首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim:  To determine D - and z -values of Cronobacter species ( Enterobacter sakazakii ) in different reconstituted milk and special feeding formula and the effect of reconstitution of powdered milk and special feeding formula with hot water on the survival of the micro-organism.
Methods and Results:  Five Cronobacter species (four C. sakazakii isolates and C. muytjensii ) were heated in reconstituted milk or feeding formula pre-equilibrated at 52–58°C for various times or mixed with powdered milk or feeding formula prior to reconstitution with water at 60–100°C. The D -values of Cronobacter at 52–58°C were significantly higher in whole milk (22·10–0·68 min) than in low fat (15·87–0·62 min) or skim milk (15·30–0·51 min) and significantly higher in lactose-free formula (19·57–0·66 min) than in soy protein formula (17·22–0·63 min). The z -values of Cronobacter in reconstituted milk or feeding formula ranged from 4·01°C to 4·39°C. Water heated to ≥70°C and added to powdered milk and formula resulted in a > 4 log10 reduction of Cronobacter .
Conclusions:  The heat resistance of Cronobacter should not allow the survival of the pathogen during normal pasteurization treatment. The use of hot water (≥70°C) during reconstitution appears to be an effective means to reduce the risk of Cronobacter in these products.
Significance and Impact of the Study:  This study supports existing data available to regulatory agencies and milk producers that recommended heat treatments are sufficient to substantially reduce risk from Cronobacter which may be present in these products.  相似文献   

2.
Aim:  To gain a better understanding of the survival and persistence of Enterobacter sakazakii in severe environments.
Methods and Results:  We evaluated the resistance of Ent. sakazakii to various environmental stresses, including heating, drying, water activity ( a w), and pH. The resistance of Ent. sakazakii to heat varies widely among strains. Most tested strains of Ent. sakazakii exhibited unusual resistance to dry stress, which depends on drying media. Growth of most strains occurred within 24 h at 37°C when the initial a w of the medium was adjusted to 0·94 with sucrose or sodium chloride. The minimum pH for growth within 24 h at 37°C was 3·9 or 4·1 for most strains tested. Additionally, there did not appear to be any relationship between resistance to stresses and biofilm-forming ability in Ent. sakazakii planktonic cells.
Conclusions:  These results indicate that Ent. sakazakii is much more resistant than other Enterobacteriaceae to environmental stresses. Moreover, it is likely that Ent. sakazakii has cross-resistance to dry and thermal stresses.
Significance and Impact of the Study:  The findings of this study will contribute to an improved understanding of the survival and behaviour of Ent. sakazakii , which will lead to improved strategies for preventing outbreaks of Ent. sakazakii infection.  相似文献   

3.
Aims:  To determine the survival and growth characteristics of Cronobacter species ( Enterobacter sakazakii ) in infant wheat-based formulas reconstituted with water, milk, grape juice or apple juice during storage.
Methods and Results:  Infant wheat-based formulas were reconstituted with water, ultra high temperature milk, pasteurized grape or apple juices. The reconstituted formulas were inoculated with Cronobacter sakazakii and Cronobacter muytjensii and stored at 4, 25 or 37°C for up to 24 h. At 25 and 37°C, Cronobacter grew more (>5 log10) in formulas reconstituted with water or milk than those prepared with grape or apple juices ( c. 2–3 log10). The organism persisted, but did not grow in any formulas stored at 4°C. Formulas reconstituted with water and milk decreased from pH 6·0 to 4·8–5·0 after 24 h, whereas the pH of the formulas reconstituted with fruit juices remained at their initial pH values, c. pH 4·8–5·0.
Conclusions:  Cronobacter sakazakii and C. muytjensii can grow in reconstituted wheat-based formulas. If not immediately consumed, these formulas should be stored at refrigeration temperatures to reduce the risk of infant infection.
Significance and Impact of the Study:  The results of this study will be of use to regulatory agencies and infant formula producers to recommend storage conditions that reduce the growth of Cronobacter in infant wheat-based formulas.  相似文献   

4.
Listeria monocytogenes strains 1151 and Scott A were grown in broth at 30 °C and transferred to half cream, double cream and butter stored at 5 °C to determine the influence of dairy product composition on heat resistance at 52, 56, 60, 64 and 68 °C. Strain 1151 showed a higher heat resistance than strain Scott A. The heat resistance of both strains was higher in the dairy products than in broth, particularly at lower temperatures. A significant difference was observed between log 10 of the D -values in the different dairy products. The D -values obtained for both strains resuspended in all the dairy products would result in efficient elimination of the pathogen at 72·7 °C for 15 s. The highest D -value was 11·30 s at 68 °C and by using a z -value of 6·71 °C it can be determined that at 72·7 °C the D -value would be 1·5 s. The 15 s process would therefore achieve 10 log reductions. The effect of growth conditions on the heat resistance at 60 °C of L. monocytogenes Scott A was also investigated. When the cells were grown in the dairy products themselves, and particularly butter, the heat resistance of Scott A was enhanced; for example, the D -values were 7·15 times higher than in broth. Further studies are required to investigate if this protection against heating exists at higher temperatures, in which case the efficiency of pasteurization treatments or other heat treatments would be considerably lowered.  相似文献   

5.
Aim:  To evaluate the effect of starvation, heat, cold, acid, alkaline, chlorine and ethanol stresses on the resistance of Enterobacter sakazakii in powdered infant milk formula (PIMF) towards gamma radiation.
Methods and Results:  Stressed cells of E. sakazakii ATCC 51329 and four other food isolate strains were mixed individually with PIMF, kept overnight at room temperature, and then exposed to gamma radiation up to 7·5 kGy. The D 10-values were determined using linear regression and for the stressed E. sakazakii strains these values ranged from 0·82 to 1·95 kGy.
Conclusions:  Environmental stresses did not significantly change the sensitivity of most E. sakazakii strains to ionizing radiation.
Significance and Impact of the Study:  Data obtained established that most forms of environmental stress are unlikely to significantly enhance the resistance of E. sakazakii strains to lethal, low dose irradiation treatment.  相似文献   

6.
The effect of recovery media and incubation temperature on the apparent heat resistance of three ATCC strains (4342, 7004 and 9818) of Bacillus cereus spores were studied. Nutrient Agar (NA), Tryptic Soy Agar (TSA), Plate Count Agar (PCA) and Milk Agar (MA) as the media and temperatures in the range of 15–40°C were used to recover heated spores. Higher counts of heat injured spores were obtained on PCA and NA. The optimum subculture temperature was about 5°C below the optimum temperature for unheated spores. No significant differences in heat resistance were observed with the different recovery conditions except for strains 4342 and 9818 when MA was used as plating medium.
Large differences in D -values were found among the strains ( D 100=0·28 min for 7004; D 100=0·99 min for 4342; D 100= 4·57 min for 9818). The 7004 strain showed a sub-population with a greater heat resistance. The z values obtained for the three strains studied under the different recovery conditions were similar (7·64°C 0·25).  相似文献   

7.
Aims:  To design and build a thermoresistometer, named Mastia, which could perform isothermal and nonisothermal experiments.
Methods and Results:  In order to evaluate the thermoresistometer, the heat resistance of Escherichia coli vegetative cells and Alicyclobacillus acidoterrestris spores was explored. Isothermal heat resistance of E. coli was characterized by D 60°C = 0·38 min and z =  4·7°C in pH 7 buffer. When the vegetative cells were exposed to nonisothermal conditions, their heat resistance was largely increased at slow heating and fast cooling rates. Isothermal heat resistance of A. acidoterrestris was characterized by D 95°C = 7·4 min and z =  9·5°C in orange juice. Under nonisothermal conditions, inactivation was reasonably well predicted from isothermal data.
Conclusions:  The thermoresistometer Mastia is a very suitable instrument to get heat resistance data of micro-organisms under isothermal and nonisothermal treatments.
Significance and Impact of the Study:  The thermoresistometer Mastia can be a helpful tool for food processors in order to estimate the level of safety of the treatments they apply.  相似文献   

8.
The heat resistance of a strain of L. monocytogenes was determined both in broth and in meat emulsion. The D -values for meat emulsion were approximately two to three times higher than those for broth and also the z -value increased significantly. The micro-organism proved to be more resistant when the cells were heated up slowly (0·5°C/min) to constant temperatures of 60, 63 and 66°C in meat emulsion. The D 60, D 63 and D 66 were, respectively 12·95, 5·4 and 2·3 min. Results may have implications in the survival of Listeria monocytogenes in particular food preparations.  相似文献   

9.
Desiccation and heat tolerance of Enterobacter sakazakii   总被引:7,自引:0,他引:7  
AIMS: Enterobacter sakazakii is an opportunistic pathogen which has been isolated at low levels from powdered infant formulas. This study was performed to demonstrate that Ent. sakazakii is not particularly thermotolerant, but can adapt to osmotic and dry stress. METHODS AND RESULTS: We determined the heat, osmotic and dry stress resistance of Ent. sakazakii. The D-value at 58 degrees C ranged from 0.39 to 0.60 min, which is comparable with that of other Enterobacteriaceae, but much lower than reported previously (Nazarowec-White and Farber 1997, Letters in Applied Microbiology 24: 9-13). However, stationary phase Ent. sakazakii cells were found to be more resistant to osmotic and dry stress than Escherichia coli, Salmonella and other strains of Enterobacteriaceae tested. Further analysis indicated that the dry resistance is most likely linked to accumulation of trehalose in the cells. CONCLUSIONS: The high tolerance to desiccation provides a competitive advantage for Ent. sakazakii in dry environments, as found in milk powder factories, and thereby increases the risk of postpasteurization contamination of the finished product. SIGNIFICANCE AND IMPACT OF THE STUDY: Understanding of the physiology and survival strategies of Ent. sakazakii is an important step in the efforts to eliminate this bacterium from the critical food production environments.  相似文献   

10.
Heat-induced resistance of Bacillus stearothermophilus spores   总被引:3,自引:1,他引:2  
Spores of Bacillus stearothermophilus CNCH 5781 were suspended in distilled water or nutrient medium. A 28 μl aliquot of each was inoculated into haematocrit capillaries and subjected at different time intervals to sublethal temperatures of 63° or 100°C as heat activation for germination. This was followed by heat treatment at 121·1°C and the heat parameter D 121·1 was measured. Contrary to standard observations, heat resistance was observed to increase following activation, a phenomenon which we named 'heat-induced resistance'.  相似文献   

11.
Survival, recoverability and sublethal injury of two strains of Listeria monocytogenes , Scott A and an environmental strain KM, on exposure to sea water at 12·8 or 20·8 °C was determined using in situ diffusion chambers. Plate counts were used to assess recoverability and injury while 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) reduction was used to determine respiratory activity. T90 values (times for 10-fold decreases in numbers of recoverable cells) on non-selective medium (trypticase soya agar with 0·6% yeast extract) at 12·8 and 20·8 °C were 61·7 and 69·2 h for L. monocytogenes Scott A, and 103·0 and 67·0 h for L. monocytogenes KM, respectively. On selective medium (Oxford agar), T90 values at 12·8 and 20·8 °C were 60·6 and 56·9 h for L. monocytogenes Scott A, and 83·0 and 65·9 h for L. monocytogenes KM, respectively. With Scott A, the percentage of sublethally injured cells at 12·8 and 20·8 °C was 1·7 and 17·7%, respectively, while for KM the values were 19·0 and 1·6%, respectively. The fraction of cells reducing CTC but which were not recoverable on plating progressively increased on exposure to sea water. Listeria monocytogenes KM challenged at 58 °C showed an apparent increase in heat resistance after exposure to sea water at 20·8 °C for 7 d ( D 58= 2·64 min) compared with before exposure ( D 58= 1·24). This increase in thermal resistance was not apparent at temperatures greater than 63 °C, and analysis of the best-fit regression lines fitted to the thermal data obtained from the two cell populations indicated that their thermal resistance was not significantly different ( P > 0·05) over the temperature range tested (58–62 °C).  相似文献   

12.
Duplicate beef gravy or ground beef samples inoculated with a suspension of a four-strain cocktail of Escherichia coli O157:H7 were subjected to sublethal heating at 46 °C for 15–30 min, and then heated to a final internal temperature of 60 °C. Survivor curves were fitted using a linear model that incorporated a lag period (TL), and D-values and 'time to a 4D inactivation' (T4D) were calculated. Heat-shocking allowed the organism to survive longer than non-heat-shocked cells; the T4D values at 60 °C increased 1·56- and 1·50-fold in beef gravy and ground beef, respectively. In ground beef stored at 4 °C, thermotolerance was lost after storage for 14 h. However, heat-shocked cells appeared to maintain their thermotolerance for at least 24 h in ground beef held at 15 or 28 °C. A 25 min heat shock at 46 °C in beef gravy resulted in an increase in the levels of two proteins with apparent molecular masses of 60 and 69 kDa. These two proteins were shown to be immunologically related to GroEL and DnaK, respectively. Increased heat resistance due to heat shock must be considered while designing thermal processes to assure the microbiological safety of thermally processed foods.  相似文献   

13.
Factors affecting the heat resistance of Escherichia coli O157 : H7   总被引:3,自引:0,他引:3  
Escherichia coli O157 : H7 has been reported as being not particularly heat resistant. However, several factors which might increase its heat resistance have been investigated in this study using five strains. Increase in growth temperature to 40 °C, as found in the cow gut, heat-shock at sub-lethal temperatures of 42, 45, 48 and 50 °C, and variable heating rate (1 °C min−1 to 23 °C min−1) had no dramatic effect on heat resistance. Growth phase had a marked impact on heat resistance ; late stationary phase cells were more heat-resistant than were log phase cells. The difference in heat resistance between the two phases of growth became more pronounced when cells were resuspended in fresh nutrient broth ; heat resistance of late stationary phase cells increased dramatically whereas no such effect was observed with log phase cells. The addition of polyphosphates to the heating medium did not increase heat resistance. A reduction in water activity of the heating medium from 0·995 to levels between 0·980 and 0·960 also resulted in a marked increase in heat resistance. This effect was more pronounced under conditions of extremely low water activity created by resuspending late stationary phase cells in sunflower oil. Survivors were detected even after a heat treatment at 60 °C for 1 h or 70 °C for 5 min. It can be confirmed that this serotype has no unusual heat resistance and that the heating environment markedly affects resistance.  相似文献   

14.
The microbiological quality and heterotrophic bacterial populations of 26 thermal mineral water springs in Spain were studied. In most of the springs the number of viable aerobes was less than 103 cfu ml-1 and the number of sporulated bacteria less than 102 cfu ml-1. No significant differences were foundin the counts obtained with Plate Count Agar (PCA) and PCA diluted 1 : 10 and incubated at 22°, 37° and 45°C. Total coliforms were found in 14 springs, faecal streptococci in three, spores of sulphite-reducing Clostridium and Pseudomonas aeruginosa in seven. Neither Escherichia coli nor Staphylococcus aureus were found. A total of 665 strains were isolated and 85·4% of these identified; 329 were Gram-positive and 239 were Gram-negative. The genera most prevalent present in the springs were Pseudomonas (in 92.3%), Bacillus (65.4%), Enterobacter, Micrococcus and Staphylococcus (50%), Acinetobacter (42.3%), Arthrobacter (38.4%), Clostridium (27%) and Xanthomonas (23%). Gram-negative bacteria predominated in the mesothermal springs and Gram-positive bacteria in the hyper- and hypothermal springs. The most common Gram-negative rod species isolated were Ps. fluorescens, Ps. aeruginosa, Ps. putida, Ent. agglomerans, Ent. sakazakii, Ac. calcoaceticus and Ent. amnigenus.  相似文献   

15.
Mathematical modelling of the heat resistance of Listeria monocytogenes   总被引:2,自引:0,他引:2  
The heat resistance of Listeria monocytogenes phagovar 2389/2425/3274/2671/47/108/340 (1992 French outbreak strain) in broth was studied at 55, 60 and 65 °C. Experiments were carried out on bacterial cultures in three different physiological states: cultures at the end of the log phase, cultures heat-shocked at 42 °C for 1 h, and subcultures of cells resistant to prolonged heating. Survivor curves were better fitted using a sigmoidal equation than the classical log-linear model. This approach was justified by the existence of heat resistance distributions within the bacterial populations. Peaks (log10 of heating time) of heat resistance distributions of untreated, heat-shocked, and selected cultures at 55, 60 and 65 °C were 0·34, −0·90 and −1·84 min, 0·74, −0·51 and −1·24 min, and 0·17, −0·94 and−1·45 min, respectively. The widths of the distributions are proportional to 0·29, 0·36and 0·41 min0·5, 0·26, 0·36 and 0·41 min0·5, and 0·34, 0·44 and 0·41 min0·5. An increase in thethermal tolerance could then be induced by sublethal heat shock or by selection of heatresistant cells.  相似文献   

16.
The resistance of Salmonella thompson to heating at 54° or 60°C in tryptone soya broth, liquid whole egg, 10% or 40% reconstituted dried milk or minced beef was increased if cells were held at 48°C for 30 min before heating at the higher temperatures. Induction of thermotolerance by mild heat shock is thus not confined to cells grown and heated in broth systems. The heat shock phenomenon may therefore have implications for the safety of foods given marginal heat treatment.  相似文献   

17.
The effects of water-bath immersion heat treatments on the inactivation of Salmonellaenteritidis within intact shell eggs were evaluated. Six pooled strains of Salm. enteritidis ( ca 3×108 cfu, inoculated near the centre of the yolk) were completelyinactivated within 50–57·5 min at a bath temperature of 58°C and within 65–75min at 57°C (an 8·4 to 8·5- D process per egg). Following the initial 24 to35-min come-up period, semilogarithmic survivor curves obtained at 58 and 57°C yieldedapparent decimal reduction times ( D -values) of 4·5 and 6·0 min, respectively.Haugh unit values increased during heating, while yolk index and albumen pH values wereunaffected. Albumen clarity and functionality were affected by the thermal treatments; therefore,extended whip times would be required for meringue preparation using immersion-heated eggwhites. Immersion-heated shell eggs could provide Salmonella -free ingredients for thepreparation of a variety of minimally-cooked foods of interest to consumers and foodserviceoperators.  相似文献   

18.
Aims:  To study the influence of growth temperature on the resistance of Escherichia coli to three agents of different nature: heat, pulsed electric field (PEF) and hydrogen peroxide.
Methods and Results:  Escherichia coli cells were grown to stationary phase at 10°C, 20°C, 30°C, 37°C and 42°C. Survival curves to a heat treatment at 57·5°C, to a PEF treatment at 22 kV cm−1 and to 40 mmol l−1 hydrogen peroxide were obtained and fitted to a model based on the Weibull distribution to describe and compare the inactivation. Time to inactivate the first log cycle of the population at 57·5°C of cells grown at 42°C was sixfold higher than that corresponding to cells grown at 10°C. On the contrary, cells grown at 10°C and 20°C were more resistant to PEF and hydrogen peroxide treatments.
Conclusions:  The influence of growth temperature on bacterial resistance depends on the stress applied. Cells grown at higher temperatures were more heat resistant, but more sensitive to PEF and hydrogen peroxide.
Significance and Impact of the Study:  Results obtained in this investigation help in understanding the physiology of bacterial resistance and the inactivation mechanisms of different technologies.  相似文献   

19.
The bactericidal activity of three bacteriocin-producing lactic acid bacteria alone and in combination with milk lactoperoxidase (LP) system activation against Listeria monocytogenes in refrigerated raw milk was studied. After 4 d at 4°C, the population of L. monocytogenes in milk inoculated with bacteriocin-producing Lactococcus lactis subsp. lactis ATCC 11454, L. lactis subsp. lactis ESI 515 or Enterococcus faecalis INIA 4 was reduced by 0·21–0·24 log units. Activation of the LP system did not enhance inhibition at this temperature. After 4 d at 8°C, L. monocytogenes levels in the non-activated LP system milk inoculated with L. lactis subsp. lactis ATCC 11454, L. lactis subsp. lactis ESI 515 or Ent. faecalis INIA 4 were reduced by 1·87, 1·54 and 1·11 log units compared to control milk, whereas in the activated LP system milk, this reduction was 1·99, 2·10 and 1·06, respectively. The higher nisin production by L. lactis subsp. lactis ESI 515 in milk with activated LP system than in non-activated LP system milk was responsible for the more pronounced decrease of L. monocytogenes counts in the former.  相似文献   

20.
Strains of mesophilic lactococci and lactobacilli isolated from goats' milk cheese were grown to maximum density in milk at 30°C, pH 6·5. They were subsequently cooled to 12°C and then heated at 50°, 52° and 54°C (holding time, 15 s). The micro-organisms tested were Lactococcus lactis subsp. lactis IFPL 60, IFPL 22 and IFPL 359, Lactobacillus casei subsp. casei IFPL 731 and Lactobacillus plantarum IFPL 3, isolated from raw goats' milk cheese. The heated cells presented lower viability and acidification capacity than unheated cells. After heat treatment at 50°C, all the test strains effected practically no reduction in pH of milk (6 h), except for Lactococcus lactis subsp. lactis IFPL 60, which reduced pH to 5·9 as compared to 4·9 attained by the unheated controls. After treatment, proteolytic, aminopeptidase and dipeptidase activities of cell-free extracts decreased to a lesser extent than the number of viable cells with acidifying ability. The results suggest that these strains, if treated at 50°C, may be suitable as extra sources of important ripening enzymes in cheese making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号