首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Species loss and invasion of exotic species are two components of global biodiversity change that are expected to influence ecosystem functioning. Yet how they interact in natural settings remains unclear. Experiments have revealed two major mechanisms for the observed increase in primary productivity with plant species richness. Plant productivity may rise with species richness due to the increased amount of resources used by more diverse communities (niche complementarity) or through the increased probability of including a highly productive, dominant species in the community (sampling effect). Current evidence suggests that niche complementarity is the most relevant mechanism, whereas the sampling effect would only play a minor and transient role in natural systems. In turn, exotic species can invade by using untapped resources or because they possess a fitness advantage over resident species allowing them to dominate the community. We argue that the sampling effect can be a significant biodiversity mechanism in ecosystems invaded by dominant exotic species, and that the effect can be persistent even after decades of succession. We illustrate this idea by analyzing tree species richness–productivity relationships in a subtropical montane forest (NW Argentina) heavily invaded by Ligustrum lucidum, an evergreen tree from Asia. We found that the forest biomass increased along a natural gradient of tree species richness whether invaded by L. lucidum or not. Consistent with the sampling effect, L. lucidum invasion tripled total tree biomass irrespective of species richness, and monocultures of L. lucidum were more productive than any of the most species‐rich, uninvaded communities. Hence, the sampling effect may not be restricted to randomly assembled, synthetic communities. We emphasize that studying invaded ecosystems may provide novel insights on the mechanisms underlying the effect of biodiversity on ecosystem function.  相似文献   

2.
Yee DA  Juliano SA 《Oecologia》2007,153(1):153-162
The more individuals hypothesis (MIH) postulates that productivity increases species richness by increasing mean equilibrium population size, thereby reducing the probability of local extinction. We tested the MIH for invertebrates colonizing microcosms that simulated tree holes by manipulating productivity through additions of leaf or animal detritus and subsequently determining the relationships among richness, total abundance, abundance per species, and measures of productivity. We quantified productivity as the rate of microorganism protein synthesis, microorganism metabolic rate, nutrient ion concentration, and type and amount of detritus. Microcosms with animal detritus attracted more species, more individuals per species, and more total individuals than did microcosms with similar amounts of leaf detritus. Relationships between richness or abundance and productivity varied with date. Richness in June increased as a linear function of productivity, whereas the power function predicted by the MIH fit best in July. Abundance in June and July was best described by a power function of productivity, but the linear function predicted by the MIH fit best in September. Abundance per species was best described by a power function of productivity in June and July. Path analysis showed that the indirect effect of productivity through abundance on richness that is predicted by MIH was important in all months, and that direct links between productivity and richness were unnecessary. Our results support many of the predictions of the MIH, but they also suggest that the effects of abundance on richness may be more complex than expected.  相似文献   

3.
Species–energy theory is a commonly invoked theory predicting a positive relationship between species richness and available energy. The More Individuals Hypothesis (MIH) attempts to explain this pattern, and assumes that areas with greater food resources support more individuals, and that communities with more individuals include more species. Using a large dataset for North American birds, I tested these predictions of the MIH, and also examined the effect of habitat complexity on community structure. I found qualitative support for the relationships predicted by the MIH, however, the MIH alone was inadequate for fully explaining richness patterns. Communities in more productive sites had more individuals, but they also had more even relative abundance distributions such that a given number of individuals yielded a greater number of species. Richness and evenness were also higher in structurally complex forests compared to structurally more simple grasslands when controlling for available energy.  相似文献   

4.
Aim  One of the few general laws in ecology is that species richness is a positive function of area. However, it has been proposed that area would merely be a proxy for energy. Additionally, habitat heterogeneity has been found to be an important factor determining species richness. Yet the relative importance of those relationships is little known, and it is still unclear how they are brought about. We aimed to dissect which factors drive the species richness of boreal forest birds, and to identify the most probable mechanisms.
Location  Forested protected areas in Finland.
Methods  Using bird line census data collected in 104 protected areas, we ran simultaneous autoregressive models to explain the species richness of forest birds. We explored the value of forest area, tree volume, tree growth, mean degree days and habitat heterogeneity as explanatory variables and used the species richness within different species groups, based on the predictions of hypothesized mechanisms, as a response variable.
Results  Energy, rather than area or habitat heterogeneity, seems to be the main driver of species richness in boreal forest birds. More specifically, productive energy was a better predictor of total species richness than solar energy. Among the tested hypothetical mechanisms, the sampling hypothesis received strong support. After accounting for sampling, solar energy had an effect on species richness.
Main conclusions  As productive energy, such as tree volume, is associated with species richness, high-energy areas should be prioritized in forest conservation planning. Reductions in productive energy may first lead to the disappearance of the rarest species due to the random sampling process. Climate change may result in increased species richness due to increasing amount of productive and solar energy in forests. However, the range shifts of bird species may not be fast enough to keep up with the temperature increases.  相似文献   

5.
林下生物量影响因素:幼龄林树种特性比丰富度更重要 生物多样性与生态系统功能的正相关关系已被广泛报道,其主要来源于对草原生态系统的研究。然而,该结论并不一定适用于更复杂的环境,例如具有不同垂直层次的森林。举例而言,已有研究表明上层乔木树种丰富度与林下生产力降低有关。树种丰富度是否会通过增加(由于生境异质性)或降低(通过增强竞争)资源的可利用性进而影响林下生产力,以及林下生产力是否受树种特性的影响更大,这些影响机制都可能会随着时间的推移而改变。此外,研究还表明,丰富度-生产力关系随着环境背景的变化而改变。本研究利用可以操控树种丰富度的实验林场研究了这些不同垂直层位里的时间和环境动态。在中国亚热带森林生物多样性与生态系统功能(BEF-China)研究计划的框架下,我们在3年时间里沿树种丰富度梯度反复采集林下生物量样本,研究了不同环境处理中树种丰富度、树种特性和时间对林下生物量的影响。尽管我们发现乔木层特性对林下生物量有显著和一致的影响,但是树种丰富度对后者却不具有这种影响。另外,在森林结构层之间,可能并不存在单一的、具有普遍性的上层乔木树种丰富度与林下生产力的相关关系,并且与上层乔木相关的环境因素(如透光率)对林下生产力的贡献程度会随着时间而变化。总体而言,我们的结果表明,在研究森林结构层之间的关系时应将时间动态变化考虑在内。  相似文献   

6.
We tested the prediction that forest habitat types with relatively high productivity are not only relatively low in species richness but are also regionally uncommon. This relationship was supported by an analysis of data from 146 forest communities in southern Ontario, Canada. Potential forest habitat productivity was determined based on a classification scheme developed for the Canadian Land Inventory (CLI) project. Vascular plant species richness approximated a unimodal distribution across forest productivity classes with the lowest mean species richness recorded for the two most productive classes. The contemporary regional commonness of forest habitat productivity classes were also displayed as a unimodal frequency distribution. Hence, mean species richness per CLI class was positively correlated with the regional area of land encompassing each of these productivity classes and this relationship was increasingly significant at increasingly larger spatial scales of regional CLI class land areas. These results are consistent with the species pool hypothesis, which postulates that species richness is relatively low in highly productive habitats because such habitats have been relatively uncommon in both space and time and hence, have had relatively little historical opportunity for the origination of adapted species.  相似文献   

7.
Productivity has long been argued to be a major driver of species richness patterns. In the present study we test alternative productivity–diversity hypotheses using vegetation data from the vast Eurasian tundra. The productivity–species pool hypothesis predicts positive relationships at both fine and coarse grain sizes, whereas the productivity–interaction hypothesis predicts unimodal patterns at fine grain size, and monotonic positive patterns at coarse grain size. We furthermore expect to find flatter positive (productivity–species pool hypothesis) or more strongly negative (productivity–interaction hypothesis) relationships for lichens and bryophytes than for vascular plants, because as a group, lichens and bryophytes are better adapted to extreme arctic conditions and more vulnerable to competition for light than the taller‐growing vascular plants. The normalised difference vegetation index (NDVI) was used as a proxy of productivity. The generally unimodal productivity–diversity patterns were most consistent with the productivity–interaction hypothesis. There was a general trend of decreasing species richness from moderately to maximally productive tundra, in agreement with an increasing importance of competitive interactions. High richness of vascular plants and lichens occurred in moderately low productive tundra areas, whereas that of bryophytes occurred in the least productive tundra habitats covered by this study. The fine and coarse grain richness trends were surprisingly uniform and no variation in beta diversity along the productivity gradient was seen for vascular plants or bryophytes. However, lichen beta diversity varied along the productivity gradient, probably reflecting their sensitivity to habitat conditions and biotic interactions. Overall, the results show evidence that productivity–diversity gradients exist in tundra and that these appear to be largely driven by competitive interactions. Our results also imply that climate warming‐driven increases in productivity will strongly affect arctic plant diversity patterns.  相似文献   

8.
We investigated the effect of species richness on productivity in randomly assembled grassland communities without legumes. Aboveground biomass increased with increasing species richness and different measures of complementarity showed strong increases with plant species richness. Increasing productivity could not be attributed to a relative increase of highly productive species. Instead, the increase appeared to be caused by the increased performance of several low‐productive species. Our results provide evidence that niche complementarity can strongly increase productivity in grasslands, although the communities contained only grasses and forbs.  相似文献   

9.
Aim  To consider the role of local colonization and extinction rates in explaining the generation and maintenance of species richness gradients at the regional scale.
Location  A Mediterranean biome (oak forests, deciduous forests, shrublands, pinewoods, firwoods, alpine heathlands, crops) in Catalonia, Spain.
Methods  We analysed the relative importance of direct and indirect effects of community size in explaining species richness gradients. Direct sampling effects of community size on species richness are predicted by Hubbell's neutral theory of biodiversity and biogeography. The greater the number of individuals in a locality, the greater the number of species expected by random direct sampling effects. Indirect effects are predicted by the abundance–extinction hypothesis, which states that in more productive sites increased population densities and reduced extinction rates may lead to high species richness. The study system was an altitudinal gradient of forest bird species richness.
Results  We found significant support for the existence of both direct and indirect effects of community size in species richness. Thus, both the neutral and the abundance–extinction hypotheses were supported for the altitudinal species richness gradient of forest birds in Catalonia. However, these mechanisms seem to drive variation in species richness only in low-productivity areas; in high-productivity areas, species richness was uncorrelated with community size and productivity measures.
Main conclusions  Our results support the existence of a geographical mosaic of community-based processes behind species richness gradients, with contrasting abundance–extinction dynamics and sampling effects in areas of low and high productivity.  相似文献   

10.
Global biodiversity losses provide an immediate impetus to elucidate the relationships between biodiversity, productivity and stability. In this study, we quantified the effects of species richness and species combination on the productivity and stability of phytoplankton communities subject to predation by a single rotifer species. We also tested one mechanism of the insurance hypothesis: whether large, slow-growing, potentially-defended cells would compensate for the loss of small, fast-growing, poorly-defended cells after predation. There were significant effects of species richness and species combination on the productivity, relative yield, and stability of phytoplankton cultures, but the relative importance of species richness and combination varied with the response variables. Species combination drove patterns of productivity, whereas species richness was more important for stability. Polycultures containing the most productive single species, Dunaliella, were consistently the most productive. Yet, the most species rich cultures were the most stable, having low temporal variability in measures of biomass. Polycultures recovered from short-term negative grazing effects, but this recovery was not due to the compensation of large, slow-growing cells for the loss of small, fast-growing cells. Instead, polyculture recovery was the result of reduced rotifer grazing rates and persisting small species within the polycultures. Therefore, although an insurance effect in polycultures was found, this effect was indirect and unrelated to grazing tolerance. We hypothesize that diverse phytoplankton assemblages interfered with efficient rotifer grazing and that this “interference effect” facilitated the recovery of the most productive species, Dunaliella. In summary, we demonstrate that both species composition and species richness are important in driving patterns of productivity and stability, respectively, and that stability in biodiverse communities can result from an alteration in consumer functioning. Our findings underscore the importance of predator-prey dynamics in determining the relationships between biodiversity, productivity and stability in producer communities.  相似文献   

11.
Jeffrey S. Dukes 《Oikos》2001,94(3):468-480
Several researchers have hypothesized that, through various mechanisms, loss of species and functional group richness from a plant community will affect the magnitude and interannual variability of productivity. To test this hypothesis, I conducted a microcosm study of California grassland communities that differed in species richness. I grew cohorts of microcosms that simulated undisturbed grassland (in one year) and gopher-disturbed grassland (in two consecutive years). As the number of species per functional group decreased from 4 to 1, biomass production remained constant in all three cohorts. As species richness decreased from 16 to 1 (or 8 to 1, in either case including a drop in functional group richness), productivity declined in one of the cohorts. In this cohort, productivity of one polyculture marginally exceeded that of the most productive monoculture. Resource complementarity and a type of selection effect may have each contributed to the observed diversity-productivity relationships. Results suggest the existence of a selection effect that involves species that are highly productive in mixtures, rather than in monoculture. Over two seasons, species and functional group richness did not affect the interannual variability of biomass production. Comparisons of interannual changes in the productivity of monocultures and polycultures suggested that, in some polycultures, increased water availability might have relieved interspecific competition more than intraspecific competition. Based on results from this experiment and other manipulative experiments, I develop a framework to explain the relationship between species richness and productivity in terrestrial plant communities. The framework highlights the importance of environmental variation in shaping the diversity/productivity relationship.  相似文献   

12.
Richness, structure and functioning in metazoan parasite communities   总被引:4,自引:0,他引:4  
Ecosystem functioning, characterized by components such as productivity and stability, has been extensively linked with diversity in recent years, mainly in plant ecology. The aim of our study was thus to quantify general relationships between diversity, community structure and ecosystem functions in metazoan parasite communities. We used data on parasite communities from 15 species of marine fish hosts from coastal Chile. The volumetric abundance (volume of all parasite species per individual host, in mm3) was used as a surrogate for productivity. Species diversity was measured using both species richness and evenness, while community structure was estimated using the co‐occurrence indices V‐ratio, C‐score and a new C‐scores index standardized for the number of host replicates. After correcting for fish size, 47% of host species show no relationship, 13% show a hump shaped curve and 40% show positive monotonic relationships between productivity and parasite richness across all host individuals in a sample. We obtained a logarithmically decreasing relationship between evenness and productivity for all fish species, and propose a ‘dominance‐resistance’ hypothesis based on immunity to explain this pattern. The stability of the parasite community, measured as the coefficient of variation in productivity among individual hosts, was strongly and positively related to mean species richness across the 15 host species. The C‐scores index, based on the number of checkerboard units in the host‐parasite presence/absence matrix, increases linearly with mean productivity across the 15 host species, suggesting that parasite communities tend to be more structured when they are more productive. This is the likely reason why linear relationships between richness and productivity were not observed consistently in all fish species. Parasite communities provide some clear patterns for the diversity–ecosystem functioning debate in ecology, although other factors, such as the history of community assembly, may also influence these patterns.  相似文献   

13.
Several studies have shown that ecosystem functioning increases with increasing species richness. Most of these studies examined the effects of species richness on primary productivity. The underlying mechanism that explains this pattern is usually the selection effect. The higher the diversity in plant communities the higher the chance in including a very productive species that dominates the community, or a legume species that brings N into the soil. Less attention has been given so far to the effects of species richness on phosphorus exploitation. The aim of this work was to investigate the effect of species richness on aboveground primary productivity and P accumulation in a plant diversity experiment. For this reason, 14 grassland plant species were grown in containers as monocultures and in mixtures of 2-, 3-, 4-, 8-, 11- and 14-species combinations. Results show that the aboveground phytomass and total P increased with increasing species richness. Complementarity effects, probably through partitioning of resources, were most apparent in the highest levels of species richness, and were observed to be greater for total P in comparison to phytomass. Selection effects generally were greater for phytomass than for total P; they were significantly positive at the 2- to 8-species combinations but close to 0 or negative in the highest levels of species richness. The increases in phytomass and total P at the highest levels of species richness appeared to be caused by the increased performance of intermediate-productive species. Responsible Editor: Tibor Kalapos.  相似文献   

14.
Coral species richness: ecological versus biogeographical influences   总被引:3,自引:0,他引:3  
Species richness in communities varies with habitat area, productivity, disturbance level, intensity of species interactions, and regional/historical effects. All of these factors influence coral richness but their effects vary with spatial scale, position on the reef, and regional location. Species richness of corals along depth gradients shows a unimodal, hump-shaped curve that peaks at intermediate depths. Moreover, the peak of the curve is higher in regions with larger species pools. This “regional enrichment” of the local community appears in line transect samples as small as 10 m in length. The pattern suggests that ecological factors operating over scales of tens of meters and regional/historical factors operating over thousands of kilometers can both affect local richness. Regional factors probably include differences in speciation relative to extinction rates among regions and proximity of local sites to richness hotspots. Plausible factors operating at the local scale are species interactions, disturbance, and productivity which combine in different ways to produce the unimodal pattern. Shallow areas support few species because extinction rates are high due to frequent disturbance or because of environmental extremes. In addition, high productivity encourages rapid growth and thus the potential for intense interspecific competition. In areas where branching acroporids are abundant, exclusion by these dominant competitors is possible. Deep areas may be depauperate because few species can tolerate the low light levels found there. Areas of intermediate depth have the richest communities because they are open for colonization by many species and because extinction rates are low. Several theories may explain this “openness” and species persistence: 1. Occasional disturbance coupled with low growth rates results in glacially slow exclusion by the dominant competitor. 2. Aggregation of corals creates spatial variation in the intensity of competition and thus refuges from competition within a spatial landscape. Inferior competitors persist because they are superior at dispersal and refuge colonization. 3. Specialist predators focus on high-density juvenile populations near the parent, creating ecological space for colonization by non-prey. 4. Coral competitive abilities are roughly equal and recruitment into the community is a probabilistic event. The community thus exhibits random drift and exclusion is an extremely lengthy process. Based upon empirical evidence, these theories are listed in order of plausibility, but still need to be rigorously tested. Accepted: 9 September 1999  相似文献   

15.
The relationship between species richness and productivity is important from both a basic, theoretical perspective and also because it has important ramifications for applied ecology including ecosystem restoration and the design of carbon offset plantings. While a more species‐rich community is often believed to be more productive than a species‐poor community, findings from observational and experimental studies differ and our understanding of the relationship comes largely from grasslands. Consequently, we aimed to determine for the first time the nature of the species richness–productivity relationship in a southern‐hemisphere dry sclerophyll ecosystem. We investigated the impact of species richness on productivity, plant density and mean plant biomass at three sowing densities in three species assemblages. Eucalyptus globulus, Acacia mearnsii and Allocasuarina verticillata were each grown as monocultures and included in every subsequent level of species richness, forming three distinct species assemblages. Communities were grown in a glasshouse pot experiment for four months, then harvested and above‐ground biomass measured. We found no general species richness–productivity relationship in the communities studied. There were no overall increases in productivity as species richness increased and in fact in most cases the productivity of communities with 4 and 8 species was lower than monocultures of the dominants. Importantly, density influenced the way richness affected productivity and this effect was dependent upon assemblage, indicating that species identity is a key determinant of productivity. These results demonstrate important ecological principles in a previously untested system. A key outcome of this experiment is that density alters the relationship between species richness and initial productivity in assemblages of Australian dry sclerophyll species.  相似文献   

16.
高寒草甸植物群落物种多样性和生产力关系的光竞争研究   总被引:4,自引:1,他引:3  
邱波  杜国祯 《西北植物学报》2004,24(9):1646-1650
通过施肥形成的生产力由低到高的过程中,物种多样性往往降低。总体竞争假说认为对所有资源的竞争作用对多样性的影响随着生产力提高而加剧,导致物种多样性的下降;光竞争假说则认为随着生产力提高,种间竞争从低生产力时的地下竞争转向高生产力时的光竞争,是光竞争导致了物种多样性的下降。为了验证这两种假说,本文通过在甘南玛曲高寒草甸的均匀施肥实验,研究了光竞争对高寒草甸植物群落物种多样性和生产力关系的影响。结果表明:(1)随着施肥梯度的增加,大部分植物的生长速率加快,高度和叶面积增加;(2)随着施肥梯度的增加,植物群落地上总的生物量提高,叶面积指数增加,透光率降低,物种多样性减少;(3)个体大小不对称的光竞争导致了高寒草甸植物群落物种多样性随施肥梯度的增加而减少。  相似文献   

17.
We studied the temporal variability and resistance to perturbation of the biomass production of grassland communities from an experimental diversity gradient (the Portuguese BIODEPTH project site). With increasing species richness relative temporal variability (CV) of plant populations increased but that of communities decreased, supporting the insurance hypothesis and related theory. Species‐rich communities were more productive than species‐poor communities in all three years although a natural climatic perturbation in the third year (frequent frost and low precipitation) caused an overall decrease in biomass production. Resistance to this perturbation was constant across the experimental species richness gradient in relative terms, supporting a similar response from the Swiss BIODEPTH experiment. The positive biomass response was generated by different combinations of the complementarity and selection effects in different years. Complementarity effects were positive across mixtures on average in all three years and positively related to diversity in one season. The complementarity effect declined following perturbation in line with total biomass but, counter to predictions, in relative terms overyielding was maintained in all years. Selection effects were positively related to diversity in one year and negative overall in the other two years. The response to perturbation varied among species and for the same species growing in monoculture and mixture, but following the frost communities were more strongly dominated by species with lower monoculture biomass and the selection effect was more negative. In total, our results support previous findings of a positive relationship between diversity and productivity and between diversity and the temporal stability of production, but of no effect of diversity on the resistance to perturbation. We demonstrate for the first time that the relative strength of overyielding remained constant during an exceptional natural environmental perturbation.  相似文献   

18.
Ecological theory predicts a positive and asymptotic relationship between plant diversity and ecosystem productivity based on the ability of more diverse plant communities to use limiting resources more fully. This is supported by recent empirical evidence. Additionally, in natural ecosystems, plant productivity is often a function of the presence and composition of mycorrhizal associations. Yet, the effect of mycorrhizal fungi on the relationship between plant diversity and productivity has not been investigated. We predict that in the presence of AMF, productivity will saturate at lower levels of species richness because AMF increase the ability of plant species to utilize nutrient resources. In this study we manipulated old-field plant species richness in the presence and absence of two species of AMF. We found that in the absence of AMF, the relationship between plant species richness and productivity is positive and linear. However, in the presence of AMF, the relationship is positive but asymptotic, even though the maximum plant biomass was significantly different between the two AMF treatments. This is consistent with the hypothesis that AMF increase the redundancy of plant species in the productivity of plant communities, and indicates that these symbionts must be considered in future investigations of plant biodiversity and ecosystem function.  相似文献   

19.
We measured aboveground plant biomass and soil inorganic nitrogen pools in a biodiversity experiment in northern Sweden, with plant species richness ranging from 1 to 12 species. In general, biomass increased and nitrate pools decreased with increasing species richness. Transgressive overyielding of mixed plant communities compared to the most productive of the corresponding monocultures occurred in communities with and without legumes. N2-fixing legumes had a fertilizing function, while non-legumes had a N retaining function. Plant communities with only legumes had a positive correlation between biomass and soil nitrate content, whereas in plant communities without legumes they were negatively correlated. Both nitrate and ammonium soil pools in mixed non-legume communities were approximately equal to the lowest observed in the corresponding monocultures. In mixed legume/non-legume communities, no correlation was found for soil nitrate with either biomass or legume biomass as percentage of total biomass. The idea of complementarity among species in nitrogen acquisition was supported in both pure non-legume and mixed non-legume/legume communities. In the latter, however, facilitation through increased nitrogen availability and retention, was probably dominating. Our results suggest that diversity effects on biomass and soil N pools through resource use complementarity depend on the functional traits of species, especially N2 fixation or high productivity.  相似文献   

20.
Aim To evaluate the strength of evidence for hypotheses explaining the relationship between climate and species richness in forest plots. We focused on the effect of energy availability which has been hypothesized to influence species richness: (1) via the effect of productivity on the total number of individuals (the more individuals hypothesis, MIH); (2) through the effect of temperature on metabolic rate (metabolic theory of biodiversity, MTB); or (3) by imposing climatic limits on species distributions. Location Global. Methods We utilized a unique ‘Gentry‐style’ 370 forest plots data set comprising tree counts and individual stem measurements, covering tropical and temperate forests across all six forested continents. We analysed variation in plot species richness and species richness controlled for the number of individuals by using rarefaction. Ordinary least squares (OLS) regression and spatial regressions were used to explore the relative performance of different sets of environmental variables. Results Species richness patterns do not differ whether we use raw number of species or number of species controlled for number of individuals, indicating that number of individuals is not the proximate driver of species richness. Productivity‐related variables (actual evapotranspiration, net primary productivity, normalized difference vegetation index) perform relatively poorly as correlates of tree species richness. The best predictors of species richness consistently include the minimum temperature and precipitation values together with the annual means of these variables. Main conclusion Across the world's forests there is no evidence to support the MIH, and a very limited evidence for a prominent role of productivity as a driver of species richness patterns. The role of temperature is much more important, although this effect is more complex than originally assumed by the MTB. Variation in forest plot diversity appears to be mostly affected by variation in the minimum climatic values. This is consistent with the ‘climatic tolerance hypothesis’ that climatic extremes have acted as a strong constraint on species distribution and diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号