共查询到20条相似文献,搜索用时 15 毫秒
1.
Motoki Kouzaki Minoru Shinohara Kei Masani Tetsuo Fukunaga 《Journal of applied physiology》2004,97(6):2121-2131
The study examined the hypothesis that altered synergistic activation of the knee extensors leads to cyclic modulation of the force fluctuations. To test this hypothesis, the force fluctuations were investigated during sustained knee extension at 2.5% of maximal voluntary contraction force for 60 min in 11 men. Surface electromyograms (EMG) were recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles. The SD of force and average EMG (AEMG) of each muscle were calculated for 30-s periods during alternate muscle activity. Power spectrum of force was calculated for the low- (< or =3 Hz), middle- (4-6 Hz), and high-frequency (8-12 Hz) components. Alternate muscle activity was observed between RF and the set of VL and VM muscles. The SD of force was not constant but variable due to the alternate muscle activity. The SD was significantly greater during high RF activity compared with high VL and VM activity (P < 0.05), and the correlation coefficient between the SD and AEMG was significantly greater in RF [0.736 (SD 0.095), P < 0.05] compared with VL and VM. Large changes were found in the high-frequency component. During high RF activity, the correlation coefficient between the SD and high-frequency component [0.832 (SD 0.087)] was significantly (P < 0.05) greater compared with other frequency components. It is suggested that modulations in knee extension force fluctuations are caused by the unique muscle activity in RF during the alternate muscle activity, which augments the high-frequency component of the fluctuations. 相似文献
2.
Motoki Kouzaki Minoru Shinohara Kei Masani Hiroaki Kanehisa Tetsuo Fukunaga 《Journal of applied physiology》2002,93(2):675-684
To determine quantitatively the features of alternate muscle activity between knee extensor synergists during low-level prolonged contraction, a surface electromyogram (EMG) was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) in 11 subjects during isometric knee extension exercise at 2.5% of maximal voluntary contraction (MVC) for 60 min (experiment 1). Furthermore, to examine the relation between alternate muscle activity and contraction levels, six of the subjects also performed sustained knee extension at 5.0, 7.5, and 10.0% of MVC (experiment 2). Alternate muscle activity among the three muscles was assessed by quantitative analysis on the basis of the rate of integrated EMG sequences. In experiment 1, the number of alternations was significantly higher between RF and either VL or VM than between VL and VM. Moreover, the frequency of alternate muscle activity increased with time. In experiment 2, alternating muscle activity was found during contractions at 2.5 and 5.0% of MVC, although not at 7.5 and 10.0% of MVC, and the number of alternations was higher at 2.5 than at 5.0% of MVC. Thus the findings of the present study demonstrated that alternate muscle activity in the quadriceps muscle 1) appears only between biarticular RF muscle and monoarticular vasti muscles (VL and VM), and its frequency of alternations progressively increases with time, and 2) emerges under sustained contraction with force production levels < or =5.0% of MVC. 相似文献
3.
Junichi Ushiyama Kei Masani Motoki Kouzaki Hiroaki Kanehisa Tetsuo Fukunaga 《Journal of applied physiology》2005,98(4):1427-1433
It has been suggested that a suppression of maximal voluntary contraction (MVC) induced by prolonged vibration is due to an attenuation of Ia afferent activity. The purpose of the present study was to test the hypothesis that aftereffects following prolonged vibration on muscle activity during MVC differ among plantar flexor synergists owing to a supposed difference in muscle fiber composition. The plantar flexion MVC torque and surface electromyogram (EMG) of the medial head of gastrocnemius (MG), the lateral head of gastrocnemius (LG), and the soleus (Sol) were recorded in 13 subjects before and after prolonged vibration applied to the Achilles tendon at 100 Hz for 30 min. The maximal H reflexes and M waves were also determined from the three muscles, and the ratio between H reflexes and M waves (H/Mmax) was calculated before and after the vibration. The MVC torque was decreased by 16.6 +/- 3.7% after the vibration (P < 0.05; ANOVA). The H/Mmax also decreased for all three muscles, indicating that Ia afferent activity was successfully attenuated by the vibration in all plantar flexors. However, a reduction of EMG during MVC was observed only in MG (12.7 +/- 4.0%) and LG (11.4 +/- 3.9%) (P < 0.05; ANOVA), not in Sol (3.4 +/- 3.0%). These results demonstrated that prolonged vibration-induced MVC suppression was attributable mainly to the reduction of muscle activity in MG and LG, both of which have a larger proportion of fast-twitch muscle fibers than Sol. This finding suggests that Ia-afferent activity that reinforces the recruitment of high-threshold motor units is necessary to enhance force exertion during MVC. 相似文献
4.
Fernando Boix Cecilie R?e Laila Rosenborg Stein Knardahl 《Journal of applied physiology》2005,98(2):534-540
To determine the muscular concentration of bradykinin and kallidin during static contraction, microdialysis probes were implanted bilaterally in the trapezius muscles of healthy women. Three hours after probe implantation, 200 microM of the angiotensin-converting enzyme (ACE) inhibitor enalaprilat were added to the perfusion solution in one of the sides for 30 min. Thirty minutes later, the subjects performed a sustained bilateral shoulder abduction at 10% of the maximal voluntary contraction until exhaustion. This protocol was repeated twice, with an interval of at least 17 days. High intersession repeatability was observed in the concentration of bradykinin but not of kallidin. Enalaprilat induced a significant increase in bradykinin levels in the dialysate, without affecting kallidin levels. The sustained contraction induced a significant increase in dialysate levels of both kinin peptides. The contraction also induced a significant increase in pain ratings, as measured by a visual analog scale. During contraction, positive correlations were found between pain ratings and levels of kinin peptides in dialysate, predominantly in the side previously perfused with enalaprilat. Subjects with the higher pain ratings also showed larger increases in kinin peptides in the side previously perfused with enalaprilat. The present results show that both plasma and tissue kinin-kallikrein are activated during muscle contraction, but that their metabolic pathways are differently regulated during rest and contraction, because they showed a different response to ACE inhibition. They also indicate that intramuscular kinin peptides levels, and ACE activity, may contribute to muscle pain. 相似文献
5.
Whether limb blood flow is directly regulated to match the work rate, independent of the rate of contraction, remains elusive. This study therefore investigated the relationship between femoral arterial blood flow (FABF; Doppler ultrasound) and "external" (applied load) as well as "total" [external + "internal" (potential and kinetic energy changes of the moving lower leg)] work rate, during steady-state one-legged, dynamic, knee extensor exercise (1L-KEE) in the sitting position at different contraction rates. Ten subjects performed 1L-KEE at 30, 60, and 90 contractions/min (cpm) 1) at constant resistive loads of 0.2 and 0.5 kg inducing incremental external work rates (study I) and 2) at different relative resistive loads inducing constant external work rates of 9 and 18 W (study II). Moreover, 3) six subjects performed 1L-KEE at 60 and 100 cpm at incremental total work rates of 40, 50, 60, and 70 W (study III). In study I, FABF increased (P < 0.001) with increasing contraction frequency and external work rate, for each resistive load. In study II, FABF increased (P < 0.001) with increasing contraction frequency for each constant external work rate. Of major importance in study III, however, was that FABF, although increasing linearly with the total work rate, was not different (P = not significant) between contraction rates, at the total work rates of 40, 50, 60, and 70 W, respectively. Furthermore, FABF correlated linearly and positively with both the external and total work rate for each contraction frequency. In conclusion, the findings support the concept that leg blood flow during 1L-KEE in a normal knee extensor ergometer is matched directly in relation to the total work rate and metabolic activity, irrespective of the contraction frequency. The rate of contraction seems erroneously to influence the results only when it is related to the external work rate without taking into account the internal work component. 相似文献
6.
Ten young men sustained an isometric contraction of the knee extensor muscles at 20% of the maximum voluntary contraction (MVC) torque on three separate occasions in a seated posture. Subjects performed an isometric knee extension contraction on a fourth occasion in a supine posture. The time to task failure for the seated posture was similar across sessions (291 +/- 84 s; P > 0.05), and the MVC torque was similarly reduced across sessions after the fatiguing contraction (42 +/- 12%). The rate of increase in electromyograph (EMG) activity (%MVC) and torque fluctuations during the fatiguing contractions were similar across sessions. However, the rate of increase in EMG differed among the knee extensor muscles: the rectus femoris began at a greater amplitude (31.5 +/- 11.0%) compared with the vastus lateralis and vastus medialis muscles (18.8 +/- 5.3%), but it ended at a similar value (45.4 +/- 3.1%). The time to task failure and increase in EMG activity were similar for the seated and supine tasks; however, the reduction in MVC torque was greater for the seated posture. These findings indicate that the time to task failure for the knee extensor muscles that have a common tendon insertion did not alter over repeat sessions as had been observed for the elbow flexor muscles (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003). 相似文献
7.
Rådegran G Saltin B 《American journal of physiology. Heart and circulatory physiology》2000,278(1):H162-H167
It is not known whether the diameter of peripheral conduit arteries may impose a limitation on muscle blood flow and oxygen uptake at peak effort in humans, and it is not clear whether these arteries are dimensioned in relation to the tissue volume they supply or, rather, to the type and intensity of muscular activity. In this study, eight humans, with a peak pulmonary oxygen uptake of 3.90 +/- 0.31 (range 2.29-5.03) l/min during ergometer cycle exercise, performed one-legged dynamic knee extensor exercise up to peak effort at 68 +/- 7 W (range 55-100 W). Peak values for knee extensor blood flow (thermodilution) and oxygen uptake of 6.06 +/- 0.74 (range 4.75-9.52) l/min and 874 +/- 124 (range 590-1,521) ml/min, respectively, were achieved. Pulmonary oxygen uptake reached a peak of 1.72 +/- 0.19 (range 1.54-2.33) l/min. Diameters of common and profunda femoral arteries determined by ultrasound Doppler were 10.6 +/- 0.4 (range 8.2-12.7) and 6.0 +/- 0.4 (range 4.5-8.0) mm, respectively. Thigh and quadriceps muscle volume measured by computer tomography were 10.06 +/- 0.66 (range 6.18-10.95) and 2.36 +/- 0.19 (range 1.31-3.27) liters, respectively. The common femoral artery diameter, but not that of the profunda branch, correlated with the thigh volume and quadriceps muscle mass. There were no relationships between either of the diameters and the absolute or muscle mass-related resting and peak values of blood flow and oxygen uptake, peak pulmonary oxygen uptake, or peak power output during knee extensor exercise. However, common femoral artery diameter correlated to peak pulmonary oxygen uptake during ergometer cycle exercise. In conclusion, common and profunda femoral artery diameters are sufficient to ensure delivery to the quadriceps muscle. However, the common branch may impose a limitation during ergometer cycle exercise. 相似文献
8.
R A Ferguson P Aagaard D Ball A J Sargeant J Bangsbo 《Journal of applied physiology》2000,89(5):1912-1918
A novel approach has been developed for the quantification of total mechanical power output produced by an isolated, well-defined muscle group during dynamic exercise in humans at different contraction frequencies. The calculation of total power output comprises the external power delivered to the ergometer (i.e., the external power output setting of the ergometer) and the "internal" power generated to overcome inertial and gravitational forces related to movement of the lower limb. Total power output was determined at contraction frequencies of 60 and 100 rpm. At 60 rpm, the internal power was 18+/- 1 W (range: 16-19 W) at external power outputs that ranged between 0 and 50 W. This was less (P<0.05) than the internal power of 33+/-2 W (27-38 W) at 100 rpm at 0-50 W. Moreover, at 100 rpm, internal power was lower (P<0.05) at the higher external power outputs. Pulmonary oxygen uptake was observed to be greater (P<0.05) at 100 than at 60 rpm at comparable total power outputs, suggesting that mechanical efficiency is lower at 100 rpm. Thus a method was developed that allowed accurate determination of the total power output during exercise generated by an isolated muscle group at different contraction frequencies. 相似文献
9.
G Sj?gaard G Savard C Juel 《European journal of applied physiology and occupational physiology》1988,57(3):327-335
The effect of isometric exercise on blood flow, blood pressure, intramuscular pressure as well as lactate and potassium efflux from exercising muscle was examined. The contractions performed were continuous or intermittent (5 s on, 5 s off) and varied between 5% and 50% maximal voluntary contraction (MVC). A knee-extensor and a hand-grip protocol were used. Evidence is presented that blood flow through the muscle is sufficient during low-level sustained contractions (less than 10% MVC). Despite this muscle fatigue occurs during prolonged contractions. One mechanism for this fatigue may be the disturbance of the potassium homeostasis. Such changes may also play a role in the development of fatigue during intermittent isometric contractions and even more so in the recovery from such exercise. In addition the role of impaired transport of substances within the muscle, due to long-lasting daily oedema formation, is discussed in relation to fatigue in highly repetitive, monotonous jobs. 相似文献
10.
11.
《Journal of electromyography and kinesiology》2008,18(6):938-946
This study investigated whether pain-induced changes in cervical muscle activation affect myoelectric manifestations of cervical muscle fatigue. Surface EMG signals were detected from the sternocleidomastoid and splenius capitis muscles bilaterally from 14 healthy subjects during 20-s cervical flexion contractions at 25% of the maximal force. Measurements were performed before and after the injection of 0.5 ml of hypertonic (painful) or isotonic (control) saline into either the sternocleidomastoid or splenius capitis in two experimental sessions. EMG average rectified value and mean power spectral frequency were estimated throughout the sustained contraction. Sternocleidomastoid or splenius capitis muscle pain resulted in lower sternocleidomastoid EMG average rectified value on the side of pain (P < 0.01). However, changes over time of sternocleidomastoid EMG average rectified value and mean frequency (myoelectric manifestations of fatigue) during sustained flexion were not changed during muscle pain. These results demonstrate that pain-induced modifications of cervical muscle activity do not change myoelectric manifestations of fatigue. This finding has implications for interpreting the mechanisms underlying greater cervical muscle fatigue in people with neck pain disorders. 相似文献
12.
P Christova A Kossev I Kristev V Chichov 《Journal of electromyography and kinesiology》1999,9(4):263-276
The purpose of the present investigation is to use surface interference EMG recorded by branched electrodes for assessment of muscle fatigue during sustained voluntary isometric contractions at different levels. Level-trigger averaging and turn/amplitude analysis have been applied. The conduction velocity (CV) of excitation was calculated from the time shift of the negative peaks of the averaged potentials (AvPs) derived from the EMG recorded by two electrodes placed along the muscle fibers. The recruitment of new motor units affects the negative amplitude (NA) of AvPs, the number of turns per second and the mean amplitude of turns in a different way depending on the level of sustained contractions. In contrast, the CV declined at all levels of sustained contractions and was the most appropriate parameter for the muscle fatigue assessment. There was a good correlation between CV decrease and torque reduction during sustained maximal efforts. The level-trigger averaging technique of the interference EMG recorded by surface branched electrodes is easy and non-invasive, thus being very convenient for routine application. 相似文献
13.
14.
F Bonde-Petersen A L Mork E Nielsen 《European journal of applied physiology and occupational physiology》1975,34(1):43-50
The endurance during sustained contraction of elbow, flexors, elbow extensors, and back extensors was tested in 3 human subjects. The force level used was varied between ca. 15 and ca. 75% of maximal isometric strength (IS). The clearance of 133Xe from contracting muscles was registered during and after the endurance test. In this way it was possible to determine whether muscle blood flow (MBF) was increased or had stopped during the contraction. Experiments with artificial ischaemia of the upper arm together with MBF measurements showed that MBF was of no importance for continuing sustained contractions above a certain force level, which was 50,25, and 40% of IS for elbow flexors, elbow extensors and back extensors, respectively. However, the level, where longer lasting ( greater than 15 min) sustained contraction is possible is directly related to MBF. These levels were 22, 15, and 20% IS for elbow flexors, elbow extensors, and back extensors, respectively. 相似文献
15.
F. Esposito C. Orizio A. Veicsteinas 《European journal of applied physiology and occupational physiology》1998,78(6):494-501
In surface electromyogram (EMG) and mechanomyogram (MMG) the electrical and mechanical activities of recruited motor units
(MU) are summated. Muscle fatigue influences the electrical and mechanical properties of the active MU. The aim of this study
was to evaluate fatigue-induced changes in the electrical and mechanical properties of MU after a short recovery period, using
an analysis of force, surface EMG and MMG. In seven subjects the EMG and MMG were recorded from the biceps brachii muscle
during sustained isometric effort at 80% of the maximal voluntary contraction (MVC), before (test 1) and 10 min after (test
2) a fatiguing exercise. From the time and frequency domain analysis of the signals, the root mean square (rms) and the mean
frequency (fˉ) of the power spectrum were calculated. The results were that the mean MVC was 412 (SEM 90) N and 304 (SEM 85) N in fresh
and fatigued muscle, respectively; during tests 1 and 2 the mean EMG rms increased from 0.403 (SEM 0.07) mV to 0.566 (SEM
0.09) mV and from 0.476 (SEM 0.07) mV to 0.63 (SEM 0.09) mV, respectively; during test 1 the mean MMG rms decreased from 9.4
(SEM 0.8) mV to 5.7 (SEM 0.9) mV; in contrast, during test 2 constantly lower values were observed throughout contraction;
during tests 1 and 2 the EMG fˉ declined from 122 (SEM 7) Hz to 74 (SEM 7) Hz and from 106 (SEM 8) Hz to 60 (SEM 7) Hz, respectively; during test 1 the MMG
fˉ increased in the first 6 s from 19.3 (SEM 1.4) Hz to 23.9 (SEM 2.9) Hz, falling to 13.9 (SEM 1.3) Hz at the end of contraction;
in contrast, during test 2 the MMG fˉ declined continuously from 18.7 (SEM 1) Hz to 12.4 (SEM 0.8) Hz. The lower MVC after the fatiguing exercise and the changes
in the EMG parameters confirmed that 10 min after the fatiguing exercise, the mechanical and electrical activities of MU were
altered. In addition, the MMG results suggested that after a 10-min recovery, some highly fatigable MU might not be recruitable.
Accepted: 9 June 1998 相似文献
16.
K N Bitar M S Kaminski N Hailat K B Cease J R Strahler 《Biochemical and biophysical research communications》1991,181(3):1192-1200
We have identified the low MW 27 kD heat shock protein as a major phosphoprotein constituent of smooth muscle and have investigated its potential role in agonist induced smooth muscle contraction. The neuropeptides bombesin and substance P, which are present in neurons of the anorectal region, induce contraction of isolated smooth muscle cells from this region by activating different intracellular pathways. Substance P-induced contraction is 1,4,5-inositol trisphosphate (IP3)/calmodulin dependent, while contraction induced by bombesin is mediated by a protein kinase C (PKC)-dependent pathway. The sustained contraction induced by bombesin or exogenous PKC was blocked by preincubation of cells with monoclonal antibodies to hsp27, while the transient contraction induced by substance P or IP3 was unaffected by the antibodies. Preincubation with isotype matched control antibodies had no inhibitory effect on contraction induced in response to the agents used. These data support a novel role for hsp27 in the non calmodulin mediated sustained contraction induced by bombesin or PKC. 相似文献
17.
18.
Previous studies in isolated muscle preparations have shown that muscle blood flow becomes compromised at higher contraction frequencies. The purpose of this study was to examine the effect of increases in contraction frequency and muscle tension on mean blood flow (MBF) during voluntary exercise in humans. Nine male subjects [23.6 +/- 3.7 (SD) yr] performed incremental knee extension exercise to exhaustion in the supine position at three contraction frequencies [40, 60, and 80 contractions/min (cpm)]. Mean blood velocity of the femoral artery was determined beat by beat using Doppler ultrasound. MBF was calculated by using the diameter of the femoral artery determined at rest using echo Doppler ultrasound. The work rate (WR) achieved at exhaustion was decreased (P < 0.05) as contraction frequency increased (40 cpm, 16.2 +/- 1.4 W; 60 cpm, 14.8 +/- 1.4 W; 80 cpm, 13.2 +/- 1.3 W). MBF was similar across the contraction frequencies at rest and during the first WR stage but was higher (P < 0.05) at 40 than 80 cpm at exercise intensities >5 W. MBF was similar among contraction frequencies at exhaustion. In humans performing knee extension exercise in the supine position, muscle contraction frequency and/or muscle tension development may appreciably affect both the MBF and the amplitude of the contraction-to-contraction oscillations in muscle blood flow. 相似文献
19.
Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. 总被引:5,自引:0,他引:5
T Hamada D G Sale J D MacDougall M A Tarnopolsky 《Journal of applied physiology》2000,88(6):2131-2137
In small mammals, muscles with shorter twitch contraction times and a predominance of fast-twitch, type II fibers exhibit greater posttetanic twitch force potentiation than muscles with longer twitch contraction times and a predominance of slow-twitch, type I fibers. In humans, the correlation between potentiation and fiber-type distribution has not been found consistently. In the present study, postactivation potentiation (PAP) was induced in the knee extensors of 20 young men by a 10-s maximum voluntary isometric contraction (MVC). Maximal twitch contractions of the knee extensors were evoked before and after the MVC. A negative correlation (r = -0. 73, P < 0.001) was found between PAP and pre-MVC twitch time to peak torque (TPT). The four men with the highest (HPAP, 104 +/- 11%) and lowest (LPAP, 43 +/- 7%) PAP values (P < 0.0001) underwent needle biopsies of vastus lateralis. HPAP had a greater percentage of type II fibers (72 +/- 9 vs. 39 +/- 7%, P < 0.001) and shorter pre-MVC twitch TPT (61 +/- 12 vs. 86 +/- 7 ms, P < 0.05) than LPAP. These data indicate that, similar to the muscles of small mammals, human muscles with shorter twitch contraction times and a higher percentage of type II fibers exhibit greater PAP. 相似文献
20.
The molecular mechanism of smooth muscle contraction was approached by a novel method, covalent 14C-labeling. Intra- and intermolecular protein interactions during contractile activity are reflected by changed reactivity of protein side chains; these can be detected by reagents which readily permeate through the muscle membrane without affecting the contractility and form covalent bonds with proteins in the muscle. The incorporation of 14CH2ICONH2 into proteins of 1-hour histamine contracted versus resting porcine carotid arterial muscles was determined. Out of fourteen 14C-labeled proteins analyzed, only two showed a change in reactivity during sustained contraction. The incorporation of 14CH2ICONH2 into calponin and caldesmon in contracted muscles was about 66% of that into these same proteins in resting muscles. A transformation of calponin and caldesmon molecules from an extended to a more compact conformation explains the decreased reactivity. 相似文献