首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
In previous studies we found that mu-opioids, acting via mu-opioid receptors, inhibit endothelin-stimulated C6 glioma cell growth. In the preceding article we show that the kappa-selective opioid agonist U69,593 acts as a mitogen with a potency similar to that of endothelin in the same astrocytic model system. Here we report that C6 cell treatment with mu-opioid agonists for 1 h results in the inhibition of kappa-opioid mitogenic signaling. The mu-selective agonist endomorphin-1 attenuates kappa-opioid-stimulated DNA synthesis, phosphoinositide turnover, and extracellular signal-regulated kinase phosphorylation. To investigate the role of receptor endocytosis in signaling, we have examined the effects of dynamin-1 and its GTPase-defective, dominant suppressor mutant (K44A) on opioid modulation of extracellular signal-regulated kinase phosphorylation in C6 cells. Overexpression of dynamin K44A in C6 cells does not affect kappa-opioid phosphorylation of extracellular signal-regulated kinase. However, it does block the inhibitory action on kappa-opioid signaling mediated by the kappa-opioid receptor. Our results are consistent with a growing body of evidence of the opposing actions of mu- and kappa-opioids and provide new insight into the role of opioid receptor trafficking in signaling.  相似文献   

2.
Acute mu and kappa opioids activate the ERK/MAPK phosphorylation cascade that represents an integral part of the signaling pathway of growth factors in astrocytes. By this cross-talk, opioids may impact neural development and plasticity among other basic neurobiological processes in vivo. The mu agonist, [D-ala2,mephe4,glyol5]enkephalin (DAMGO), induces a transient stimulation of ERK phosphorylation, whereas kappa agonist, U69,593, engenders sustained ERK activation. Here we demonstrate that acute U69,593 and DAMGO stimulate ERK phosphorylation by utilization of different secondary messengers and protein kinase C (PKC) isoforms upstream of the growth factor pathway. Immortalized astrocytes transfected with either antisense calmodulin (CaM), a mutant mu opioid receptor that binds CaM poorly or a dominant negative mutant of PKCepsilon were used as a model system to study mu signaling. Evidence was gained to implicate CaM and PKCepsilon in DAMGO stimulation of ERK. DAMGO activation of PKCepsilon and/or ERK was insensitive to selective inhibitors of Ca2+ mobilization, but it was blocked upon phospholipase C inhibition. These results suggest a novel mechanism wherein, upon DAMGO binding, CaM is released from the mu receptor and activates phospholipase C. Subsequently, phospholipase C generates diacylglycerides that activate PKCepsilon. In contrast, U69,593 appears to act via phosphoinositide 3-kinase, PKCzeta, and Ca2+ mobilization. These signaling components were implicated based on studies with specific inhibitors and a dominant negative mutant of PKCzeta. Collectively, our findings on acute opioid effects suggest that differences in their mechanism of signaling may contribute to the distinct outcomes on ERK modulation induced by chronic mu and kappa opioids.  相似文献   

3.
The metabotropic glutamate receptor 5 (mGluR5) exhibits a rapid loss of receptor responsiveness to prolonged or repeated agonist exposure. This receptor desensitization has been seen in a variety of native and recombinant systems, and is thought to result from receptor-mediated, protein kinase C (PKC)-dependent phosphorylation of the receptor, uncoupling it from the G protein in a negative feedback regulation. We have investigated the rapid PKC-mediated desensitization of mGluR5 in cortical cultured astrocytes by measuring downstream signals from activation of mGluR5. These include activation of phosphoinositide (PI) hydrolysis, intracellular calcium transients, and extracellular signal-regulated kinase 2 (ERK2) phosphorylation. We present evidence that PKC plays an important role in rapid desensitization of PI hydrolysis and calcium signaling, but not in ERK2 phosphorylation. This differential regulation of mGluR5-mediated responses suggests divergent signaling and regulatory pathways which may be important mechanisms for dynamic integration of signal cascades.  相似文献   

4.
Thromboxane A2 (TXA2) receptor-mediated signal transduction was investigated in 1321N1 human astrocytoma cells. 9,11-Epithio-11,12-methano-TXA2 (STA2), a TXA2 receptor agonist, induced Ca2+ mobilization and phosphoinositide hydrolysis in a concentration-dependent manner. These responses were inhibited by treatment with U73122, an inhibitor of phosphatidylinositol-specific phospholipase C, or by culturing in 0.5% fetal calf serum containing 0.5 mM dibutyryladenosine 3',5'-cyclic monophosphate (dbcAMP) for 2 days. However, the dbcAMP treatment augmented the TXA2 receptor-mediated phosphorylation of mitogen-activated protein kinase (MAPK). These results were confirmed by a functional MAPK assay measuring the incorporation of 32P into the MAPK substrate peptide. The TXA2 receptor-mediated MAPK activation was inhibited by SQ29548, a TXA2 receptor antagonist, and GF109203X, an inhibitor of protein kinase C. Although U73122 did not inhibit or only slightly inhibited the activation of MAPK, D-609, an inhibitor of phosphatidylcholine-specific phospholipase C, potently attenuated the activation in a concentration-dependent manner. Furthermore, STA2 accelerated the release of [3H]choline metabolites from the cells prelabeled with [3H]choline chloride. This release was inhibited by treatment with D-609. These results suggest that phosphatidylcholine-specific phospholipase C and protein kinase C, but not phosphatidylinositol-specific phospholipase C, are involved in TXA2 receptor-mediated MAPK activation in 1321N1 human astrocytoma cells.  相似文献   

5.
Carbachol (Cch), a muscarinic acetylcholine receptors (mAChR) agonist, produces time- and dose-dependent increases in mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) phosphorylation in nondifferentiated Fischer rat thyroid (FRT) epithelial cells. Cells pretreatment with the selective phospholipase C inhibitor U73122 resulted in a decrease of Cch-stimulated ERK1/2 phosphorylation. These data indicated that the effect of mAChR on ERK activation could be mediated through agonist-induced Ca(2+) mobilization or PKC activation. Phosphorylation of ERK1/2 was mimicked by the protein kinase C (PKC) activator phorbol 12-myristate acetate (PMA), but was not altered either by PKC inhibitor GF109203X or by down-regulation of PKC. Phosphorylation of ERK1/2 was elevated by a direct [Ca(2+)](i) increase caused by thapsigargin or ionophore. Additionally, Cch-induced ERK1/2 phosphorylation was reduced after either inhibition of Ca(2+) influx or intracellular Ca(2+) release. Nevertheless, Cch-mediated ERK1/2 activation was genistein sensitive, indicating the involvement of protein tyrosine kinases on the downstream signalling of mAChR. Pretreatment of the cells with PP2 markedly decreased Cch-induced ERK1/2 phosphorylation, suggesting a role of Src family of tyrosine kinases in the signal transduction pathway involved in ERK1/2 activation by mAChR. To test the biological consequences of ERK activation, we examined the effect of mAChR on cell functions. Cch stimulation of FRT cells did not affect cell proliferation, but increased protein synthesis. This effect was significantly attenuated by PD98059, a selective inhibitor of mitogen-activated protein kinase kinase (MAPKK/MEK). This study demonstrated that muscarinic receptor-mediated increase in the ERK1/2 phosphorylation was dependent on [Ca(2+)](i) but independent of PKC and was mediated by the Src family of tyrosine kinases. Our results also supported the idea that the protein synthesis stimulated by mAChR in polarized FRT epithelial cells was regulated by the ERK1/2 phosphorylation pathway.  相似文献   

6.
Growth factors, hormones, and neurotransmitters have been implicated in the regulation of stem cell fate. Since various neural precursors express functional neurotransmitter receptors, which include G protein-coupled receptors, it is anticipated that they are involved in cell fate decisions. We detected mu-opioid receptor (MOR-1) and kappa-opioid receptor (KOR-1) expression and immunoreactivity in embryonic stem (ES) cells and in retinoic acid-induced ES cell-derived, nestin-positive, neural progenitors. Moreover, these G protein-coupled receptors are functional, since [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin, a MOR-selective agonist, and U69,593, a KOR-selective agonist, induce a sustained activation of extracellular signal-regulated kinase (ERK) signaling throughout a 24-h treatment period in undifferentiated, self-renewing ES cells. Both opioids promote limited proliferation of undifferentiated ES cells via the ERK/MAP kinase signaling pathway. Importantly, biochemical and immunofluorescence data suggest that [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin and U69,593 divert ES cells from self-renewal and coax the cells to differentiate. In retinoic acid-differentiated ES cells, opioid-induced signaling features a biphasic ERK activation profile and an opioid-induced, ERK-independent inhibition of proliferation in these neural progenitors. Collectively, the data suggest that opioids may have opposite effects on ES cell self-renewal and ES cell differentiation and that ERK activation is only required by the latter. Finally, opioid modulation of ERK activity may play an important role in ES cell fate decisions by directing the cells to specific lineages.  相似文献   

7.
Recently, we have isolated a cDNA encoding a muscarinic acetylcholine receptor (mAChR) from Caenorhabditis elegans. To investigate the regulation of phospholipase D (PLD) signaling via a muscarinic receptor, we generated stable transfected Chinese hamster ovary (CHO) cells that overexpress the mAChR of C. elegans (CHO-GAR-3). Carbachol (CCh) induced inositol phosphate formation and a significantly higher Ca(2+) elevation and stimulated PLD activity through the mAChR; this was insensitive to pertussis toxin, but its activity was abolished by the phospholipase C (PLC) inhibitor U73122. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands after CCh treatment. The CCh-induced PLD activation and tyrosine phosphorylation were significantly reduced by the protein kinase C (PKC) inhibitor calphostin C and down-regulation of PKC and the tyrosine kinase inhibitor genistein. Moreover, the Ca(2+)-calmodulin-dependent protein kinase II (CaM kinase II) inhibitor KN62, in addition to chelation of extracellular or intracellular Ca(2+) by EGTA and BAPTA/AM, abolished CCh-induced PLD activation and protein tyrosine phosphorylation. Taken together, these results suggest that the PLC/PKC-PLD pathway and the CaM kinase II/tyrosine kinase-PLD pathway are involved in the activation of PLD through mAChRs of C. elegans.  相似文献   

8.
Glutamate is the major excitatory neurotransmitter in the CNS. Although its role in neurons has been studied extensively, little is known about its function in astrocytes. We studied the effects of glutamate on signaling pathways in primary astrocytes. We found that the tyrosine kinase related adhesion focal tyrosine kinase (RAFTK) is tyrosine phosphorylated in response to glutamate in a time- and dose-dependent manner. This phosphorylation was pertussis toxin (PTX) sensitive and could be attenuated by the depletion of Ca2+ from intracellular stores. RAFTK tyrosine phosphorylation was mediated primarily by class I/II metabotropic glutamate receptors and depends on protein kinase C (PKC) activation. Glutamate treatment of primary astrocytes also results in a significant increase in the activity of the mitogen-activated protein kinases [extracellular signal-related kinases 1/2 (ERK1/2)]. Like RAFTK phosphorylation, ERK1/2 activation is PTX sensitive and can be attenuated by the depletion of intracellular Ca2+ and by PKC inhibition, suggesting that RAFTK might mediate the glutamate-dependent activation of ERK1/2. Furthermore, we demonstrated that glutamate stimulation of primary astrocytes leads to a significant increase in DNA synthesis. Glutamate-stimulated DNA synthesis is PTX sensitive and can be inhibited by the MAP kinase kinase inhibitor PD98059, suggesting that in primary astrocytes, glutamate might signal via RAFTK and MAP kinase to promote DNA synthesis and cell proliferation.  相似文献   

9.
Go is the most abundant G protein expressed in brain but its function is less known. Here we show a novel function of Goalpha as a mediator of opioid receptor-induced extracellular signal-regulated kinase activation in neural cells. The current study found that, in neuroblastoma x glioma NG108-15 hybrid cells, activation of extracellular signal-regulated kinase through delta opioid receptors was mediated by pertussis toxin-sensitive G protein and independent of Gbetagamma subunits, PI3 kinase and receptor internalization. Overexpression of a dominant negative form of Goalpha1, but not Gialpha2, completely blocked delta opioid receptor-induced extracellular signal-regulated kinase activity. Decreasing Goalpha expression by RNA interference greatly reduced delta opioid receptor-induced extracellular signal-regulated kinase activity and extracellular signal-regulated kinase-dependent gene expression, while knocking down Gialpha2 did not. By taking advantage of differences between human and mouse Goalpha gene sequences, we simultaneously knocked down endogenous Goalpha expression and expressed exogenous human Goalpha subunits. We found that both human Goalpha1 and Goalpha2 could mediate delta opioid receptor-induced extracellular signal-regulated kinase activation. This study suggests that one of the functions of Goalpha in the brain is to mediate extracellular signal-regulated kinase activation by G protein-coupled receptors.  相似文献   

10.
Dai R  Ali MK  Lezcano N  Bergson C 《Neuro-Signals》2008,16(2-3):112-123
D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.  相似文献   

11.
Imidazoline receptor antisera-selected protein (IRAS) is considered as a candidate for the I1-imidazoline receptor (I1R), but the signaling pathway mediated by IRAS remains unknown. In our study, the signal transduction pathways of IRAS were investigated in CHO cells stably expressing IRAS (CHO-IRAS), and compared to the native I1R signaling pathways. Rilmenidine or moxonidine (10 nM-100 microM), I1R agonists, failed to stimulate [35S]-GTPgammaS binding in CHO-IRAS cell membrane preparations, suggesting that G protein may not be involved in IRAS signaling pathway. However, incubation of CHO-IRAS with rilmenidine or moxonidine for 5 min could induce an upregulation of phosphatidylcholine-selective phospholipase C (PC-PLC) activity, and an increase in the accumulation of diacylglycerol (DAG), the hydrolysate of PC-PLC, in a concentration-dependent manner. The elevated activation of PC-PLC by rilmenidine or moxonidine (100 nM) could be blocked by efaroxan, a selective I1R antagonist. Cells treated with rilmenidine or moxonidine showed an increased level of extracellular signal-regulated kinase (ERK) phosphorylation in a concentration-dependent manner, which could be reversed by efaroxan or D609, a selective PC-PLC inhibitor. These results suggest that the signaling pathway of IRAS in response to I1R agonists coupled with the activation of PC-PLC and its downstream signal transduction molecule, ERK. These findings are similar to those in the signaling pathways of native I1R, providing some new evidence for the relationship between I1R and IRAS.  相似文献   

12.
Serotonin 5-HT2C receptors (5-HT(2C)Rs) are almost exclusively expressed in the CNS, and implicated in disorders such as obesity, depression, and schizophrenia. The present study investigated the mechanisms governing the coupling of the 5-HT(2C)R to the extracellular signal-regulated kinases (ERKs) 1/2, using a Chinese hamster ovary (CHO) cell line stably expressing the receptor at levels comparable to those found in the brain. Using the non-RNA-edited isoform of the 5-HT(2C)R, constitutive ERK1/2 phosphorylation was observed and found to be modulated by full, partial and inverse agonists. Interestingly, agonist-directed trafficking of receptor stimulus was also observed when comparing effects on phosphoinositide accumulation and intracellular Ca2+ elevation to ERK1/2 phosphorylation, whereby the agonists, [+/-]-2,5-dimethoxy-4-iodoamphetamine (DOI) and quipazine, showed reversal of efficacy between the phosphoinositide/Ca2+ pathways, on the one hand, and the ERK1/2 pathway on the other. Subsequent molecular characterization found that 5-HT-stimulated ERK1/2 phosphorylation in this cellular background requires phospholipase D, protein kinase C, and activation of the Raf/MEK/ERK module, but is independent of both receptor- and non-receptor tyrosine kinases, phospholipase C, phosphoinositide 3-kinase, and endocytosis. Our findings underscore the potential for exploiting pathway-selective receptor states in the differential modulation of signaling pathways that play prominent roles in normal and abnormal neuronal signaling.  相似文献   

13.
14.
15.
Mechanisms for inhibition of P2 receptors signaling in neural cells   总被引:4,自引:0,他引:4  
Trophic factors are required to ensure neuronal viability and regeneration after neural injury. Although abundant information is available on the factors that cause the activation of astrocytes, little is known about the molecular mechanisms underlying the regulation of this process. Nucleotides released into the extracellular space from injured or dying neural cells can activate astrocytes via P2 nucleotide receptors. After a brief historical review and update of novel P2 receptor antagonists, this article focuses on recent advancements toward understanding molecular mechanisms that regulate G protein-coupled P2Y receptor signaling. Among P2Y receptor subtypes, the heptahelical P2Y2 nucleotide receptor interacts with vitronectin receptors via an RGD sequence in the first extracellular loop, and this interaction is required for effective signal transduction to activate mitogen-activated protein kinases ERK1/2, to mobilize intracellular calcium stores via activation of phospholipase C, protein kinase C isoforms, and to activate focal adhesion kinase and other signaling events. Ligation of vitronectin receptors with specific antibodies caused an inhibition of P2Y2 receptor-induced ERK1/2 and p38 phosphorylation and P2Y2 receptor-induced cytoskeleton rearrangement and DNA synthesis. Structure-function studies have identified agonist-induced phosphorylation of the C-terminus of the P2Y2 receptor, an important mechanism for receptor desensitization. Understanding selective mechanisms for regulating P2Y2 receptor signaling could provide novel targets for therapeutic strategies in the management of brain injury, synaptogenesis, and neurological disorders.  相似文献   

16.
Lipopolysaccharide (LPS)-activated macrophages are pivotal in innate immunity. With LPS treatment, extracellular signals are transduced into macrophages via Toll-like receptor 4 and induce inflammatory mediator production by activating signaling pathways, including the nuclear factor-kappaB (NF-kappaB) pathway and the mitogen-activated protein kinase (MAPK) pathway. However, the mechanisms by which the intracellular free Ca2+ concentration ([Ca2+]i) increases and protein kinase C (PKC) is activated remain unclear. Therefore, we investigated the signaling pathway for Ca2+- and PKC-dependent NF-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha (TNF-alpha) production in LPS-stimulated rat peritoneal macrophages. The results demonstrated that the LPS-induced transient [Ca2+]i increase is due to Ca2+ release and influx. Extracellular and intracellular Ca2+ chelators inhibited phosphorylation of PKCalpha and PKCbeta. A PKCbeta-specific and a general PKC inhibitor blunted phosphorylation of serine in mitogen-activated/extracellular signal-regulated kinase kinase kinase (MEKK) 1. Moreover, a MEKK inhibitor reduced activation of inhibitorykappaB kinase and NF-kappaB. Upstream of the [Ca2+]i increase, a protein-tyrosine kinase inhibitor reduced phosphorylation of phospholipase C (PLC) gamma. Furthermore, a PLC inhibitor eliminated the transient [Ca2+]i increase and decreased the amount of activated PKC. Therefore, these results revealed the following roles of Ca2+ and PKC in the signaling pathway for NF-kappaB activation in LPS-stimulated macrophages. After LPS treatment, protein-tyrosine kinase mediates PLCgamma1/2 phosphorylation, which is followed by a [Ca2+]i increase. Several PKCs are activated, and PKCbeta regulates phosphorylation of serine in MEKK1. Moreover, MEKKs regulate inhibitory kappaB kinase activation. Sequentially, NF-kappaB is activated, and inducible nitric-oxide synthase and tumor necrosis factor-alpha production is promoted.  相似文献   

17.
In addition to its well-known activational mechanism, the steroid hormone 17-beta-estradiol (E2) has been shown to rapidly activate various signal transduction pathways that could participate in estrogen-mediated regulation of synaptic plasticity. Although the mechanisms underlying these effects are not clearly understood, it has been repeatedly suggested that they involve a plasma membrane receptor which has direct links to several intracellular signaling cascades. To further address the question of whether E2 acts directly at the synapse and through membrane-bound receptors, we studied the effects of E2 and of ligands of estrogen receptors on various signaling pathways in cortical synaptoneurosomes. Our results demonstrate that E2 elicits N-methyl-D-aspartate receptor phosphorylation and activates the extracellular signal-regulated kinase and the phosphatidylinositol 3-kinase/Akt signal transduction pathways in this cortical membrane preparation. Furthermore, we provide evidence for the presence of a membrane-bound estrogen receptor responsible for these effects in cortical synaptoneurosomes. Our study demonstrates that E2 directly acts at cortical synapses, and that synaptoneurosomes provide a useful system to investigate the mechanisms by which E2 regulates synaptic transmission and plasticity.  相似文献   

18.
Adenosine binds to a class of G-protein coupled receptors, which are further distinguished as A(1), A(2a), A(2b) and A(3) adenosine receptors. As we have shown earlier, the stable adenosine analogue NECA (N6-(R)-phenylisopropyladenosine) stimulates IL-6 expression in the human astrocytoma cell line U373 MG via the A(2b) receptor. The mechanism by which NECA promotes astrocytic IL-6 expression has not been identified. By using various inhibitors of signal transduction, we found that p38 mitogen-activated protein kinases (MAPK) activation (inhibitor SB202190), but not extracellular signal-regulated kinase (ERK) (PD98059) and c-jun N-terminal kinase (JNK)(SP600125), is essential in the NECA-induced signalling cascade that leads to the increase in IL-6 synthesis in U373 MG cells. Results obtained with protein kinase C (PKC) inhibitors that have different substrate specificities, indicated that the PKC delta and epsilon isoforms are also involved in adenosine receptor A(2b) dependent upregulation of IL-6 expression. This is supported by the fact that NECA induced the activation of PKC delta and epsilon in U373 MG cells.  相似文献   

19.
A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes.  相似文献   

20.
Carbachol (Cch), a muscarinic acetylcholine receptor (mAChR) agonist, increases intracellular-free Ca(2+) mobilization and induces mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) phosphorylation in MCF-7 human breast cancer cells. Pretreatment of cells with the selective phospholipase C (PLC) inhibitor U73122, or incubation of cells in a Ca(2+)-free medium did not alter Cch-stimulated MAPK/ERK phosphorylation. Phosphorylation of MAPK/ERK was mimicked by phorbol 12-myristate acetate (PMA), an activator of protein kinase C (PKC), but Cch-evoked MAPK/ERK activation was unaffected by down-regulation of PKC or by pretreatment of cells with GF109203X, a PKC inhibitor. However, Cch-stimulated MAPK/ERK phosphorylation was completely blocked by myristoylated PKC-zeta pseudosubstrate, a specific inhibitor of PKC-zeta, and high doses of staurosporine. Pretreatment of human breast cancer cells with wortmannin or LY294002, selective inhibitors of phosphoinositide 3-kinase (PI3K), diminished Cch-mediated MAPK/ERK phosphorylation. Similar results were observed when MCF-7 cells were pretreated with genistein, a non-selective inhibitor of tyrosine kinases, or with the specific Src tyrosine kinase inhibitor PP2. Moreover, in MCF-7 human breast cancer cells mAChR stimulation induced an increase of protein synthesis and cell proliferation, and these effects were prevented by PD098059, a specific inhibitor of the mitogen activated kinase kinase. In conclusion, analyses of mAChR downstream effectors reveal that PKC-zeta, PI3K, and Src family of tyrosine kinases, but not intracellular-free Ca(2+) mobilization or conventional and novel PKC activation, are key molecules in the signal cascade leading to MAPK/ERK activation. In addition, MAPK/ERK are involved in the regulation of growth and proliferation of MCF-7 human breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号