首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have explored CD44 (a hyaluronan (HA) receptor) interaction with a Na(+)-H(+) exchanger (NHE1) and hyaluronidase-2 (Hyal-2) during HA-induced cellular signaling in human breast tumor cells (MDA-MB-231 cell line). Immunological analyses demonstrate that CD44s (standard form) and two signaling molecules (NHE1 and Hyal-2) are closely associated in a complex in MDA-MB-231 cells. These three proteins are also significantly enriched in cholesterol and ganglioside-containing lipid rafts, characterized as caveolin and flotillin-rich plasma membrane microdomains. The binding of HA to CD44 activates Na(+)-H(+) exchange activity which, in turn, promotes intracellular acidification and creates an acidic extracellular matrix environment. This leads to Hyal-2-mediated HA catabolism, HA modification, and cysteine proteinase (cathepsin B) activation resulting in breast tumor cell invasion. In addition, we have observed the following: (i) HA/CD44-activated Rho kinase (ROK) mediates NHE1 phosphorylation and activity, and (ii) inhibition of ROK or NHE1 activity (by treating cells with a ROK inhibitor, Y27632, or NHE1 blocker, S-(N-ethyl-N-isopropyl) amiloride, respectively) blocks NHE1 phosphorylation/Na(+)-H(+) exchange activity, reduces intracellular acidification, eliminates the acidic environment in the extracellular matrix, and suppresses breast tumor-specific behaviors (e.g. Hyal-2-mediated HA modification, cathepsin B activation, and tumor cell invasion). Finally, down-regulation of CD44 or Hyal-2 expression (by treating cells with CD44 or Hyal-2-specific small interfering RNAs) not only inhibits HA-mediated CD44 signaling (e.g. ROK-mediated Na(+)-H(+) exchanger reaction and cellular pH changes) but also impairs oncogenic events (e.g. Hyal-2 activity, hyaluronan modification, cathepsin B activation, and tumor cell invasion). Taken together, our results suggest that CD44 interaction with a ROK-activated NHE1 (a Na(+)-H(+) exchanger) in cholesterol/ganglioside-containing lipid rafts plays a pivotal role in promoting intracellular/extracellular acidification required for Hyal-2 and cysteine proteinase-mediated matrix degradation and breast cancer progression.  相似文献   

2.
3.
Hyaluronic acid (HA) is a high molecular weight glycosaminoglycan involved in a wide variety of cellular functions. However, its turnover in living cells remains largely unknown. In this study, CD44, a receptor for HA, and hyaluronidase-1, -2, and -3 (Hyal-1, -2 and -3) were stably expressed in HEK 293 cells and the mechanism of HA catabolism was systematically investigated using fluorescein-labeled HA. CD44 was essential for HA degradation by both endogenous and exogenously expressed hyaluronidases. Hyal-1 was not able to cleave HA in living cells in the absence of CD44. Intracellular HA degradation was predominantly mediated by Hyal-1 after incorporation of HA by CD44. Although Hyal-1 was active only in intracellular space in vivo, a certain amount of the enzyme was secreted to extracellular space. This extracellular Hyal-1 was found to be incorporated by cells and such uptake of Hyal-1 was, in part, involved in the intracellular degradation of HA. Hyal-2 was involved in the extracellular degradation of HA. Hyal-2 activity was also dependent on the expression of CD44 in both living cells and enzyme assays. Immunofluorescent microscopy demonstrated that both Hyal-2 and CD44 are present on the cell surface. Without CD44 expression, Hyal-2 existed in a granular pattern, and did not show hyaluronidase activity, suggesting that localization change could contribute to Hyal-2 function. A convenient and quantitative enzyme assay was established for the measurement of Hyal-2 activity. Hyal-2 activity was detected in the membrane fraction of cells co-expressing Hyal-2 and CD44. The pH optimum for Hyal-2 was 6.0-7.0. The membrane fraction of cells expressing Hyal-2 alone did not show hyaluronidase activity. Hyal-3 did not show any hyaluronidase activity in our experimental conditions. Based on these findings, Hyal-1 and -2 contribute to intracellular and extracellular catabolism of HA, respectively, in a CD44-dependent manner, and their HA degradation occurs independently from one another.  相似文献   

4.
Hyaluronan, a high-molecular-weight glycosaminoglycan of the extracellular matrix, is prominent during rapid tissue growth and repair. It stimulates cell motility and hydrates tissue, providing an environment that facilitates cell movement. Markedly enhanced levels of hyaluronan also occur in the stroma surrounding human cancers, thus providing an environment that promotes spread of cancer cells. The ability of malignant tumors to generate lactate, even in the presence of adequate oxygen, is known as the Warburg effect. Early in wound healing as blood and oxygen supply decrease, lactate levels increase, as does stromal hyaluronan, suggesting a cause-and-effect relationship. Similarly, peritumor stromal fibroblast hyaluronan may be a response to cancer cell lactate. To test this, fibroblasts were cultured in the presence of lactate. With increasing lactate, higher levels of hyaluronan were observed, as were levels of CD44 expression, the predominant receptor for hyaluronan. The ability of tumor cells to utilize anaerobic metabolism and to generate lactate, even in the presence of adequate supplies of oxygen, may be one of the mechanisms used to recruit host fibroblasts to deposit hyaluronan and to express CD44, thereby participating in the process of cancer invasion and metastasis.  相似文献   

5.
The human hyaluronidase Hyal-1, one of six human hyaluronidase subtypes, preferentially degrades hyaluronic acid present in the extracellular matrix of somatic tissues. Modulations of Hyal-1 expression have been observed in a number of malignant tumors. However, its role in disease progression is discussed controversially due to limited information on enzyme properties as well as the lack of specific inhibitors. Therefore, we expressed human Hyal-1 in a prokaryotic and in an insect cell system to produce larger amounts of the purified enzyme. In Escherichia coli, Hyal-1 formed inclusion bodies and was refolded in vitro after purification by metal ion affinity chromatography. However, the enzyme was produced with extremely low folding yields (0.5%) and exhibited a low specific activity (0.1 U/mg). Alternatively, Hyal-1 was secreted into the medium of stably transfected Drosophila Schneider-2 (DS-2) cells. After several purification steps, highly pure enzyme with a specific activity of 8.6 U/mg (consistent with the reported activity of human Hyal-1 from plasma) was obtained. Both Hyal-1 enzymes showed pH profiles similar to the hyaluronidase of human plasma with an activity maximum at pH 3.5-4.0. Deglycosylation of Hyal-1, expressed in DS-2 cells, resulted in a decrease in the enzymatic activity determined by a colorimetric hyaluronidase activity assay. Purified Hyal-1 from DS-2 cells was used for the investigation of the inhibitory activity of new ascorbic acid derivatives. Within this series, l-ascorbic acid tridecanoate was identified as the most potent inhibitor with an IC(50) of 50 +/- 4 microM comparable with glycyrrhizic acid.  相似文献   

6.
Bovine testicular hyaluronidase (BTH) has been used as a spreading factor for many years and was primarily characterized by its enzymatic activity. As recombinant human hyaluronidases are now available the bovine preparations can be replaced by the human enzymes. However, data on the pH-dependent activity of hyaluronidases reported in literature are inconsistent in part or even contradictory. Detection of the pH-dependent activity of PH-20 type hyaluronidases, i.e. recombinant human PH-20 (rhPH-20) and BTH, showed a shift of the pH optimum from acidic pH values in a colorimetric activity assay to higher pH values in a turbidimetric activity assay. Contrarily, recombinant human Hyal-1 (rhHyal-1) and bee venom hyaluronidase (BVH) exhibited nearly identical pH profiles in both commonly used types of activity assays. Analysis of the hyaluronic acid (HA) degradation products by capillary zone electrophoresis showed that hyaluronan was catabolized by rhHyal-1 continuously into HA oligosaccharides. BTH and, to a less extent, rhPH-20 exhibited a different mode of action: at acidic pH (pH 4.5) HA was degraded as described for rhHyal-1, while at elevated pH (pH 5.5) small oligosaccharides were produced in addition to HA fragments of medium molecular weight, thus explaining the pH-dependent discrepancies in the activity assays. Our results suggest a sub-classification of mammalian-type hyaluronidases into a PH-20/BTH and a Hyal-1/BVH subtype. As the biological effects of HA fragments are reported to depend on the size of the molecules it can be speculated that different pH values at the site of hyaluronan degradation may result in different biological responses.  相似文献   

7.
CD44 is a cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan and is involved in processes ranging from leukocyte recruitment to wound healing. In the immune system, the binding of hyaluronan to CD44 is tightly regulated, and exposure of human peripheral blood monocytes to inflammatory stimuli increases CD44 expression and induces hyaluronan binding. Here we sought to understand how mouse macrophages regulate hyaluronan binding upon inflammatory and anti-inflammatory stimuli. Mouse bone marrow-derived macrophages stimulated with tumor necrosis factor α or lipopolysaccharide and interferon-γ (LPS/IFNγ) induced hyaluronan binding by up-regulating CD44 and down-regulating chondroitin sulfation on CD44. Hyaluronan binding was induced to a lesser extent in interleukin-4 (IL-4)-activated macrophages despite increased CD44 expression, and this was attributable to increased chondroitin sulfation on CD44, as treatment with β-d-xyloside to prevent chondroitin sulfate addition significantly enhanced hyaluronan binding. These changes in the chondroitin sulfation of CD44 were associated with changes in mRNA expression of two chondroitin sulfotransferases, CHST3 and CHST7, which were decreased in LPS/IFNγ-stimulated macrophages and increased in IL-4-stimulated macrophages. Thus, inflammatory and anti-inflammatory stimuli differentially regulate the chondroitin sulfation of CD44, which is a dynamic physiological regulator of hyaluronan binding by CD44 in mouse macrophages.  相似文献   

8.
The six hyaluronidase-like genes in the human and mouse genomes.   总被引:19,自引:0,他引:19  
The human genome contains six hyaluronidase-like genes. Three genes (HYAL1, HYAL2 and HYAL3) are clustered on chromosome 3p21.3, and another two genes (HYAL4 and PH-20/SPAM1) and one expressed pseudogene (HYALP1) are similarly clustered on chromosome 7q31.3. The extensive homology between the different hyaluronidase genes suggests ancient gene duplication, followed by en masse block duplication, events that occurred before the emergence of modern mammals. Very recently we have found that the mouse genome also has six hyaluronidase-like genes that are also grouped into two clusters of three, in regions syntenic with the human genome. Surprisingly, the mouse ortholog of HYALP1 does not contain any mutations, and unlike its human counterpart may actually encode an active enzyme. Hyal-1 is the only hyaluronidase in mammalian plasma and urine, and is also found at high levels in major organs such as liver, kidney, spleen, and heart. A model is proposed suggesting that Hyal-2 and Hyal-1 are the major mammalian hyaluronidases in somatic tissues, and that they act in concert to degrade high molecular weight hyaluronan to the tetrasaccharide. Twenty-kDa hyaluronan fragments are generated at the cell surface in unique endocytic vesicles resulting from digestion by the glycosylphosphatidyl-inositol-anchored Hyal-2, transported intracellularly by an unknown process, and then further digested by Hyal-1. The two beta-exoglycosidases, beta-glucuronidase and beta-N-acetyl glucosaminidase, remove sugars from reducing termini of hyaluronan oligomers, and supplement the hyaluronidases in the catabolism of hyaluronan.  相似文献   

9.

Background

Hydrocellular foam dressing, modern wound dressing, induces moist wound environment and promotes wound healing: however, the regulatory mechanisms responsible for these effects are poorly understood. This study was aimed to reveal the effect of hydrocellular foam dressing on hyaluronan, which has been shown to have positive effects on wound healing, and examined its regulatory mechanisms in rat skin.

Methodology/Principal Findings

We created two full-thickness wounds on the dorsolateral skin of rats. Each wound was covered with either a hydrocellular foam dressing or a film dressing and hyaluronan levels in the periwound skin was measured. We also investigated the mechanism by which the hydrocellular foam dressing regulates hyaluronan production by measuring the gene expression of hyaluronan synthase 3 (Has3), peroxisome proliferator-activated receptor α (PPARα), and CD44. Hydrocellular foam dressing promoted wound healing and upregulated hyaluronan synthesis, along with an increase in the mRNA levels of Has3, which plays a primary role in hyaluronan synthesis in epidermis. In addition, hydrocellular foam dressing enhanced the mRNA levels of PPARα, which upregulates Has3 gene expression, and the major hyaluronan receptor CD44.

Conclusions/Significance

These findings suggests that hydrocellular foam dressing may be beneficial for wound healing along with increases in hyaluronan synthase 3 and PPARα gene expression in epidermis. We believe that the present study would contribute to the elucidation of the mechanisms underlying the effects of hydrocellular foam dressing-induced moist environment on wound healing and practice evidence-based wound care.  相似文献   

10.
《Cytokine》2015,71(2):97-103
Complex regulation of the wound healing process involves multiple interactions among stromal tissue cells, inflammatory cells, and the extracellular matrix. Low molecular weight hyaluronan (LMW HA) derived from the degradation of high molecular weight hyaluronan (HMW HA) is suggested to activate cells involved in wound healing through interaction with HA receptors. In particular, receptor CD44 is suggested to mediate cell response to HA of different MW, being the main cell surface HA receptor in stromal tissue and immune cells. However, the response of dermal fibroblasts, the key players in granulation tissue formation within the wound healing process, to LMW HA and their importance for the activation of immune cells is unclear. In this study we show that LMW HA (4.3 kDa) induced pro-inflammatory cytokine IL-6 and chemokines IL-8, CXCL1, CXCL2, CXCL6 and CCL8 gene expression in normal human dermal fibroblasts (NHDF) that was further confirmed by increased levels of IL-6 and IL-8 in cell culture supernatants. Conversely, NHDF treated by HMW HA revealed a tendency to decrease the gene expression of these cytokine and chemokines when compared to untreated control. The blockage of CD44 expression by siRNA resulted in the attenuation of IL-6 and chemokines expression in LMW HA treated NHDF suggesting the involvement of CD44 in LMW HA mediated NHDF activation. The importance of pro-inflammatory mediators produced by LMW HA triggered NHDF was evaluated by significant activation of blood leukocytes exhibited as increased production of IL-6 and TNF-α. Conclusively, we demonstrated a pro-inflammatory response of dermal fibroblasts to LMW HA that was transferred to leukocytes indicating the significance of LMW HA in the inflammatory process development during the wound healing process.  相似文献   

11.

Background

hyaluronan biopolymer is used in dermatology but the underlying mechanism and the impact of its molecular weight have not yet been investigated in skin wound healing. The aim of our work was to study the role of HA molecular weight in the proliferative phase of wound healing and to understand how this physiological biopolymer acts to promote wound healing on a human keratinocyte in vitro model.

Methodology and Findings

wound healing closure was evaluated using scratch test assay, cell proliferation by counting cell with haemocytometer, expression of CD44 and ZO-1 (protein present in tight junctions specific of epithelia) using flow cytometry, and P2X7 receptor activation on living using a cytoflurometric method. Our study showed that medium hyaluronan fragment (MMW-HA, between 100 and 300 kDa) induced a significant increase in wound closure, increased ZO-1 protein expression and induced a slight activation of P2X7 receptor, contrary to high (between 1000 and 1400 kDa) and low (between 5 and 20 kDa) molecular hyaluronan fragments that had no healing effects. Basal activation of P2X7 receptor is already known to stimulate cell proliferation and this activation in our model plays a pivotal role in MMW-HA-induced wound healing. Indeed, we showed that use of BBG, a specific inhibitor of P2X7 receptor, blocked completely the beneficial effects of MMW-HA on wound healing.

Conclusion

taken together, our results showed for the first time the relationship between P2X7 receptor and hyaluronan in wound healing, and that topical use of MMW-HA (fragment between 100 and 300 kDa) could represent a new therapeutic strategy to promote healing.  相似文献   

12.
The importance of glycosaminoglycan hyaluronan (HA) and its receptor CD44 in cell proliferation is becoming increasingly evident. Expression of the genes coding for hyaluronan synthase 1 (HAS1), HAS2, HAS3, CD44, fibroblast growth factor-2 (FGF-2), and FGF receptor-1 (FGFR-1) and the histological evidence for increases of HA and CD44 were investigated in an experimental rat model of cardiac hypertrophy. The abdominal aorta was ligated to induce cardiac hypertrophy, and mRNAs prepared from heart tissue were analyzed after 1, 6, and 42 days. The total concentration of HA was quantified, and HA and CD44 were studied histochemically. The expression of HAS1, HAS2, CD44, and FGF-2 was considerably up-regulated at days 1 and 6 and returned to basal levels after 42 days. FGFR-1 was up-regulated at day 1 but at basal levels once more at days 6 and 42. The concentration of HA significantly increased in aorta-ligated rats. Histochemical analysis showed increased expression of CD44 in hypertrophied myocardium mainly in and around the coronary arteries. These results agree well with other studies of tissue growth (malignancies and wound healing). The increase of HA, its synthases, and receptor in parallel with FGF-2 and its receptor illustrates their complicated interplay in the development of cardiac hypertrophy. The up-regulation of both HAS1 and HAS2 indicates the importance of HA production in the hypertrophic process and the possibility that HA is needed for two different purposes for the heart to be able to adapt to the increased afterload caused by aortic ligature. This research received financial support from the Swedish Heart Lung Foundation. The authors declare no conflicting financial interests.  相似文献   

13.
Transforming growth factor-beta1 (TGF-beta1) is a key cytokine involved in the pathogenesis of fibrosis in many organs. We previously demonstrated in renal proximal tubular cells that the engagement of the extracellular polysaccharide hyaluronan with its receptor CD44 attenuated TGF-beta1 signaling. In the current study we examined the potential mechanism by which the interaction between hyaluronan (HA) and CD44 regulates TGF-beta receptor function. Affinity labeling of TGF-beta receptors demonstrated that in the unstimulated cells the majority of the receptor partitioned into EEA-1-associated non-lipid raft-associated membrane pools. In the presence of exogenous HA, the majority of the receptors partitioned into caveolin-1 lipid raft-associated pools. TGF-beta1 increased the association of activated/phosphorylated Smad proteins with EEA-1, consistent with activation of TGF-beta1 signaling following endosomal internalization. Following addition of HA, caveolin-1 associated with the inhibitory Smad protein Smad7, consistent with the raft pools mediating receptor turnover, which was facilitated by HA. Antagonism of TGF-beta1-dependent Smad signaling and the effect of HA on TGF-beta receptor associations were inhibited by depletion of membrane cholesterol using nystatin and augmented by inhibition of endocytosis. The effect of HA on TGF-beta receptor trafficking was inhibited by inhibition of HA-CD44 interactions, using blocking antibody to CD44 or inhibition of MAP kinase activation. In conclusion, we have proposed a model by which HA engagement of CD44 leads to MAP kinase-dependent increased trafficking of TGF-beta receptors to lipid raft-associated pools, which facilitates increased receptor turnover and attenuation of TGF-beta1-dependent alteration in proximal tubular cell function.  相似文献   

14.
Hyaluronan catabolism: a new metabolic pathway   总被引:5,自引:0,他引:5  
A new pathway of intermediary metabolism is described involving the catabolism of hyaluronan. The cell surface hyaluronan receptor, CD44, two hyaluronidases, Hyal-1 and Hyal-2, and two lysosomal enzymes, beta-glucuronidase and beta-N-acetylglucosaminidase, are involved. This metabolic cascade begins in lipid raft invaginations at the cell membrane surface. Degradation of the high-molecular-weight extracellular hyaluronan occurs in a series of discreet steps generating hyaluronan chains of decreasing sizes. The biological functions of the oligomers at each quantum step differ widely, from the space-filling, hydrating, anti-angiogenic, immunosuppressive 10(4)-kDa extracellular polymer, to 20-kDa intermediate polymers that are highly angiogenic, immuno-stimulatory, and inflammatory. This is followed by degradation to small oligomers that can induce heat shock proteins and that are anti-apoptotic. The single sugar products, glucuronic acid and a glucosamine derivative are released from lysosomes to the cytoplasm, where they become available for other metabolic cycles. There are 15 g of hyaluronan in the 70-kg individual, of which 5 g are cycled daily through this pathway. Some of the steps in this catabolic cascade can be commandeered by cancer cells in the process of growth, invasion, and metastatic spread.  相似文献   

15.
Keratinocyte growth factor (KGF) activates keratinocyte migration and stimulates wound healing. Hyaluronan, an extracellular matrix glycosaminoglycan that accumulates in wounded epidermis, is known to promote cell migration, suggesting that increased synthesis of hyaluronan might be associated with the KGF response in keratinocytes. Treatment of monolayer cultures of rat epidermal keratinocytes led to an elongated and lifted cell shape, increased filopodial protrusions, enhanced cell migration, accumulation of intermediate size hyaluronan in the culture medium and within keratinocytes, and a rapid increase of hyaluronan synthase 2 (Has2) mRNA, suggesting a direct influence on this gene. In stratified, organotypic cultures of the same cell line, both Has2 and Has3 with the hyaluronan receptor CD44 were up-regulated and hyaluronan accumulated in the epidermis, the spinous cell layer in particular. At the same time the expression of the early differentiation marker keratin 10 was inhibited, whereas filaggrin expression and epidermal permeability were less affected. The data indicate that Has2 and Has3 belong to the targets of KGF in keratinocytes, and support the idea that enhanced hyaluronan synthesis acts an effector for the migratory response of keratinocytes in wound healing, whereas it may delay keratinocyte terminal differentiation.  相似文献   

16.
Keratinocyte growth factor (KGF) and its receptor are involved in various types of epithelial repair processes. To gain insight into the molecular mechanisms of KGF action in the healing skin wound, we searched for genes which are regulated by this factor in cultured keratinocytes. Using the PCR-select technology we constructed a subtractive cDNA library. One of the KGF-regulated genes that we identified was shown to encode caveolin-1, a major component of caveolar membranes. Caveolin-1 is involved in a wide variety of cellular processes, particularly in the regulation of various signal transduction pathways. Caveolin-1 mRNA levels increased in cultured keratinocytes after KGF treatment. By in situ hybridization and immunohistochemistry we found a strong expression of caveolin-1 in the KGF-responsive basal keratinocytes of the epidermis and the hyperproliferative epithelium of the wound as well as in endothelial cells and in other cells of the granulation tissue. In 13-day wounds expression of caveolin-1 mRNA was restricted to the regenerated dermis. In addition to caveolin-1, the mRNA expression of caveolin-2, a second member of the caveolin family, was also induced in keratinocytes after stimulation with KGF but also with other growth factors and cytokines. In contrast to caveolin-1, caveolin-2 protein was expressed in all layers of the normal epidermis and in the suprabasal layers of the hyperproliferative wound epithelium. These results demonstrate a differential expression of caveolin-1 and -2 in proliferating versus differentiating keratinocytes.  相似文献   

17.
Fibroblast to myofibroblast differentiation drives effective wound healing and is largely regulated by the cytokine transforming growth factor-β1 (TGF-β1). Myofibroblasts express α-smooth muscle actin and are present in granulation tissue, where they are responsible for wound contraction. Our previous studies show that fibroblast differentiation in response to TGF-β1 is dependent on and mediated by the linear polysaccharide hyaluronan (HA). Both the HA receptor, CD44, and the epidermal growth factor receptor (EGFR) are involved in this differentiation response. The aim of this study was to understand the mechanisms linking HA-, CD44-, and EGFR-regulated TGF-β1-dependent differentiation. CD44 and EGFR co-localization within membrane-bound lipid rafts was necessary for differentiation, and this triggered downstream mitogen-activated protein kinase (MAPK/ERK) and Ca2+/calmodulin kinase II (CaMKII) activation. We also found that ERK phosphorylation was upstream of CaMKII phosphorylation, that ERK activation was necessary for CaMKII signaling, and that both kinases were essential for differentiation. In addition, HA synthase-2 (HAS2) siRNA attenuated both ERK and CaMKII signaling and sequestration of CD44 into lipid rafts, preventing differentiation. In summary, the data suggest that HAS2-dependent production of HA facilitates TGF-β1-dependent fibroblast differentiation through promoting CD44 interaction with EGFR held within membrane-bound lipid rafts. This induces MAPK/ERK, followed by CaMKII activation, leading to differentiation. This pathway is synergistic with the classical TGF-β1-dependent SMAD-signaling pathway and may provide a novel opportunity for intervention in wound healing.  相似文献   

18.
Cutaneous wound healing consists of three main phases: inflammation, re-epithelialization, and tissue remodeling. During normal wound healing, these processes are tightly regulated to allow restoration of skin function and biomechanics. In many instances, healing leads to an excess accumulation of fibrillar collagen (the principal protein found in the extracellular matrix - ECM), and the formation of scar tissue, which has compromised biomechanics, tested using ramp to failure tests, compared to normal skin (Corr and Hart, 2013 [1]). Alterations in collagen accumulation and architecture have been attributed to the reduced tensile strength found in scar tissue (Brenda et al., 1999; Eleswarapu et al., 2011). Defining mechanisms that govern cellular functionality and ECM remodeling are vital to understanding normal versus pathological healing and developing approaches to prevent scarring. CD44 is a cell surface adhesion receptor expressed on nearly all cell types present in dermis. Although CD44 has been implicated in an array of inflammatory and fibrotic processes such as leukocyte recruitment, T-cell extravasation, and hyaluronic acid (the principal glycosaminoglycan found in the ECM) metabolism, the role of CD44 in cutaneous wound healing and scarring remains unknown. We demonstrate that in an excisional biopsy punch wound healing model, CD44-null mice have increased inflammatory and reduced fibrogenic responses during early phases of wound healing. At wound closure, CD44-null mice exhibit reduced collagen degradation leading to increased accumulation of fibrillar collagen, which persists after wound closure leading to reduced tensile strength resulting in a more severe scarring phenotype compared to WT mice. These data indicate that CD44 plays a previously unknown role in fibrillar collagen accumulation and wound healing during the injury response.  相似文献   

19.
The availability of recombinant expression systems for the production of purified human hyaluronidases PH-20 and Hyal-1 facilitated the first detailed analysis of the enzymatic reaction products. The human recombinant enzymes, both expressed by Drosophila Schneider-2 (DS-2) cells, were compared to bovine testicular hyaluronidase (BTH), a commercially available hyaluronidase preparation, which has long been considered a prototype of mammalian hyaluronidases. The conversion of low molecular weight hyaluronic acid (HA) fragments was detected by a capillary zone electrophoresis (CZE) method. Surprisingly, the HA hexasaccharide, which is generally accepted to be the minimum substrate of BTH, was not a substrate of recombinant human PH-20 and Hyal-1. However, HA octasaccharide was converted efficiently by both enzymes, thus representing the minimum substrate for human PH-20 and Hyal-1. Additionally, BTH was shown to catabolize the HA hexasaccharide at pH 4.0 mainly by hydrolysis, while at pH 6.0 transglycosylation prevailed. Human PH-20 was found to catalyze both hydrolysis and transglycosylation of the HA octasaccharide. On the contrary, human Hyal-1 converted the HA octasaccharide mainly by hydrolysis with transglycosylation products occurring only at high substrate concentrations (> or = 500 microM). The differences between the hyaluronidase subtypes and isoenzymes were much more prominent than expected. Obviously, the different hyaluronidase subtypes have evolved into very specialized enzymes with respect to their catalytic mechanism of action.  相似文献   

20.
The proinflammatory cytokine interleukin-1β (IL-1β) attracts leukocytes to sites of inflammation. One of the recruitment mechanisms involves the formation of extended, hyaluronan-rich pericellular coats on local fibroblasts, endothelial cells, and epithelial cells. In the present work, we studied how IL-1β turns on the monocyte adhesion of the hyaluronan coat on human keratinocytes. IL-1β did not influence hyaluronan synthesis or increase the amount of pericellular hyaluronan in these cells. Instead, we found that the increase in the hyaluronan-dependent monocyte binding was associated with the CD44 of the keratinocytes. Although IL-1β caused a small increase in the total amount of CD44, a more marked impact was the decrease of CD44 phosphorylation at serine 325. At the same time, IL-1β increased the association of CD44 with ezrin and complex formation of CD44 with itself. Treatment of keratinocyte cultures with KN93, an inhibitor of calmodulin kinase 2, known to phosphorylate Ser-325 in CD44, caused similar effects as IL-1β (i.e. homomerization of CD44 and its association with ezrin) and resulted in increased monocyte binding to keratinocytes in a hyaluronan-dependent way. Overexpression of wild type CD44 standard form, but not a corresponding CD44 mutant mimicking the Ser-325-phosphorylated form, was able to induce monocyte binding to keratinocytes. In conclusion, treatment of human keratinocytes with IL-1β changes the structure of their hyaluronan coat by influencing the amount, post-translational modification, and cytoskeletal association of CD44, thus enhancing monocyte retention on keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号