首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The possible contribution of catecholamines and vitamin D3 metabolites to the high plasma calcitonin (CT) levels in suckling baby rats is unknown. So, in vivo and in vitro (using a perifusion system) effects of beta-adrenergic agents and vitamin D3 metabolites on CT release were studied in the rat during the postnatal development. In 13-day-old rats, the increase in plasma CT levels induced by isoproterenol injection (0.1 micrograms/kg b.w.) was inhibited by a previous administration of propranolol. A significant decrease in plasma CT levels was observed after propranolol injection in baby rats (0.68 +/- 0.05 ng/ml vs. 0.93 +/- 0.01 ng/ml). A daily injection of 1,25-dihydroxycholecalciferol (1,25-(OH)2D3; 25 pmoles/rat/day during 4 days) induced a marked rise in plasma calcium (16.1 +/- 0.2 mg/dl), and a great decrease in thyroidal CT contents (approximately 70% of control values) in 13-day-old rats while no change was noted with 24,25-dihydroxycholecalciferol (24,25-(OH)2D3). A negative correlation between plasma calcium and thyroidal CT stores was found in suckling and in weaning rats treated with different doses of 1,25-(OH)2D3, suggesting an indirect effect of 1,25-(OH)2D3 on CT secretion. The mobilization of the thyroidal CT content was greater in weaning than in suckling rats in response to a given hypercalcemia. In vitro, 5 X 10(-5) M isoproterenol induced a rapid increase in CT secretion rate while 1,25-(OH)2D3 inhibited the rise in CT release induced by 3.0 mM calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Vitamin D metabolites are able to change plasma calcitonin (CT) levels, but nothing is known about a possible effect at the CT gene level. Here we have investigated the acute effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on the CT biosynthetic activity of thyroid glands from adult rats. Plasma CT levels were significantly increased (X2) 1 and 2 h after 1,25-(OH)2D3 injection in the face of unchanged plasma calcium values. The thyroidal CT content also was unchanged. A 2-fold increase in CT mRNA level measured by dot-blot hybridization occurred 1 and 2 h after 1,25-(OH)2D3 administration. Expression of CT gene products was examined in the rabbit reticulocyte lysate cell-free translation assay. After polyacrylamide gel electrophoresis, specific immunoprecipitates were autoradiographed and quantified by integration. A single precursor of Mr approximately equal to 15 000 could be specifically immunoprecipitated with CT antisera. A 3-4-fold rise in translatable CT mRNA activity was observed 1 and 2 h after 1,25-(OH)2D3 injection. Thus, parallel changes in CT mRNA level, CT mRNA activity and plasma CT levels were observed in adult female rats after administration of 1,25-(OH)2D3. These findings demonstrate for the first time that 1,25-(OH)2D3 enhanced CT gene expression in the face of unchanged plasma calcium levels.  相似文献   

3.
The synthesis of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) is most strongly regulated by dietary calcium and the action of parathyroid hormone to increase 1alpha-hydroxylase (1alpha-OHase) and decrease 24-hydroxylase (24-OHase) in kidney proximal tubules. This study examines the hypothesis that 1,25-(OH)(2)D(3) synthesis, induced by dietary calcium restriction, is also the result of negative feedback regulation blockade. Rats fed a low calcium (0.02%, -Ca) diet and given daily oral doses of vitamin D (0, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 microg) remained hypocalcemic despite increasing levels of serum calcium in relation to the vitamin D dose. Plasma levels of 1,25-(OH)(2)D(3) rose to high levels (1200 pg/ml) at the high vitamin D dose levels. As expected, thyroparathyroidectomy caused a rapid fall in serum 1,25-(OH)(2)D(3). In rats fed a 0.47% calcium diet (+Ca) supplemented with vitamin D (4 microg/day), exogenous 1,25-(OH)(2)D(3) suppressed renal 1alpha-OHase and stimulated the 24-OHase. In rats fed the -Ca diet, vitamin D was unable to suppress the renal 1alpha-OHase or stimulate the renal 24-OHase. In contrast, vitamin D was fully able to stimulate intestinal 24-OHase. Intestinal vitamin D receptor (VDR) was present under all circumstances, while kidney VDR was absent under hypocalcemic conditions and present under normocalcemic conditions. It appears that tissue-specific down-regulation of VDR by hypocalcemia blocks the 1,25-(OH)(2)D(3) suppression of the 1alpha-OHase and upregulation of the 24-OHase in the kidney, causing a marked accumulation of 1,25-(OH)(2)D(3) in the plasma.  相似文献   

4.
5.
We have used a specific cDNA to the mammalian 28,000 Mr vitamin D-dependent calcium binding protein (calbindin-D28k) to study the regulation of the expression of this mRNA in rat kidney and brain. The effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and dietary alteration on genomic expression were characterized by both Northern and slot blot analysis. Administration of 1,25-(OH)2D3 for 7 days (25 ng/day) to vitamin D-deficient rats resulted in a marked increase in renal calbindin-DmRNA, renal calbindin, and serum calcium. When vitamin D-deficient rats were supplemented for 10 days with calcium (3% calcium gluconate in the water, 2% calcium in the diet) serum calcium levels were similar to the levels observed in the 1,25-(OH)2D3-treated rats. However, in the calcium-supplemented rats the levels of renal calbindin and renal calbindin mRNA were similar to the levels observed in the vitamin D-deficient rats, suggesting that calcium alone without vitamin D does not regulate renal calbindin gene expression in vivo. In dietary alteration studies in vitamin D-replete rats, renal calbindin protein and mRNA increased 2.5-fold in rats fed diets low in phosphate providing evidence that in the rat the nutritional induction of calbindin is accompanied by a corresponding alteration in the concentration of its specific mRNA. Under low dietary calcium conditions, the levels of renal calbindin protein and mRNA were similar to the levels observed in control rats, although 1,25-(OH)2D3 serum levels were markedly elevated, suggesting that factors in addition to 1,25-(OH)2D3 can modulate renal calbindin gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. Maternal calcium homeostasis during pregnancy is strained due to fetal mineral requirements for bone formation. 2. In most species, the mother adjusts to the mineral requirements of the fetus with alterations in her metabolism of vitamin D that include a decrease in plasma 25-(OH)D levels and an increase in circulating levels of the hormone, 1,25-(OH)2D. 3. Plasma 25-(OH)D and 1,25-(OH)2D levels in adult male, adult female and pregnant sheep were measured by specific radioreceptor binding assays. 4. Pregnancy did not alter circulating levels of 25-(OH)D or 1,25-(OH)2D in the sheep. 5. The pregnant ewe differs from all species studied to date in that maternal plasma 1,25-(OH)2D levels do not rise as a result of pregnancy.  相似文献   

7.
Previous studies have shown that 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] decreases levels of mRNA for prepro-PTH as well as PTH secretion after chronic exposure (24-48 h) of parathyroid cells in tissue culture. We have now extended these studies to determine the effects of the vitamin D3 metabolite on parathyroid secretory protein (PSP) gene expression. Primary cultures of bovine parathyroid cells were incubated with 10(-8) M 1,25-(OH)2D3 for periods of time ranging from 24-72 h. As observed in earlier experiments, prepro-PTH mRNA decreased to less than 50% of the control value after 72 h. In marked contrast, PSP mRNA showed a 2.5-fold increase by 24 h and greater than 7-fold stimulation by 72 h. In the same studies, PTH secretion was suppressed (to 60% of control), while PSP secretion was increased by 40% over control values. Exposure to high (2.5 mM) or low (0.5 mM) calcium had no effect on PSP mRNA, even though low calcium stimulated the secretion of PSP while high calcium suppressed secretion. These studies showed that 1,25-(OH)2D3 has opposite effects on the gene expression of PSP and PTH in bovine parathyroid cells in tissue culture.  相似文献   

8.
Vitamin K deficiency in rats caused a rise of in vivo occupied 1,25(OH)2D3 receptor level in chromatin of the intestinal mucosa and a marked (2-2.5-fold) increase of intestinal cytosolic 1,25(OH)2D3-receptor complex binding with heterologous DNA, whereas maximum binding capacity and equilibrium dissociation constant of cytosolic 1,25 (OH)2D3 receptors did not change. Preincubation of renal and intestinal cytosol of vitamin K-deficient rats with microsomal vitamin K-dependent gamma-carboxylating system reduced sharply 1,25(OH)2D3-receptor complex binding with DNA. In rats treated by vitamin K antagonist along with a low calcium diet, no dramatic decrease of occupied 1,25(OH)2D3 receptors occurred after the animals were maintained with a high calcium diet. No such effect was observed in vitamin K-replete rats. The data demonstrate vitamin K-dependent Ca-sensitive qualitative modification of 1,25(OH)2D3 receptor dropping its binding performance to DNA.  相似文献   

9.
The mechanism of calmodulin-stimulated alkaline phosphatase activity was studied in the rat. In calmodulin-treated rats (2.5 micrograms/animal, intraperitoneally) alkaline phosphatase (ALP) activity was elevated 11-fold in the ileum, 1.5-fold in the duodenum and calvarium, 3-fold in serum, and not at all in liver. The elevated ALP activity was prevented by prior treatment with flunarizine, a calcium channel blocker, and by W-7, a calmodulin antagonist. cAMP content in ileum paralleled the timing and changes in ALP activity, but was not elevated in the duodenum or calvarium. Calcium ionophore A23187 and calcitonin treatment also increased ileal, duodenal, and calvarial ALP activity, but by less than the response to calmodulin. All of these treatments caused a 2-fold elevation in serum 1,25-dihydroxyvitamin D-3 (1,25(OH)2D3) levels. Pretreatment of the animals with parathyroid hormone prevented the rise of both ALP activity and of 1,25(OH)2D3. Administration of 1,25(OH)2D3 alone stimulated a different pattern of increased ALP activity, greater in duodenum than ileum. The uptake of 45Ca by calmodulin was also elevated in ileum and calvarium. These data suggest that shifts in calcium movement, perhaps mediated by vitamin D, can alter ALP activity, and may provide a mechanism for rapid control of the secretion of this enzyme.  相似文献   

10.
Biological activity of 24-epi-1 alpha,25-dihydroxyvitamin D-2 (24-epi-1,25(OH)2D2) and 1 alpha,25-dihydroxyvitamin D-7 (1,25(OH)2D7), the 22,23-dihydro derivative of the former compound, was investigated. Both of the vitamin D derivatives stimulated intestinal calcium transport and calcium mobilization from bones in rats; however, the effect was about 50% of that of 1 alpha,25-dihydroxyvitamin D-3 (1,25(OH)2D3). On the other hand, 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 inducement of HL-60 human leukemia cell differentiation was comparable to that of 1,25(OH)2D3. Accordingly, the differentiation-inducing activity of 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 was much greater than their ability to stimulate calcium metabolism. In contrast to 1,25(OH)2D3, 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 exerted little hypercalcemic activity in mice. These results suggest that both vitamin D derivatives will be useful as anti-tumor agents.  相似文献   

11.
The effects of gradually increasing doses of 1,25(OH)2D3 on plasma calcium and 45Ca radioactivity were studied in young dogs that had been extensively prelabelled with 45Ca. The effects of orally and intravenously administered 1,25(OH)2D3 were evaluated in normal and thyroparathyroidectomized dogs fed a normal diet. In normal dogs when 1,25(OH)2D3 increased the plasma calcium within the normal range (2.9-3.1 mmol/L) there was no significant increase in plasma 45Ca. In thyroparathyroidectomized dogs, oral or intravenous 1,25(OH)2D3 increased the low blood calcium to a normal level (1.8-2.9 mmol/L) without significantly increasing plasma 45Ca. In normal and thyroparathyroidectomized dogs, any 1,25(OH)2D3-induced increase in plasma calcium above the normal range was associated with a significant increase in 45Ca, indicating mobilization of bone calcium. Intravenous administration of 1,25(OH)2D3 in the normal or thyroparathyroidectomized dogs had a much larger effect than oral doses in mobilizing bone 45Ca when inducing a similar level of hypercalcemia. The major physiological effect of 1,25(OH)2D3 in the low or normal range of plasma calcium is on intestinal absorption of calcium without a significant effect on mobilizing bone calcium. The pharmacological effect of 1,25(OH)2D3 in vivo is to mobilize bone calcium as well as dietary calcium into blood.  相似文献   

12.
The in vivo regulation of circulating 1,25(OH)2D3 concentrations by vitamin D status and by dietary calcium and phosphate deficiency was studied. Adult rats were cannulated in the jugular vein and the clearance of physiological doses of 1,25(OH)2D3 monitored. In vitamin D-replete rats we investigated the effects of dietary calcium and phosphate deficiency on the elimination half life of 1,25(OH)2D3 The results showed no effect of dietary phosphate deficiency on the elimination half life of 1,25(OH)2D3. Dietary calcium deficiency resulted in a small increase of the 1,25(OH)2D3 elimination half life (P = 0.04) (normal diet: 16.3 +/- 1.8 hrs, n = 6; -Ca diet: 18.6 +/- 1.1 hrs, n = 5; -P diet: 16.0 +/- 1.4 hrs, n = 6; mean +/- SD). The experiments with the vitamin D deficient rats showed a marked increase in the elimination half life of 1,25(OH)2D3 (36.4 +/- 6.8 hrs, n = 7), when compared to the rats on the normal diet (P = 0.001). From the experiments in the vitamin D replete rats one can infer that regulation of circulating 1,25(OH)2D3 concentrations by dietary calcium or phosphate takes place at the production site and not by changes in elimination rate. However, vitamin D status appears to regulate circulating 1,25(OH)2D3 concentrations also through an effect on the elimination rate.  相似文献   

13.
It is known that pharmacological or toxic doses of vitamin D induce bone resorption both in vivo and in vitro, whereas physiological doses of the vitamin have a protective effect on bone in vivo. To investigate the discrepancies of the dose-dependent effect of vitamin D on bone resorption, we examined the in vivo effect of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] on the expression of the receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) and osteoprotegerin (OPG) mRNAs in bone of thyroparathyroidectomized (TPTX) rats infused with or without parathyroid hormone (PTH). Continuous infusion of 50 ng/h of PTH greatly increased the expression of RANKL mRNA in bone of TPTX rats. Expression of OPG mRNA was not altered by PTH infusion. When graded doses of 1,25(OH)(2)D(3) was daily administered orally for 14 days to normocalcemic TPTX rats constantly infused with PTH, 0.01 and 0.1 microg/kg of 1,25(OH)(2)D(3) inhibited the PTH-induced RANKL mRNA expression, but 0.5 microg/kg of the vitamin did not inhibit it. Regulator of G protein signaling-2 (RGS-2) gene expression was suppressed by 1,25(OH)(2)D(3) dose-dependently, but PTH/PTHrP receptor mRNA expression was not altered. Bone morphometric analyses revealed that 1,25(OH)(2)D(3) suppressed PTH-induced osteoclast number in vivo. These results suggest that pharmacological or toxic doses of 1,25(OH)(2)D(3) stimulate bone resorption by inducing RANKL, but a certain range of physiological doses of the vitamin inhibit PTH-induced bone resorption, the latter mechanism appeared to be mediated, at least in part, by the suppression of the PTH/PTHrP receptor-mediated signaling.  相似文献   

14.
We have shown previously that the in vitro activity of the renal vitamin K-dependent gamma-glutamyl carboxylase toward synthetic oligopeptide substrates is stimulated by administration of either parathyroid hormone (PTH) or 1,25-dihydroxycholecalciferol [1,25(OH)2D3] to rats [(1983) J. Biol. Chem. 258, 12783-12786]. Here we report that administration of 1,25(OH)2D3 to rats increases their levels of endogenous carboxylase substrate as well. Rats fed a vitamin D-deficient diet had highly elevated serum PTH levels while vitamin D-replete animals had undetectable levels. Furthermore, since PTH increases 1,25(OH)2D3 levels by stimulating renal 25-hydroxyvitamin D-1 alpha-hydroxylase, it is very likely that the stimulatory effects of PTH on the renal vitamin K-dependent carboxylating system are mediated by 1,25(OH)2D3.  相似文献   

15.
In UMR 106 rat osteosarcoma cells, parathormone (1-34hPTH) and calcitonin (sCT) stimulated adenylate cyclase (AC) activity 5.5-and 2.8-fold, respectively. AC in osteoblasts (OB) from collagenase-treated calvaria of 3-day-old rats responded similarly to 1-34hPTH. In contrast, fibroblasts (mouse fibroblastomas) displayed a marginal 1-34hPTH sensitive AC. Osteoclasts (OC) of collagenase-treated rat calvariae, rat monocytes and mouse macrophages did not demonstrate 1-34hPTH inducable AC activity. Physiological concentrations of 24,25-dihydroxyvitamin D-3 attenuated PTH-sensitive AC in OB and UMR 106 cells within 20 min, while 1,25-dihydroxyvitamin D-3 showed no such immediate effect. In contrast, the AC response to Gpp(NH)p was unaffected by 24,25-(OH)2D3, indicating that 24,25-(OH)2D3 interrupts the coupling of the PTH receptor to the GTP binding protein Gs. OB and UMR 106 cells were also subjected to long-term (48 h) incubation with vitamin D-3 metabolites, 1-34hPTH or 20% serum from patients with secondary hyperparathyroidism (sHBT-serum), respectively. PTH-sensitive AC was markedly attenuated by pre-exposure to both 1-34hPTH and 1,25-(OH)2D3, while minimally affected by corresponding 24,25-(OH)2D3 and 20% sHPT-serum treatment. The secretion of alkaline phosphatase (Alphos) from the two cell types was strongly increased by 1-34hPTH, the effect being abolished by the presence of 24,25-(OH)2D3. Iliac crest biopsies of normal individuals exhibited a clear negative correlation between PTH-sensitive AC and corresponding serum 24,25-(OH)2D3 levels. Basal AC activity was, however, negatively correlated to serum 1,25-(OH)2D3 concentrations. In summary, the results show that 24,25-(OH)2D3 reduces PTH-stimulated AC activity in and Alphos secretion from osteoblastic bone cells by rapidly and directly interfering with the plasma membrane. These data reinforce the probable in vivo significance of 24,25-(OH)2D3. Moreover, the negative correlation between basal AC activity and serum 1,25-(OH)2D3 levels indicates a possible role for 1,25-(OH)2D3 in regulating bone cell synthesis of AC components in vivo.  相似文献   

16.
Young animals adapt to a low calcium diet by increasing renal production of 1,25-dihydroxyvitamin D [1,25(OH)2D], the active metabolite of vitamin D. However, the capacity of adult animals to adapt is markedly diminished. With the recent cloning of the cytochrome P450 component (CYP1a) of the renal 1-hydroxylase enzyme complex, it is now possible to determine directly the effect of dietary calcium and maturation on the expression of renal 1-hydroxylase. Using a ribonuclease protection assay, it was found that feeding a low Ca diet markedly increased renal CYP1a mRNA levels in young rats. However, feeding this diet to adult rats produced an increase in CYP1a mRNA that was only 10% that of the young rats. These studies demonstrate that a low calcium diet increases renal 1,25-dihydroxyvitamin D production in young animals but not in adult animals by increasing CYP1a expression. Since the low calcium diet increased plasma parathyroid hormone levels to similar levels in both age groups, this suggests that in the adult there is a renal refractoriness to parathyroid hormone.  相似文献   

17.
18.
The renal 25-hydroxyvitamin D-3-1 alpha-hydroxylase (1 alpha-hydroxylase) activity and circulating levels of 1,25-dihydroxyvitamin D (1,25(OH)2D) were measured in pregnant guinea-pigs and their offspring. Serum levels of 1,25(OH)2D were significantly elevated in pregnant guinea-pigs but the renal enzyme activity was not different from non-pregnant animals. The fetal renal 1 alpha-hydroxylase activity was about 6-fold higher than the maternal level, whereas circulating 1,25(OH)2D was low. Treatment with pharmacological doses of 1,25(OH)2D3 increased circulating 1,25(OH)2D and depressed the renal 1 alpha-hydroxylases both in the mother and the fetus. In newborn guinea-pigs the enzyme activity was up to 10-times that seen in adults. It declined over the first 3 weeks, showing no difference between the sexes. In sexually mature animals the males had a significantly higher 1 alpha-hydroxylase activity than the female. However, this higher enzyme activity was not correlated to serum testosterone. Around the time the animals reached sexual maturity serum 1,25(OH)2D increased in both sexes. In the males this rise was correlated to an increase in serum testosterone. It is concluded that the maternal renal 1 alpha-hydroxylase activity is unchange in late pregnancy, compared to non-pregnant females. The data indicate that the fetus produces 1,25(OH)2D, and may contribute to the maternal circulating 1,25(OH)2D. The sex difference in 1 alpha-hydroxylase activity previously demonstrated is manifest at about the time of puberty.  相似文献   

19.
The effect of vitamin D3 status upon the responsiveness of chick intestinal epithelium to exogenous 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] was studied. Intestinal calbindin [A recent consensus decision was made to redesignate the vitamin D-dependent calcium binding protein as "calbindin-D28K" (R.H. Wasserman (1985) in Vitamin D: Chemical, Biochemical, and Clinical Update (Norman, A.W., Schaefer, K., Grigoleit, H.-G., and Herrath, D.V., Eds.), pp. 321-322, de Gruyter, Berlin/New York).] protein and intestinal calbindin mRNA were quantitated in birds which had been raised on a vitamin D3-deplete (-D) or on a vitamin D3-replete (+D) diet. 1,25(OH)2D3 stimulated intestinal calbindin mRNA levels in -D chickens in a proportional dose-dependent manner, when measured at both 12 and 48 h after administration of the hormone. A first increase was observed with 1,25(OH)2D3 concentrations between 0.065 and 0.65 nmol. The maximal stimulation achieved by 1,25(OH)2D3 (6.5-18 nmol) in -D tissue was approximately 10-fold over the calbindin mRNA levels present in vehicle-treated birds. The increase of calbindin mRNA in -D birds was associated with a similar dose-dependent increase in calbindin protein in 1,25(OH)2D3-treated -D birds after 12 or 48 h. In +D intestine, while exogenous 1,25(OH)2D3 also increased calbindin mRNA levels in a dose-dependent fashion, the maximal stimulation observed after 5 h (1.2- to 2-fold) was clearly less than that observed in -D intestine. In contrast to -D birds, intestinal calbindin levels in +D birds were decreased by administration of exogenous 1,25(OH)2D3. Administration of 32.5 to 65 nmol 1,25(OH)2D3 resulted in an approximately 1.8-fold repression compared to vehicle-treated birds. This differential responsiveness between +D and -D intestines with respect to 1,25(OH)2D3 was not explained either by differences in the uptake in the chromatin fractions of these tissues or by metabolism of radiolabeled 1,25(OH)2D3. Dietary withdrawal of vitamin D3 led to a gradual decline in ambient intestinal calbindin levels, while intestinal sensitivity to 1,25(OH)2D3 was restored. These findings suggest that vitamin D3 status regulates intestinal responsiveness to the seco-steroid 1,25(OH)2D3.  相似文献   

20.
The possible involvement of plasma calcium and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in the regulation of the concentration of kidney calcium-binding protein (CaBP) was investigated. Chicks were fed diets varying in Ca2+ and P, with or without vitamin D. CaBP and 1,25(OH)2D3 were determined by competitive binding assays. A significant correlation between plasma and kidney 1,25(OH)2D3 was found, the linear regression equation of best-fit was plasma 1,25(OH)2D3 = 0.14 + 1.56 kidney 1,25(OH)2D3. In the vitamin D-fed chicks, kidney CaBP varied independently of the circulating or organ level of 1,25(OH)2D3 (P greater than 0.05), but was lower in the vitamin D-deficient than in the vitamin D-fed birds. A significant correlation was observed between kidney CaBP and plasma calcium (Cap). The regression equations were CaBP = Cap/(85.57-4.00 Cap) (R = 0.845) and CaBP = 0.0558 + 0.0404 Cap (R = 0.749), for vitamin D-treated and vitamin D-deficient chicks, respectively. The results suggest that the concentration of kidney CaBP is modulated by plasma calcium, but one or more of the vitamin D metabolites may be required for its synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号