首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The chemokine eotaxin is a potent and relatively eosinophil-specific chemoattractant implicated in the cell migration to inflammatory sites in allergic diseases. Eotaxin exerts its activity solely through the CCR3 receptor, but the signaling pathways are poorly defined. In this study, we show that eotaxin induces an increase in tyrosine phosphorylation of multiple cellular proteins in normal human eosinophils. Eotaxin-dependent tyrosine phosphorylation was detected 1 min after stimulation and increased for at least 15 min with kinetics similar to those of eotaxin-induced cell shape changes. Herbimycin A, a tyrosine kinase inhibitor, blocked both eotaxin-induced tyrosine phosphorylation and cell shape changes as well as chemotaxis. Immunofluorescence microscopy analyses showed that eotaxin-induced cell shape changes were accompanied by redistribution of tyrosine-phosphorylated proteins and F-actin reorganization that were sensitive to herbimycin A. Coimmunoprecipitation studies revealed that binding of eotaxin to CCR3 greatly enhanced association of the Src family kinases, Hck and c-Fgr, with CCR3 after internalization of CCR3. These results may indicate that recruitment of Hck and c-Fgr to CCR3 in a compartment triggers tyrosine phosphorylation, leading to rapid cell shape changes required for cell migration.  相似文献   

2.
3.
Cell-type-dependent induction of eotaxin and CCR3 by ionizing radiation   总被引:2,自引:0,他引:2  
Eotaxin is an eosinophil-specific C-C chemokine that is implicated in the pathogenesis of eosinophilic inflammatory diseases, such as asthma and atopic dermatitis, by acting specifically on its receptor CCR3. Using RT-PCR analysis, we show that the expression of eotaxin is upregulated upon treatment with ionizing radiation (IR) in human dermal fibroblasts, but not in the bronchial epithelial cell line A549. In contrast, the gene encoding CCR3 is markedly induced in both cell types. None of the genes coding for other CCR3 ligands are significantly induced by IR in these cell types. cDNA array analysis of irradiated versus nonirradiated A549 cells and human dermal fibroblasts confirm and extend these results, and support the observation that regulation of eotaxin/CCR3-induction by IR occurs in a selective and cell-type-dependent manner. They further suggest that the induction of signaling via eotaxin and CCR3 may be an important step leading to eosinophilia in patients with radiation exposure.  相似文献   

4.
Chemokine-induced eosinophil chemotaxis is mediated primarily through the C-C chemokine receptor, CCR3. We have now detected CCR3 immunoreactivity on epithelial cells in biopsies of patients with asthma and other respiratory diseases. CCR3 mRNA was detected by Northern blot analysis after TNF-alpha stimulation of the human primary bronchial epithelial cells as well as the epithelial cell line, BEAS-2B; IFN-gamma potentiated the TNF-alpha-induced expression. Western blots and flow cytometry confirmed the expression of CCR3 protein. This receptor is functional based on studies demonstrating eotaxin-induced intracellular Ca(2+) flux and tyrosine phosphorylation of cellular proteins. The specificity of this functional response was confirmed by blocking these signaling events with anti-CCR3 mAb (7B11) or pertussis toxin. Furthermore, (125)I-eotaxin binding assay confirmed that CCR3 expressed on epithelial cells have the expected ligand specificity. These studies indicate that airway epithelial cells express CCR3 and suggest that CCR3 ligands may influence epithelial cell functions.  相似文献   

5.
The transmigration and adherence of T lymphocytes through microvascular endothelium are essential events for their recruitment into inflammatory sites. In the present study, we investigated the expression of CC chemokine receptor CCR3 on T lymphocytes and the capacities of the CC chemokine eotaxin to induce chemotaxis and adhesion in T lymphocytes. We have observed a novel phenomenon that IL-2 and IL-4 induce the expression of CCR3 on T lymphocytes. We also report that CC chemokine eotaxin is a potent chemoattractant for IL-2- and IL-4-stimulated T lymphocytes, but not for freshly isolated T lymphocytes. Eotaxin attracts T lymphocytes via CCR3, documented by the fact that anti-CCR3 mAb blocks eotaxin-mediated T lymphocyte chemotaxis. In combination with IL-2 and IL-4, eotaxin enhances the expression of adhesion molecules such as ICAM-1 and several integrins (CD29, CD49a, and CD49b) on T lymphocytes and thus promotes adhesion and aggregation of T lymphocytes. The eotaxin-induced T lymphocyte adhesion could be selectively blocked by a specific cAMP-dependent protein kinase inhibitor, H-89, indicating that eotaxin activates T lymphocytes via a special cAMP-signaling pathway. Our new findings all point toward the fact that eotaxin, in association with the Th1-derived cytokine IL-2 and the Th2-derived cytokine IL-4, is an important T lymphocyte activator, stimulating the directional migration, adhesion, accumulation, and recruitment of T lymphocytes, and paralleled the accumulation of eosinophils and basophils during the process of certain types of inflammation such as allergy.  相似文献   

6.
Eotaxin is a potent chemokine that acts via CC chemokine receptor 3 (CCR3) to induce chemotaxis, mainly on eosinophils. Here we show that eotaxin also induces chemotactic migration in rat basophilic leukemia (RBL-2H3) mast cells. This effect was dose-dependently inhibited by compound X, a selective CCR3 antagonist, indicating that, as in eosinophils, the effect was mediated by CCR3. Eotaxin-induced cell migration was completely blocked in RBL-RacN17 cells expressing a dominant negative Rac1 mutant, suggesting a crucial role for Rac1 in eotaxin signaling to chemotactic migration. ERK activation also proved essential for eotaxin signaling and it too was absent in RBL-RacN17 cells. Finally, we found that activation of Rac and ERK was correlated with eotaxin-induced actin reorganization known to be necessary for cell motility. It thus appears that Rac1 acts upstream of ERK to signal chemotaxis in these cells, and that a Rac-ERK-dependent cascade mediates the eotaxin-induced chemotactic motility of RBL-2H3 mast cells.  相似文献   

7.
Eotaxin, an inducer of eosinophil migration and activation, exerts its activity by binding to CCR3, the C-C chemokine receptor 3. An inhibitor of the eotaxin-CCR3 binding interaction may have potential as an anti-inflammatory drug for treatment of asthma, parasitic infections, and allergic disorders. A radioligand binding assay was developed using HEK cells transfected with CCR3, with (125)I eotaxin as the ligand. Whole cells grown on polylysine-coated plates were used as the receptor source for the screen. Screening of more than 200,000 compounds with this assay yielded a number of screening hits, and of these, 2 active novel antagonists were identified. These compounds showed inhibitory effects on eosinophil chemotaxis in both in vitro and in vivo assays.  相似文献   

8.
The CC chemokine eotaxin plays a predominant role in eosinophil trafficking in vivo by specifically activating the chemokine receptor CCR3. We have screened a series of synthetic peptides corresponding to extracellular regions of CCR3 for their ability to bind eotaxin. A peptide corresponding to the N terminus of CCR3 (CCR3-(1-35)) bound to eotaxin with a dissociation constant of 80 +/- 38 micrometer. However, linear or cyclic peptides derived from the first and third extracellular loops of CCR3 did not bind to eotaxin. Linear and cyclic peptides derived from the second extracellular loop precipitated upon addition of eotaxin. (1)H-(15)N correlation NMR spectroscopy indicated that an extended groove in the eotaxin surface, whose edges are defined by the N-loop, 3(10)-helical turn, and beta(2)-beta(3) hairpin, is the most likely binding surface for CCR3-(1-35). NMR assignments for CCR3-(1-35) were obtained using two-dimensional and three-dimensional homonuclear NMR experiments. (15)N-Filtered TOCSY spectra indicated that the central region of CCR3-(1-35), surrounding the DDYY sequence, is involved in the interaction with eotaxin. This was supported by the observation that a truncated N-terminal peptide (CCR3-(8-23)) binds to eotaxin with a dissociation constant of 136 +/- 23 micrometer, only slightly weaker than the full-length N-terminal peptide. Taken together with previous studies, these results suggest that interactions between the N-loop/beta(3) regions of chemokines and the N-terminal regions of their receptors may be a conserved feature of chemokine-receptor complexes across the CC, CXC, and C chemokine subfamilies. However, the low affinity of the interactions observed in these studies suggests the existence of additional binding regions in both the chemokines and the receptors.  相似文献   

9.
We describe a small molecule chemokine receptor antagonist, UCB35625 (the trans-isomer J113863 published by Banyu Pharmaceutical Co., patent WO98/04554), which is a potent, selective inhibitor of CCR1 and CCR3. Nanomolar concentrations of UCB35625 were sufficient to inhibit eosinophil shape change responses to MIP-1alpha, MCP-4, and eotaxin, while greater concentrations could inhibit the chemokine-induced internalization of both CCR1 and CCR3. UCB35625 also inhibited the CCR3-mediated entry of the human immunodeficiency virus-1 primary isolate 89.6 into the glial cell line, NP-2 (IC(50) = 57 nm). Chemotaxis of transfected cells expressing either CCR1 or CCR3 was inhibited by nanomolar concentrations of the compound (IC(50) values of CCR1-MIP-1alpha = 9.6 nm, CCR3-eotaxin = 93.7 nm). However, competitive ligand binding assays on the same transfectants revealed that considerably larger concentrations of UCB35625 were needed for effective ligand displacement than were needed for the inhibition of receptor function. Thus, it appears that the compound may interact with a region present in both receptors that inhibits the conformational change necessary to initiate intracellular signaling. By virtue of its potency at the two major eosinophil chemokine receptors, UCB35625 is a prototypic therapy for the treatment of eosinophil-mediated inflammatory disorders, such as asthma and as an inhibitor of CCR3-mediated human immunodeficiency virus-1 entry.  相似文献   

10.
Asthmatic-like reactions characterized by elevated IgE, Th2 cytokines, C-C chemokines, eosinophilic inflammation, and persistent airway hyperresponsiveness follow pulmonary exposure to the spores or conidia from Aspergillus fumigatus fungus in sensitized individuals. In addition to these features, subepithelial fibrosis and goblet cell hyperplasia characterizes fungal-induced allergic airway disease in mice. Because lung concentrations of macrophage inflammatory protein-1alpha and RANTES were significantly elevated after A. fumigatus-sensitized mice received an intrapulmonary challenge with A. fumigatus spores or conidia, the present study addressed the role of their receptor, C-C chemokine receptor 1 (CCR1), in this model. A. fumigatus-sensitized CCR1 wild-type (+/+) and CCR1 knockout (-/-) mice exhibited similar increases in serum IgE and polymorphonuclear leukocyte numbers in the bronchoalveolar lavage. Airway hyperresponsiveness was prominent in both groups of mice at 30 days after an intrapulmonary challenge with A. fumigatus spores or conidia. However, whole lung levels of IFN-gamma were significantly higher whereas IL-4, IL-13, and Th2-inducible chemokines such as C10, eotaxin, and macrophage-derived chemokine were significantly lower in whole lung samples from CCR1-/- mice compared with CCR1+/+ mice at 30 days after the conidia challenge. Likewise, significantly fewer goblet cells and less subepithelial fibrosis were observed around large airways in CCR1-/- mice at the same time after the conidia challenge. Thus, these findings demonstrate that CCR1 is a major contributor to the airway remodeling responses that arise from A. fumigatus-induced allergic airway disease.  相似文献   

11.
Th1 and Th2 lymphocytes express a different repertoire of chemokine receptors (CCRs). CXCR3, the receptor for I-TAC (interferon-inducible T cell alpha-chemoattractant), Mig (monokine induced by gamma-interferon), and IP10 (interferon-inducible protein 10), is expressed preferentially on Th1 cells, whereas CCR3, the receptor for eotaxin and several other CC chemokines, is characteristic of Th2 cells. While studying responses that are mediated by these two receptors, we found that the agonists for CXCR3 act as antagonists for CCR3. I-TAC, Mig, and IP10 compete for the binding of eotaxin to CCR3-bearing cells and inhibit migration and Ca(2+) changes induced in such cells by stimulation with eotaxin, eotaxin-2, MCP-2 (monocyte chemottractant protein-2), MCP-3, MCP-4, and RANTES (regulated on activation normal T cell expressed and secreted). A hybrid chemokine generated by substituting the first eight NH(2)-terminal residues of eotaxin with those of I-TAC bound CCR3 with higher affinity than eotaxin or I-TAC (3- and 10-fold, respectively). The hybrid was 5-fold more potent than I-TAC as an inhibitor of eotaxin activity and was effective at concentrations as low as 5 nm. None of the antagonists described induced the internalization of CCR3, indicating that they lack agonistic effects and thus qualify as pure antagonists. These results suggest that chemokines that attract Th1 cells via CXCR3 can concomitantly block the migration of Th2 cells in response to CCR3 ligands, thus enhancing the polarization of T cell recruitment.  相似文献   

12.
The chemokine (C-C motif) receptor 2B (CCR2B) is one of the two isoforms of the receptor for monocyte chemoattractant protein-1 (CCL2), the major chemoattractant for monocytes, involved in an array of chronic inflammatory diseases. Employing the yeast two-hybrid system, we identified the actin-binding protein filamin A (FLNa) as a protein that associates with the carboxyl-terminal tail of CCR2B. Co-immunoprecipitation experiments and in vitro pull down assays demonstrated that FLNa binds constitutively to CCR2B. The colocalization of endogenous CCR2B and filamin A was detected at the surface and in internalized vesicles of THP-1 cells. In addition, CCR2B and FLNa were colocalized in lamellipodia structures of CCR2B-expressing A7 cells. Expression of the receptor in filamin-deficient M2 cells together with siRNA experiments knocking down FLNa in HEK293 cells, demonstrated that lack of FLNa delays the internalization of the receptor. Furthermore, depletion of FLNa in THP-1 monocytes by RNA interference reduced the migration of cells in response to MCP-1. Therefore, FLNa emerges as an important protein for controlling the internalization and spatial localization of the CCR2B receptor in different dynamic membrane structures.  相似文献   

13.
14.
Eosinophils are present in human endometrium only immediately before and during menstruation, suggesting a role in that process. The expression of the eosinophil chemoattractant, eotaxin, and its receptor, CCR3, within the human endometrium were investigated by immunohistochemical analysis of tissue sections spanning the entire menstrual cycle. Eotaxin was localized to perivascular cells in the late secretory phase, and it was also identified in eosinophils. However, the highest levels of this chemokine were present in both luminal and glandular epithelial cells during the proliferative and secretory phases of the cycle. Treatment of endometrial tissue with monensin, which blocks protein secretion, increased epithelial immunoreactive eotaxin, substantiating synthesis in these cells. Although the CCR3 receptor was expressed by eosinophils, it was also strongly expressed by endometrial epithelial cells. The CCR3 receptor on purified, cultured endometrial epithelial cells was functional, as assessed by a transient Ca(2+) flux in response to eotaxin. These analyses demonstrate that eotaxin is expressed by endometrial cells and may therefore be involved in the recruitment of eosinophils into this tissue premenstrually. However, the observation that this chemokine and the CCR3 molecule are strongly expressed by epithelial cells throughout the cycle suggests that these proteins may have additional important functions within the endometrium.  相似文献   

15.
We have cloned and performed the first functional characterization of the chemokine receptor, CCR3, of Cynomolgus monkey (Macaca fascicularis). The deduced amino acid sequence of the cloned Cynomolgus CCR3 was found to be more similar to that of a previously-reported Rhesus (Macaca mulatta) CCR3 (99.4%) than that of a reported Cynomolgus CCR3 (98.0%). Stably-transfected Cynomolgus CCR3 bound human eotaxin (CCL11) with similar kinetics (Kd 240 pM) and was responsive to human CCR3 ligands (eotaxin [CCL11], eotaxin-2 [CCL24], and MCP4 [CCL13]) in Ca(2+) mobilization and chemotaxis assays, thus provides a useful alternative species model system for the analysis of modulators of eotaxin--CCR3 induced signaling and activation.  相似文献   

16.
The chemokine receptor CCR5 is expressed on the majority of T cells and monocytes in the inflammatory infiltrate of diseases such as rheumatoid arthritis, renal diseases, and multiple sclerosis. In contrast, little expression of CCR5 is found on peripheral blood leukocytes. A specific depletion of CCR5(+) cells could therefore be a useful strategy to reduce the cellular infiltrate in chronic inflammations. Moreover, CCR5 is the major coreceptor for M-tropic HIV-1 strains. Depletion of CCR5(+) leukocytes may help to eliminate cells latently infected with HIV-1. We designed two constructs that specifically destroy chemokine receptor-positive cells. The first construct, a bispecific Ab, binds simultaneously to CCR5 and CD3. Thereby it redirects CD3(+) T cells against CCR5(+) target cells. The Ab specifically depletes CCR5(+) T cells and monocytes, but is inactive against cells that do not express CCR5. Furthermore, ex vivo the bispecific Ab eliminated >95% of CCR5(+) monocytes and T cells from the synovial fluid of patients with arthritis. Also, we designed a fusion protein of the chemokine RANTES and a truncated version of PSEUDOMONAS: exotoxin A. The fusion protein binds to CCR5 and down-modulates the receptor from the cell surface. The chemokine toxin completely destroyed CCR5(+) Chinese hamster ovary cells at a concentration of 10 nM, whereas no cytotoxic effect was detectable against CCR5(-) Chinese hamster ovary cells. Both constructs efficiently deplete CCR5-positive cells, appear as useful agents in the treatment of chronic inflammatory diseases, and may help to eradicate HIV-1 by increasing the turnover of latently infected cells.  相似文献   

17.
Eotaxin and the attraction of eosinophils to the asthmatic lung   总被引:1,自引:0,他引:1  
Eosinophilic leukocytes accumulate in high numbers in the lungs of asthmatic patients, and are believed to be important in the pathogenisis of asthma. A potent eosinophil chemoattractant is produced in the asthmatic lung. This small protein, the chemokine eotaxin, is synthesized by a number of different cell types, and is stimulated by interleukin-4 and interleukin-13, which are produced by T-helper (Th)2 lymphocytes. Low molecular weight compounds have been developed that can block the eotaxin receptor C-C chemokine receptor (CCR)3, and prevent stimulation by eotaxin. This provides the potential for orally available drugs that can prevent eosinophil recruitment into the lung and the associated damage and dysfunction.  相似文献   

18.
We cloned a gene encoding the swine chemokine (C-C motif) receptor 7 (CCR7) and clarified its genomic structure and chromosomal assignment. The ORF and deduced amino-acid sequence were highly conserved with human and mouse CCR7. The swine CCR7 gene was mapped to SSC12p13-->p11 by FISH analysis. Stimulation of swine peripheral blood mononuclear cells by IL-12 and IL-18, considered potent inducers of Th1 cells from analyses in humans and mice, downregulated the expression of CCR7. This is the first report of the molecular cloning, chromosomal assignment and characterization of a chemokine receptor in swine.  相似文献   

19.
Acute pancreatitis (AP) is an inflammatory disease involving the production of different cytokines and chemokines and is characterized by leukocyte infiltration. Because the chemokine receptor CCR5 and its ligands [the CC chemokines CCL3/MIP-1alpha, CCL4/MIP-1beta, and CCL5/regulated upon activation, normal T cell expressed and secreted (RANTES)] regulate leukocyte chemotaxis and activation, we investigated the expression of CCR5 ligands and the role of CCR5 and its ligands in experimental AP in mice. AP was induced by hourly intraperitoneal injections of cerulein in CCR5-deficient (CCR5(-/-)) or wild-type (WT) mice. Induction of AP by cerulein resulted in an early increase of pancreatic CCL2, CCL3, and CCL4 mRNA expression, whereas CCL5 mRNA expression occurred later. CCR5(-/-) mice developed a more severe pancreatic injury than WT mice during cerulein-induced AP, as assessed by a more pronounced increase in serum amylase and lipase levels and by more severe pancreatic edema, inflammatory infiltrates (mainly neutrophils), and necrosis. CCR5(-/-) mice also exhibited increased production of CCL2/MCP-1, CCL3/MIP-1alpha, and CCL4/MIP-1beta during the course of cerulein-induced AP. In vivo simultaneous neutralization of CC chemokines with monoclonal antibodies in CCR5(-/-) mice reduced the severity of cerulein-induced AP, indicating a role of CC chemokines in exacerbating the course of AP in the absence of CCR5. Moreover, simultaneous neutralization of CCR5 ligands in WT mice also reduced the severity of cerulein-induced AP. In conclusion, lack of the chemokine receptor CCR5 exacerbates experimental cerulein-induced AP and leads to increased levels of CC chemokines and a more pronounced pancreatic inflammatory infiltrate, suggesting that CCR5 expression can modulate severity of AP.  相似文献   

20.
Allergic reactions are characterized by the infiltration of tissues by activated eosinophils, Th2 lymphocytes, and basophils. The beta-chemokine receptor CCR3, which recognizes the ligands eotaxin, eotaxin-2, monocyte chemotactic protein (MCP) 3, MCP4, and RANTES, plays a central role in this process, and antagonists to this receptor could have potential therapeutic use in the treatment of allergy. We describe here a potent and specific CCR3 antagonist, called Met-chemokine beta 7 (Ckbeta7), that prevents signaling through this receptor and, at concentrations as low as 1 nM, can block eosinophil chemotaxis induced by the most potent CCR3 ligands. Met-Ckbeta7 is a more potent CCR3 antagonist than Met- and aminooxypentane (AOP)-RANTES and, unlike these proteins, exhibits no partial agonist activity and is highly specific for CCR3. Thus, this antagonist may be of use in ameliorating leukocyte infiltration associated with allergic inflammation. Met-Ckbeta7 is a modified form of the beta-chemokine macrophage inflammatory protein (MIP) 4 (alternatively called pulmonary and activation-regulated chemokine (PARC), alternative macrophage activation-associated C-C chemokine (AMAC) 1, or dendritic cell-derived C-C chemokine (DCCK) 1). Surprisingly, the unmodified MIP4 protein, which is known to act as a T cell chemoattractant, also exhibits this CCR3 antagonistic activity, although to a lesser extent than Met-Ckbeta7, but to a level that may be of physiological relevance. MIP4 may therefore use chemokine receptor agonism and antagonism to control leukocyte movement in vivo. The enhanced activity of Met-Ckbeta7 is due to the alteration of the extreme N-terminal residue from an alanine to a methionine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号