首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
We have identified a novel gene, six transmembrane protein of prostate 1 (STAMP1), which is largely specific to prostate for expression and is predicted to code for a 490-amino acid six transmembrane protein. Using a form of STAMP1 labeled with green fluorescent protein in quantitative time-lapse and immunofluorescence confocal microscopy, we show that STAMP1 is localized to the Golgi complex, predominantly to the trans-Golgi network, and to the plasma membrane. STAMP1 also localizes to vesicular tubular structures in the cytosol and colocalizes with the early endosome antigen 1 (EEA1), suggesting that it may be involved in the secretory/endocytic pathways. STAMP1 is highly expressed in the androgen-sensitive, androgen receptor-positive prostate cancer cell line LNCaP, but not in androgen receptor-negative prostate cancer cell lines PC-3 and DU145. Furthermore, STAMP1 expression is significantly lower in the androgen-dependent human prostate xenograft CWR22 compared with the relapsed derivative CWR22R, suggesting that its expression may be deregulated during prostate cancer progression. Consistent with this notion, in situ analysis of human prostate cancer specimens indicated that STAMP1 is expressed exclusively in the epithelial cells of the prostate and its expression is significantly increased in prostate tumors compared with normal glands. Taken together, these data suggest that STAMP1 may have an important role in the normal prostate cell as well as in prostate cancer progression.  相似文献   

7.
8.
9.
Androgens play a major role in the growth and survival of primary prostate tumors. The molecular mechanisms involved in prostate cancer progression are not fully understood but genes that are regulated by androgens clearly influence this process. We searched for new androgen-regulated genes using the Affymetrix GeneChip Human Genome U95 Set in the androgen-sensitive LNCaP prostate cancer cell line. Analysis of gene expression profiles revealed that myosin light chain kinase (MLCK) mRNA levels were markedly down-regulated by the synthetic androgen R1881. The microarray data were confirmed by ribonuclease protection assays. RNA and protein analyses revealed that LNCaP cells express both long (non-muscle) and short (smooth muscle) isoforms, and that both isoforms are down-regulated by androgens. Taken together, these data identify MLCK as a novel downstream target of the androgen signalling pathway in prostate cells.  相似文献   

10.
11.
12.
13.
14.
15.
16.
In castration-resistant prostate cancer (CRPC) many androgen-regulated genes become re-expressed and tissue androgen levels increase despite low serum levels. We and others have recently reported that CRPC tumor cells can de novo synthesize androgens from adrenal steroid precursors or cholesterol and that high levels of progesterone exist in LNCaP tumors after castration serving perhaps as an intermediate in androgen synthesis.Herein, we compare androgen synthesis from [3H-progesterone] in the presence of specific steroidogenesis inhibitors and anti-androgens in steroid starved LNCaP cells and CRPC tumors. Similarly, we compare steroid profiles in LNCaP tumors at different stages of CRPC progression.Steroidogenesis inhibitors targeting CYP17A1 and SRD5A2 significantly altered but did not eliminate androgen synthesis from progesterone in steroid starved LNCaP cells and CRPC tumors. Upon exposure to inhibitors of steroidogenesis prostate cancer cells adapt gradually during CRPC progression to synthesize DHT in a compensatory manner through alternative feed-forward mechanisms. Furthermore, tumors obtained immediately after castration are significantly less efficient at metabolizing progesterone (36%) and produce a different steroid profile to CRPC tumors. Optimal targeting of the androgen axis may be most effective when tumors are least efficient at synthesizing androgens. Confirmatory studies in humans are required to validate these findings.  相似文献   

17.
LNCaP prostate tumor cells contain an abnormal androgen receptor system. Progestagens, estradiol and anti-androgens can compete with androgens for binding to the androgen receptor and can stimulate both cell growth and excretion of prostate specific acid phosphatase. We have discovered in the LNCaP androgen receptor a single point mutation changing the sense of codon 868 (Thr to Ala) in the ligand binding domain. Expression vectors containing the normal or mutated androgen receptor sequence were transfected into COS or Hela cells. Androgens, progestagens, estrogens and anti-androgens bind the mutated androgen receptor protein and activate the expression of an androgen-regulated reporter gene construct (GRE-tk-CAT). The mutation therefore influences both binding and the induction of gene expression by different steroids and antisteroids.  相似文献   

18.
Androgens control cell numbers in the prostate through three separate pathways: (a) inhibition of cell death, (b) induction of cell proliferation (Step-1) and (c) inhibition of cell proliferation (Step-2, proliferative shutoff). The mechanisms underlying these phenomena are incompletely understood. The human prostate carcinoma LNCaP variants express these pathways as follows: LNCaP-FGC express both steps, LNCaP-LNO expresses Step-2, LNCaP-TAC expresses Step-1, and LNCaP-TJA cells express neither step. These cells facilitated the search for mediators of the androgen-induced proliferative shutoff pathway. Androgen exposure for 24 h or longer induced an irreversible proliferative shutoff in LNCaP-FGC cells. The Wang and Brown approach for identifying differentially expressed mRNAs was used to search for mediators of Step-2. Ten unique inserts were identified and from those ten, three genes were further studied. The basal expression of these genes in shutoff-negative variants was not affected by androgen exposure. They were induced by androgens in shutoff-positive LNCaP variants and the androgen receptor-transfected, shutoff-positive, MCF7-AR1 cells. These genes were induced only in the range of androgen concentrations that elicited the shutoff response. Time course analysis showed that their induction precedes the commitment point by 12–18 h. In addition, they were expressed in the normal prostate during proliferative shutoff. These features suggest that the candidate genes have a role in the regulation cascade for proliferative shutoff.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号