases, i.e. both DNA polymerases alpha and delta are extremely sensitive whereas, DNA polymerases beta and gamma are resistant. The last result also suggests the use of heparin as a specific inhibitor of purified mammalian DNA polymerases alpha and delta, similar to the use of aphidicolin.  相似文献   

14.
Tanaka T  Baba H  Hori Y  Kikuchi Y 《FEBS letters》2001,491(1-2):94-98
We developed a guide DNA technique with which the cleavage efficiency of pre-tRNA substrate raised in the RNase P reaction. The 20-mer guide DNAs hybridizing to the upstream region of the cleaving site enhanced the cleavage reactions of RNA substrates by Escherichia coli RNase P. This guide DNA technique was also applicable to cleavage site selection by choosing the DNA-hybridizing site. Results showed that RNase P accepts DNA/RNA double-stranded 5'-leader region with high catalytic efficiency as well as single-stranded RNA region in pre-tRNAs as substrates, which suggests that the protein component of bacterial RNase P prefers bulky nucleotides. The protein component did not affect the normal 5'-processing reaction of pre-tRNAs, but enhanced the mis-cleaving (hyperprocessing) reactions of tRNA in non-cloverleaf folding. Our results suggested that the protein component of RNase P is a modifier for substrate recognition.  相似文献   

15.
Genes involved in the synthesis of poly(glycerol phosphate) wall teichoic acid have been identified in the tag locus of the model Gram-positive organism Bacillus subtilis 168. The functions of most of these gene products are predictable from sequence similarity to characterized proteins and have provided limited insight into the intracellular synthesis and translocation of wall teichoic acid. Nevertheless, critical steps of poly(glycerol phosphate) teichoic acid polymerization continue to be a puzzle. TagB and TagF, encoded in the tag locus, do not show sequence similarity to characterized proteins. We recently showed that recombinant TagF could catalyze glycerol phosphate polymerization in vitro. Based largely on homology to TagF, the TagB protein has been proposed to catalyze either an intracellular glycerophosphotransfer reaction or the extracellular teichoic acid/peptidoglycan ligation reaction. Here we have taken steps to characterize TagB, particularly through in vivo localization studies and in vitro biochemical assay, in order to make a case for either role in teichoic acid biogenesis. We have shown that TagB associates peripherally with the intracellular face of the cell membrane in vivo. We have also produced recombinant TagB and used it to demonstrate the enzymatic incorporation of labeled glycerol phosphate onto a membrane-bound acceptor. The data collected from this and the accompanying study are strongly supportive of a role for TagB in B. subtilis 168 teichoic acid biogenesis as the CDP-glycerol:N-acetyl-beta-d-mannosaminyl-1,4-N-acetyl-d-glucosaminyldiphosphoundecaprenyl glycerophosphotransferase. Here we use the trivial name "Tag primase."  相似文献   

16.
Adenovirus cores prepared by gentle disruption of virus by heating at 56 degrees C in the presence of deoxycholate were able to function as templates in an in vitro DNA replication system, allowing both initiation, indicated by the formation of terminal protein-dCMP complex, and elongation of > 300 nucleotides. Using both cores and DNA-protein complexes as templates, it was also demonstrated that novobiocin, an inhibitor of DNA gyrase, inhibited in vitro DNA replication by preventing formation of the initiation complex.  相似文献   

17.
18.
19.
In vitro virus is a molecular construct for in vitro protein evolution, which requires some mechanism to link phenotype to genotype. The first in vitro virus was realized by bonding a nascent protein with its coding mRNA via puromycin in in vitro translation. We report a new construct of in vitro DNA virus. The virion was a covalent cDNA-protein fusion, and virion formation did not require any modification of mRNA. Due to intactness of mRNA, this type of in vitro DNA virus will take the next step toward in vitro autonomous evolution, just like in vivo viral evolution in a cellstat.  相似文献   

20.
Dextran sulfate is commonly used with polyethylene glycol to concentrate viruses before extraction of their DNA. However, dextran slulfate then easily contaminated such DNA and acted as a potent inhibitor of DNA polymerases from Bacillus subtilis (III), phage PBS2, and phage T4. Dextran sulfate only weakly inhibited Micrococcus luteus and Escherichia coli DNA polymerase I preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号