首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis that ABA produced by roots in drying soil is responsible for stomatal closure was tested with grafted plants constructed from the ABA-deficient tomato mutants, sitiens and flacca and their near-isogenic wild-type parent. Three types of experiments were conducted. In the first type, reciprocal grafts were made between the wild type and sitiens or flacca. Stomatal conductance accorded with the genotype of the shoot, not the root. Stomates closed in all of the grafted plants in response to soil drying, regardless of the root genotype, i.e. regardless of the ability of the roots to produce ABA. In the second type of experiment, wild-type shoots were grafted onto a split-root system consisting of one wild-type root grafted to one mutant (flacca or sitiens) root. Water was withheld from one root system, while the other was watered well so that the shoots did not experience any decline in water potential or loss of turgor. Stomates closed to a similar extent when water was withheld from the mutant roots or the wild-type roots. In the third type of experiment, grafted plants with wild-type shoots and either wild-type or sitiens roots were established in pots that could be placed inside a pressure chamber, and the pressure increased as the soil dried so that the shoots remained fully turgid throughout. Stomates closed as the soil dried, regardless of whether the roots were wild type or sitiens. These experiments demonstrate that stomatal closure in response to soil drying can occur in the absence of leaf water deficit, and does not require ABA production by roots. A chemical signal from roots leading to a change in apoplastic ABA levels in leaves may be responsible for the stomatal closure.  相似文献   

2.
3.
Abnormal stomatal behavior in wilty mutants of tomato   总被引:17,自引:9,他引:8       下载免费PDF全文
Tal M 《Plant physiology》1966,41(8):1387-1391
An attempt was made to explain the excessive wilting tendency of 3 tomato mutants, notabilis, flacca, and sitiens. The control varieties in which these mutations were induced are Rheinlands Ruhm for flacca and sitiens and Lukullus for notabilis. Although all 3 mutants are alleles of separated loci, they seem to react similarly to water stress. The mutants wilt faster than the control plants when both are subjected to the same water stress. It was demonstrated by measurements of water loss from whole plants that all 3 mutants have much higher rates of transpiration than the control varieties, particularly at night. The extent of cuticular transpiration was compared in both kinds of plants by measuring the rate of water loss from detached drying leaves coated with vaseline on the lower surface. The difference in cuticular transpiration between the mutant and the control plants seems to be negligible. However, various facts point to stomata as the main factor responsible for the higher rates of water loss in the mutant plants. The stomata of the latter tend to open wider and to resist closure in darkness, in wilted leaves, and when treated with phenylmercuric acetate. Stomata of the 2 extreme mutants, sitiens and flacca, remain open even when the guard cells are plasmolyzed. The stomata of the mutants also are more frequent per unit of leaf surface and vary more in their size.  相似文献   

4.
Abscisic Acid and C10 Dicarboxylic Acids in Wilty Tomato Mutants   总被引:1,自引:0,他引:1  
Linforth, R. S. T., Taylor, I. B. and Hedden, P. 1987. Abscisicacid and C10 dicarboxylic acids in wilty tomato mutants.—J.exp. Bot. 38: 1734–1740. The concentration of C10 dicarboxylic acids in wilty tomatomutants was investigated. Three of the genotypes studied (flacca,sitiens and the double mutant homozygote flacca/sitiens) werefound to have higher concentrations of 2,7-dimethyl-2,4-octadienedioicacid (ODA) than the isogenic normal form. In contrast, the othergenotypes (notabilisand the double mutant homozygotes notabilis/flaccaand notabilis/sitiens) were found to have lower concentrationsof ODA than the isogenic normal form. The concentration of ODAin flacca plants was increased by water stress and reduced byexogenously applied abscisic acid (ABA). A second structurallyrelated compound, 2,7-dimethyl-4-octenedioic acid (OEA) wasalso quantified, but it showed no clear genotype-related pattern. The concentration of ABA in the wilty tomato mutants was alsoinvestigated. As expected in the light of previously publishedresults, it was reduced in the single mutants relative to theisogenic control plants. In the double mutant flacca/sitiensABA levels were similar to those of the single mutant sitiens.However, in the two double mutants notabilis/flacca and notabilis/sitiensABA was substantially lower than those in any other genotypeinvestigated. Key words: Abscisic acid, 2,7-dimethyl-2,4-octadienedioic acid, 2,7-dimethyl-4-octenedioc acid, tomato, wilty mutants  相似文献   

5.
Abscisic acid (ABA)-deficient mutants in a variety of species have been identified by screening for precocious germination and a wilty phenotype. Mutants at two new loci, aba2 and aba3, have recently been isolated in Arabidopsis thaliana (L.) Hynh. (K.M. Léon-Kloosterziel, M. Alvarez-Gil, G.J. Ruijs, S.E. Jacobsen, N.E. Olszewski, S.H. Schwartz, J.A.D. Zeevaart, M. Koornneef [1996] Plant J 10: 655-661), and the biochemical characterization of these mutants is presented here. Protein extracts from aba2 and aba3 plants displayed a greatly reduced ability to convert xanthoxin to ABA relative to the wild type. The next putative intermediate in ABA synthesis, ABA-aldehyde, was efficiently converted to ABA by extracts from aba2 but not by extracts from aba3 plants. This indicates that the aba2 mutant is blocked in the conversion of xanthoxin to ABA-aldehyde and that aba3 is impaired in the conversion of ABA-aldehyde to ABA. Extracts from the aba3 mutant also lacked additional activities that require a molybdenum cofactor (Moco). Nitrate reductase utilizes a Moco but its activity was unaffected in extracts from aba3 plants. Moco hydroxylases in animals require a desulfo moiety of the cofactor. A sulfido ligand can be added to the Moco by treatment with Na2S and dithionite. Treatment of aba3 extracts with Na2S restored ABA-aldehyde oxidase activity. Therefore, the genetic lesion in aba3 appears to be in the introduction of S into the Moco.  相似文献   

6.
Given the close relationship between a plant's growth rate and its pattern of biomass allocation and the effects of abscisic acid (ABA) on biomass allocation, we studied the influence of ABA on biomass allocation and growth rate of wildtype tomato ( Lycopersicon esculentum Mill. cv. Moneymaker) plants and their strongly ABA-deficient mutant sitiens. The relative growth rate of sitiens was 22% lower than that of the wildtype, as the result of a decreased specific leaf area. The net assimilation rate and the leaf weight ratio were not affected. The mutant showed a much higher transpiration rate and lower hydraulic conductance of the roots. These two factors resulted in sitiens having a significantly lower leaf water potential and turgor. resulting in reduced leaf expansion and, consequently, a lower specific leaf area relative to the wildtype. Addition of ABA to the sitiens roots resulted in phenotypic reversion to the wildtype. We conclude that the influence of ABA-deficiency on biomass allocation and relative growth rate is the result of altered water relations in the plants, rather than of a direct effect on sink strength of different plant organs.  相似文献   

7.
Indole-3-acetic acid (IAA) was measured in leaves and roots of tomato (Lycopersicon esculentum) genotypes subjected to salt stress. An abscisic acid (ABA)-deficient mutant of tomato (sitiens), the genetic parent (Rheinlands Ruhm, RR), and a commercial variety (Large Cherry Red, LCR) of tomato were treated with 50 to 300 mM NaCl in nutrient culture. Both LCR and RR had significantly higher levels of IAA in the roots compared with that in sitiens prior to treatment. The initial levels of IAA in the roots of LCR and RR declined by nearly 75% after exposure to NaCl, whereas those in roots from the sitiens mutant remained unchanged. IAA levels in the leaves of all genotypes remained unchanged or increased slightly in response to NaCl. ABA was highest in leaves from the normal genotypes after exposure to NaCl. ABA levels in the roots of sitiens were similar to the levels in the normal genotypes, whereas levels in the leaves were only 10% of the levels found in normal genotypes regardless of the salt treatment. Treatment of LCR and sitiens with exogenous ABA increased the ABA levels in leaves and roots, but there were no measurable changes in endogenous IAA. Therefore, the reduction in IAA appears to result from an ABA-independent effect of NaCl on IAA metabolism in the roots of stressed plants.  相似文献   

8.
Abscisic acid (ABA) is one of the plant hormones involved in the interaction between plants and pathogens. In this work, we show that tomato (Lycopersicon esculentum Mill. cv Moneymaker) mutants with reduced ABA levels (sitiens plants) are much more resistant to the necrotrophic fungus Botrytis cinerea than wild-type (WT) plants. Exogenous application of ABA restored susceptibility to B. cinerea in sitiens plants and increased susceptibility in WT plants. These results indicate that ABA plays a major role in the susceptibility of tomato to B. cinerea. ABA appeared to interact with a functional plant defense response against B. cinerea. Experiments with transgenic NahG tomato plants and benzo(1,2,3)thiadiazole-7-carbothioic acid demonstrated the importance of salicylic acid in the tomato-B. cinerea interaction. In addition, upon infection with B. cinerea, sitiens plants showed a clear increase in phenylalanine ammonia lyase activity, which was not observed in infected WT plants, indicating that the ABA levels in healthy WT tomato plants partly repress phenylalanine ammonia lyase activity. In addition, sitiens plants became more sensitive to benzo(1,2,3)thiadiazole-7-carbothioic acid root treatment. The threshold values for PR1a gene expression declined with a factor 10 to 100 in sitiens compared with WT plants. Thus, ABA appears to negatively modulate the salicylic acid-dependent defense pathway in tomato, which may be one of the mechanisms by which ABA levels determine susceptibility to B. cinerea.  相似文献   

9.
10.
The role of abscisic acid (ABA) during the establishment of the arbuscular mycorrhiza (AM) was studied using ABA sitiens tomato (Lycopersicon esculentum) mutants with reduced ABA concentrations. Sitiens plants and wild-type (WT) plants were colonized by Glomus intraradices. Trypan blue and alkaline phosphatase histochemical staining procedures were used to determine both root colonization and fungal efficiency. Exogenous ABA and silver thiosulfate (STS) were applied to establish the role of ABA and putative antagonistic cross-talk between ABA and ethylene during AM formation, respectively. Sitiens plants were less susceptible to the AM fungus than WT plants. Microscopic observations and arbuscule quantification showed differences in arbuscule morphology between WT and sitiens plants. Both ABA and STS increased susceptibility to the AM fungus in WT and sitiens plants. Fungal alkaline phosphate activity in sitiens mutants was completely restored by ABA application. * The results demonstrate that ABA contributes to the susceptibility of tomato to infection by AM fungi, and that it seems to play an important role in the development of the complete arbuscule and its functionality. Ethylene perception is crucial to AM regulation, and the impairment of mycorrhiza development in ABA-deficient plants is at least partly attributable to ethylene.  相似文献   

11.
The effects of ABA and putrescine, a polyamine, on cold-induced membrane leakage were investigated using primary leaves of wild-type and an ABA-deficient mutant, flacca , of tomato ( Lycopersicon esculentum Mill.). The amount of chilling-induced electrolyte leakage from flacca leaves was much higher than that from the wild-type leaves. When applied exogenously ABA reduced cold-induced electrolyte leakage from leaves of both wild-type and the flacca mutant. However, the cold-induced electrolyte leakage from flacca leaves was not as pronounced as in the wild-type indicating that ABA is an important mediator in response to cold stress in the leaves. Putrescine reduced cold-induced electrolyte leakage from both wild-type and flacca leaves. Synthesis of putrescine in the leaves was increased by cold treatment. DFMO, a biosynthetic inhibitor of the polyamine, increased electrolyte leakage from cold-treated leaves, and exogenously applied putrescine decreased the enhanced leakage to the control level. Therefore, this polyamine is thought also to be involved in the response to cold stress of tomato leaves. Both ABA and putrescine were protective against cold stress, but exogenously applied ABA decreased the endogenous level of putrescine in the leaves. Furthermore, the DMFO-increased electrolyte leakage in cold-stressed leaves was completely abolished by the application of ABA. These results suggest that ABA is a major regulator in the response to cold stress in tomato leaves and that it does not exert its role via putrescine in the response to cold stress.  相似文献   

12.
Summary A series of double mutant homozygotes have been produced from three wilty tomato mutants; flacca, sitiens and notabilis. The phenotypic interaction between the mutant genes has been studied. The severity of phenotype in the double mutants does not correspond to that predicted from the single mutant homozygotes. The results are discussed in relation to the probable involvement of the mutants in abscisic acid metabolism.  相似文献   

13.
14.
To examine whether the reduced shoot growth of abscisic acid (ABA)-deficient mutants of tomato is independent of effects on plant water balance, flacca and notabilis were grown under controlled-humidity conditions so that their leaf water potentials were equal to or higher than those of well-watered wild-type plants throughout development. Most parameters of shoot growth remained markedly impaired and root growth was also greatly reduced. Additional experiments with flacca showed that shoot growth substantially recovered when wild-type levels of ABA were restored by treatment with exogenous ABA, even though improvement in leaf water potential was prevented. The ability of applied ABA to increase growth was greatest for leaf expansion, which was restored by 75%. The ethylene evolution rate of growing leaves was doubled in flacca compared to the wild type and treatment with silver thiosulphate to inhibit ethylene action partially restored shoot growth. The results demonstrate that normal levels of endogenous ABA are required to maintain shoot development, particularly leaf expansion, in well-watered tomato plants, independently of effects on plant water balance. The impairment of shoot growth caused by ABA deficiency is at least partly attributable to ethylene.  相似文献   

15.
16.
Neill, S. J. and Horgan, R. 1985. Abscisic acid production andwater relations in wilty tomato mutants subjected to water deficiency.—J.exp. BoL 36: 1222-1231. Abscisic acid (ABA) concentrations were determined in shootsof Lycopersicon esculentum Mill. cv. Ailsa Craig wild type andthe three wilty mutants notabilis (not), flacca (flc) and sitiens(sit). ABA content of unstressed wild type leaves was 1.5 nmolg–1 fr. wt.; concentrations in not, flc and sit were 49,26 and 15% of this respectively. Gradual water stress was imposed on potted plants and a morerapid stress imposed on detached leaves. Leaves of the wildtype and not responded to both stresses by increasing theirABA content but leaves of flc and sit did not produce any moreABA under stress. Transpiration rates of flc plants were three times greater thanthose of the wild type and stomatal resistances correspondinglylower. Stomata of both flc and the wild type responded to darknessand externally supplied ABA by closing. However, only wild typestomata responded to water stress by dosing; those of flc leavesremained open until the leaves were severely desiccated. Thus,there was some relationship between the lack of stomatal responseto water stress and the failure to synthesize ABA. Key words: ABA, biosynthesis, stomata, water shortage, wilty mutants  相似文献   

17.
To determine whether ABA accumulation inhibits or promotes shoot growth under stress, an ABA-deficient mutant tomato, sitiens, and its wild-type, the cultivar Rheinlands Rhum, were exposed to moderate salinity stress. Plants were grown at 75 m M NaCl for 2 weeks under conditions of moderate or high relative humidity (70% and 95% RH, respectively). At 70% RH, shoot DW and relative growth rate were reduced more in sitiens than in the cultivar, but the major difference between genotypes was in the degree of injury suffered by older leaves. Most leaves of sitiens died after 2 weeks, but those of the cultivar remained alive. When plants were grown at 95% RH, to maximize the leaf water status of both genotypes, there was no significant effect of salt on shoot DW of either genotype. However, there was still considerable leaf death in sitiens whereas no visible injury appeared in the cultivar. Cl accumulated to higher levels in leaf tissues than Na+, but to similar concentrations in both genotypes, and so could not explain the injury in the sitiens leaves. The results indicate that ABA maintains rather than inhibits new growth under stress, and has a major effect on preservation of older leaves.  相似文献   

18.
In addition to the important role of abscisic acid (ABA) in abiotic stress signalling, basal and high ABA levels appear to have a negative effect on disease resistance. Using the ABA-deficient sitiens tomato ( Solanum lycopersicum ) mutant and different application methods of exogenous ABA, we demonstrated the influence of this plant hormone on disease progression of Erwinia chrysanthemi . This necrotrophic plant pathogenic bacterium is responsible for soft rot disease on many plant species, causing maceration symptoms mainly due to the production and secretion of pectinolytic enzymes. On wild-type (WT) tomato cv. Moneymaker E. chrysanthemi leaf inoculation resulted in maceration both within and beyond the infiltrated zone of the leaf, but sitiens showed a very low occurrence of tissue maceration, which never extended the infiltrated zone. A single ABA treatment prior to infection eliminated the effect of pathogen restriction in sitiens , while repeated ABA spraying during plant development rendered both WT and sitiens very susceptible. Quantification of E. chrysanthemi populations inside the leaf did not reveal differences in bacterial growth between sitiens and WT. Sitiens was not more resistant to pectinolytic cell-wall degradation, but upon infection it showed a faster and stronger activation of defence responses than WT, such as hydrogen peroxide accumulation, peroxidase activation and cell-wall fortifications. Moreover, the rapid activation of sitiens peroxidases was also observed after application of bacteria-free culture filtrate containing E. chrysanthemi cell-wall-degrading enzymes and was absent during infection with an out E. chrysanthemi mutant impaired in secretion of these extracellular enzymes.  相似文献   

19.
It has previously been shown that the abscisic acid (ABA)-deficient flacca and sitiens mutants of tomato are impaired in ABA-aldehyde oxidation and accumulate trans-ABA-alcohol as a result of the biosynthetic block (IB Taylor, RST Linforth, RJ Al-Naieb, WR Bowman, BA Marples [1988] Plant Cell Environ 11: 739-745). Here we report that the flacca and sitiens mutants accumulate trans-ABA and trans-ABA glucose ester and that this accumulation is due to trans-ABA biosynthesis. 18O labeling of water-stressed wild-type and mutant tomato leaves and analysis of [18O]ABA by tandem mass spectrometry show that the tomato mutants synthesize a significant percentage of their ABA and trans-ABA as [18O]ABA with two 18O atoms in the carboxyl group. We further show, by feeding experiments with [2H6]ABA-alcohol and 18O2, that this doubly-carboxyl-labeled ABA is synthesized from [18O]ABA-alcohol with incorporation of molecular oxygen. In vivo inhibition of [2H6]ABA-alcohol oxidation by carbon monoxide establishes the involvement of a P-450 monooxygenase. Likewise, carbon monoxide inhibits the synthesis of doubly-carboxyl-labeled ABA in 18O-labeling experiments. This minor shunt pathway from ABA-aldehyde to ABA-alcohol to ABA operates in all plants examined. For the ABA-deficient mutants impaired in ABA-aldehyde oxidation, this shunt pathway is an important source of ABA and is physiologically significant.  相似文献   

20.
ABA-deficiency results in reduced plant and fruit size in tomato   总被引:3,自引:0,他引:3  
Abscisic acid (ABA) deficient mutants, such as notabilis and flacca, have helped elucidating the role of ABA during plant development and stress responses in tomato (Solanum lycopersicum L.). However, these mutants have only moderately decreased ABA levels. Here we report on plant and fruit development in the more strongly ABA-deficient notabilis/flacca (not/flc) double mutant. We observed that plant growth, leaf-surface area, drought-induced wilting and ABA-related gene expression in the different genotypes were strongly correlated with the ABA levels and thus most strongly affected in the not/flc double mutants. These mutants also had reduced fruit size that was caused by an overall smaller cell size. Lower ABA levels in fruits did not correlate with changes in auxin levels, but were accompanied by higher ethylene evolution rates. This suggests that in a wild-type background ABA stimulates cell enlargement during tomato fruit growth via a negative effect on ethylene synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号