首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Temporal and spatial regulation of morphogenesis is pivotal to the formation of organs from simple epithelial tubes. In a genetic screen for novel genes controlling cell movement during posterior foregut development, we have identified and molecularly characterized two alleles of the domeless gene which encodes the Drosophila Janus kinase (JAK)/STAT receptor. We demonstrate that mutants for domeless or any other known component of the canonical JAK/STAT signaling pathway display a failure of coordinated cell movement during the development of the proventriculus, a multiply folded organ which is formed by stereotyped cell rearrangements in the posterior foregut. Whereas the JAK/STAT receptor is expressed in all proventricular precursor cells, expression of upd encoding its ligand and of STAT92E, the signal transducer of the pathway, is locally restricted to cells that invaginate during proventriculus development. We demonstrate by analyzing gene expression mediated by a model Notch response element and by studying the expression of the Notch target gene short stop, which encodes a cytoskeletal crosslinker protein, that JAK/STAT signaling is required for the activation of Notch-dependent gene expression in the foregut. Our results provide strong evidence that JAK/STAT and Notch signaling cooperate in the regulation of target genes that control epithelial morphogenesis in the foregut.  相似文献   

3.
4.
Noack S  Michael N  Rosen R  Lamparter T 《Biochemistry》2007,46(13):4164-4176
Phytochromes are widely distributed photochromic biliprotein photoreceptors. Typical bacterial phytochromes such as Agrobacterium Agp1 have a C-terminal histidine kinase module; the N-terminal chromophore module induces conformational changes in the protein that lead to modulation of kinase activity. We show by protein cross-linking that the C-terminal histidine kinase module of Agp1 mediates stable dimerization. The fragment Agp1-M15, which comprises the chromophore module but lacks the histidine kinase module, can also form dimers. In this fragment, dimer formation was stronger for the far-red-absorbing form Pfr than for the red-absorbing form Pr. The same or similar behavior was found for Agp1-M15Delta9N and Agp1-M15Delta18N, which lack 9 and 18 amino acids of the N-terminus, respectively. The fragment Agp1-M20, which is derived from Agp1-M15 by truncation of the C-terminal "PHY domain" (191 amino acids), can also form dimers, but dimerization is independent of irradiation conditions. The cross-linking data also showed that the PHY domain is in tight contact with Lys 16 of the protein and that the nine N-terminal amino acids mediate oligomer formation. Limited proteolysis shows that the hinge region between the chromophore module and the histidine kinase and a part of the PHY domain become exposed upon Pr to Pfr photoconversion.  相似文献   

5.
6.
Abstract. The effects of migration and culmination on patterning of presumptive (prespore and prestalk) cells and mature (spore and stalk) cells of D. discoideum were investigated. The ratio of prespore to total cells, as determined by staining with fluorescein-conjugated antispore globulin, was constant (77%) up until 8 h of slug migration, but then decreased to a level (64%) which thereafter remained unchanged during migration. Cells which lost prespore antigen during migration were located in the posterior (prespore) part next to the agar surface.
Upon induction of culmination, however, the ratio of prespore cells quickly increased to the normal level (77%) within 1–2 h. During the transition between migration and culmination prestalk and prespore cells were considerably intermixed within the cell mass, before the normal prestalk-prespore pattern was reestablished at the preculmination (Mexican hat) stage. Spore: stalk ratios within fruiting bodies were normal irrespective of the lengths of slug migration.  相似文献   

7.
A fundamental question in developmental biology is how morphogenesis is coordinated with cell cycle progression. In Caulobacter crescentus, each cell cycle produces morphologically distinct daughter cells, a stalked cell and a flagellated swarmer cell. Construction of both the flagellum and stalk requires the alternative sigma factor RpoN (sigma(54)). Here we report that a sigma(54)-dependent activator, TacA, is required for cell cycle regulated stalk biogenesis by collaborating with RpoN to activate gene expression. We have also identified the first histidine phosphotransferase in C. crescentus, ShpA, and show that it too is required for stalk biogenesis. Using a systematic biochemical technique called phosphotransfer profiling we have identified a multicomponent phosphorelay which leads from the hybrid histidine kinase ShkA to ShpA and finally to TacA. This pathway functions in vivo to phosphorylate and hence, activate TacA. Finally, whole genome microarrays were used to identify candidate members of the TacA regulon, and we show that at least one target gene, staR, regulates stalk length. This is the first example of a general method for identifying the connectivity of a phosphorelay and can be applied to any organism with two-component signal transduction systems.  相似文献   

8.
The histidine kinase DhkC controls a phosphorelay involved in regulating the slug versus culmination choice during the multicellular developmental program of Dictyostelium discoideum. When the relay is active, slug migration is favored due to the activation of a cyclic AMP (cAMP) phosphodiesterase and the resultant lowering of the intracellular and extracellular levels of cAMP. Ammonia signaling represents one input into the DhkC phosphorelay, and previous studies indicated that the ammonium transporter C inhibits the relay in response to low ammonia levels. Evidence is presented that another member of the family of ammonium transporters, AmtA, also regulates the slug/culmination choice. Under standard conditions of development, the wild-type strain requires a transitional period of 2 to 3 h to go from fingers to culminants, with some slugs forming and migrating briefly prior to culmination. In contrast, amtA null cells, like cells that lack DhkC, possessed a transitional period of only 1 to 2 h and rarely formed slugs. Disruption of amtA in an amtC null strain overcame the slugger phenotype of that strain and restored its ability to culminate. Strains lacking AmtA were insensitive to the ability of ammonia to promote and prolong slug migration. These findings lead to the proposal that AmtA functions in ammonia sensing as an activator of the DhkC phosphorelay in response to perceived high ammonia levels.  相似文献   

9.
We examined two mutants of D. discoideum which are temperature-sensitive for development. At the nonpermissive temperature one mutant becomes arrested in development during the transition from the finger to the migrating slug. Temperature-shift experiment indicates that the temperature-sensitive period begins at considerably earlier tip-forming stage. The other mutant becomes arrested at the Mexican hat stage and the temperature-sensitive period coinsided with this stage. The analysis of protein synthesis by two-dimensional gels, however, showed specific changes at the nonpermissive temperature at an earlier finger-forming stage.
These results indicate the presence of a control of late development by proteins at early stages.  相似文献   

10.
11.
The spatial expression patterns of genes involved in cyclic adenosine monophosphate (cAMP) responses during morphogenesis in Dictyostelium discoideum were analyzed by in situ hybridization. Genes encoding adenylyl cyclase A (ACA), cAMP receptor 1, G-protein alpha2 and beta subunits, cytosolic activator of ACA (CRAC and Aimless), catalytic subunit of protein kinase A (PKA-C) and cAMP phosphodiesterases (PDE and REG-A) were preferentially expressed in the anterior prestalk (tip) region of slugs, which acts as an organizing center. MAP kinase ERK2 (extracellular signal-regulated kinase-2) mRNA, however, was enriched in the posterior prespore region. At the culmination stage, the expression of ACA, CRAC and PKA-C mRNA increased in prespore cells in contrast with the previous stage. However, no alteration in the site of expression was observed for the other mRNA analyzed. Based on these findings, two and four classes of expression patterns were catalogued for these genes during the slug and culmination stages, respectively. Promoter analyses of genes in particular classes should enhance understanding of the regulation of dynamic and coordinated gene expression during morphogenesis.  相似文献   

12.
During the developmental cycle of Dictyostelium discoideum cyclic AMP functions as both a chemotactic signal for aggregation and a regulatory molecule during later events of differentiation. Morphological and biochemical data suggest that cAMP may direct cells during morphogenesis and differentiation. We utilized microtechniques to determine the stage- and cell-specific levels of the cAMP-dependent protein kinase, the probable intracellular cAMP receptor. Kinase activity was low and non-cAMP-dependent in amoebae and early aggregates but increased and became cAMP-dependent in aggregates after the formation of tight cell contacts. Maximum kinase activity and cAMP dependency occurred during the slug and culmination stages. The only differential distribution of the kinase within a single stage occurred during culmination when the activity in the stalks was approximately one-fourth of that in the prespore mass. Preliminary evidence indicates that this difference is not due to an inhibitor. In all other stages tested cAMP-dependent protein kinase activity was equal in prespore and prestalk cells.  相似文献   

13.
Dictyostelium morphogenesis starts with the chemotactic aggregation of starving individual cells. The cells move in response to propagating waves of the chemoattractant cyclic AMP initiated by cells in the aggregation centre. During aggregation the cells begin to differentiate into several types with different signalling and chemotactic properties. These cell types sort out from each other to form an axial pattern in the slug. There is now good evidence that periodic chemotactic signals not only control aggregation, but also later stages of morphogenesis. These signals take the form of target patterns, spirals, multi-armed spirals and scroll waves. I will discuss their role in the control of cell movement during mound and slug formation and in the formation of the fruiting body.  相似文献   

14.
15.
Dictyostelium discoideum has protein kinases AKT/PKBA and PKBR1 that belong to the AGC family of kinases. The protein kinase B-related kinase (PKBR1) has been studied with emphasis on its role in chemotaxis, but its roles in late development remained obscure. The pkbR1 null mutant stays in the first finger stage for about 16 h or longer. Only a few aggregates continue to the migrating slug stage; however, the slugs immediately go back probably to the previous first finger stage and stay there for approximately 37 h. Finally, the mutant fingers diversify into various multicellular bodies. The expression of the pkbR1 finger protein probably is required for development to the slug stage and to express ecmB, which is first observed in migrating slugs. The mutant also showed no ST-lacZ expression, which is of the earliest step in differentiation to one of the stalk cell subtypes. The pkbR1 null mutant forms a small number of aberrant fruiting bodies, but in the presence of 10% of wild-type amoebae the mutant preferentially forms viable spores, driving the wild type to form nonviable stalk cells. These results suggest that the mutant has defects in a system that changes the physiological dynamics in the prestalk cell region of a finger. We suggest that the arrest of its development is due to the loss of the second wave of expression of a protein kinase A catalytic subunit gene (pkaC) only in the prestalk region of the pkbR1 null mutant.  相似文献   

16.
The ecmA (pDd63) and ecmB (pDd56) genes encode extracellular matrix proteins of the slime sheath and stalk tube of Dictyostelium discoideum. Using fusion genes containing the promoter of one or other gene coupled to an immunologically detectable reporter, we previously identified two classes of prestalk cells in the tip of the migrating slug; a central core of pstB cells, which express the ecmB gene, surrounded by pstA cells, which express the ecmA gene. PstB cells lie at the position where stalk tube formation is initiated at culmination and we show that they act as its founders. As culmination proceeds, pstA cells transform into pstB cells by activating the ecmB gene as they enter the stalk tube. The prespore region of the slug contains a population of cells, termed anterior-like cells (ALC), which have the characteristics of prestalk cells. We show that the ecmA and ecmB genes are expressed at a low level in ALC during slug migration and that their expression in these cells is greatly elevated during culmination. Previous observations have shown that ALC sort to surround the prespore cells during culmination (Sternfeld and David, 1982 Devl Biol. 93, 111-118) and we find just such a distribution for pstB cells. We believe that the ecmB protein plays a structural role in the stalk tube and its presence, as a cradle around the spore head, suggests that it may play a further function, perhaps in ensuring integrity of the spore mass during elevation. If this interpretation is correct, then a primary role of anterior-like cells may be to form these structures at culmination. We previously identified a third class of prestalk cells, pstO cells, which lie behind pstA cells in the slug anterior and which appeared to express neither the ecmA nor the ecmB gene. Using B-galactosidase fusion constructs, which give more sensitive detection of gene expression, we now find that these cells express the ecmA gene but at a much lower level than pstA cells. We also show that expression of the ecmA gene becomes uniformly high throughout the prestalk zone when slugs are allowed to migrate in the light. Overhead light favours culmination and it may be that increased expression of the ecmA gene in the pst 'O' region is a preparatory step in the process.  相似文献   

17.
18.
N Wang  G Shaulsky  R Escalante    W F Loomis 《The EMBO journal》1996,15(15):3890-3898
A mutant which failed to complete development was isolated from a population of cells that had been subjected to insertional mutagenesis using restriction enzyme-mediated integration. The disrupted gene, dhkA, encodes the conserved motifs of a histidine kinase as well as the response regulator domain. It is likely that the histidine in DhkA is autophosphorylated and the phosphate passed to one or more response regulators. Such two-component systems function in a variety of bacterial signal transduction pathways and have been characterized recently in yeast and Arabidopsis. In Dictyostelium, we found that DhkA functions both in the regulation of prestalk gene expression and in the control of the terminal differentiation of prespore cells.  相似文献   

19.
20.
How the collective motion of cells in a biological tissue originates in the behavior of a collection of individuals, each of which responds to the chemical and mechanical signals it receives from neighbors, is still poorly understood. Here we study this question for a particular system, the slug stage of the cellular slime mold Dictyostelium discoideum (Dd). We investigate how cells in the interior of a migrating slug can effectively transmit stress to the substrate and thereby contribute to the overall motive force. Theoretical analysis suggests necessary conditions on the behavior of individual cells, and computational results shed light on experimental results concerning the total force exerted by a migrating slug. The model predicts that only cells in contact with the substrate contribute to the translational motion of the slug. Since the model is not based specifically on the mechanical properties of Dd cells, the results suggest that this behavior will be found in many developing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号