首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The CD spectra of films of the lithium salt of E. coli and calf thymus DNA, and alternating d-AT : AT were measured as a function of relative humidity. Films of the ammonium acetate salt of DNA were also measured. The ammonium films yield the previously reported A-form CD spectra. A possible explanation for the small magnitude of the 260-nm band of the A-form film spectra compared to double-stranded RNA spectra is that the film DNA is in a different conformation than RNA within the A family of conformations. At relative humidities of 92% or lower, a negative nonconservative CD spectrum with negative minima near 270 and 210 nm is observed with the lithium films. The magnitude of the minima varies from film to film. In films of DNA the magnitude ranges from a delta epsilon of ?5 to ?35; d-AT : AT films show magnitudes to ?300. CD spectra of this type are designated Ψ spectra. Similar spectra have been reported from reconstituted complexes of DNA and polylysine or f-1 histone. If the origins of the film and protein–DNA complex spectra are similar, the complex spectra are not the result of specific secondary structural changes induced in the DNA by the protein fraction. Theoretical analysis suggests that Ψ spectra are not the result of changes in the secondary or tertiary structure of DNA. Instead, the previously proposed explanation based on liquid crystals is favored. The DNA could form asymmetric structures with long-range periodicity. It is likely that the observed CD spectra of f-1 complexes are artifacts of DNA aggregation. The possibility that some other previously published spectra of protein–DNA complexes also reflect artifacts is suggested.  相似文献   

2.
The CD spectra of a number of helical complexes formed by purine monomers and complementary pyrimidine polyribonucleotides have been observed over the range 200–400 nm. Each of these spectra is quite similar to that of the corresponding polymer–polymer helix. The spectra are evidently determined by the geometry of the asymmetric array of bases, largely unperturbed by the ribose–phosphate backbone. The helix structure (A-form), on the other hand, is determined by the backbone of the pyrimidine homopolymer. Data on the monomer–polymer complexes support the conclusion that the CD spectra of ribohomopolymer helices depend primarily on interastrand interactions of the same transition within a given base and are relatively unaffected by transitions of the complementary base.  相似文献   

3.
A study of the near-uv CD spectrum of lysozyme was carried out in the presence and absence of the inhibitor tri-N-acetylglucosamine, and theoretical chiroptical calculations based on the tetragonal crystal structure of the enzyme and the enzyme-inhibitor complex were performed. The results of these calculations indicate that the near-uv CD spectrum of lysozyme can be adequately explained in terms of negative rotatory strengths arising from the tryptophan 1La (293–300 nm) and the disulfide n-σ* bands (250 rm), and positive rotatory strength contributions from the tryptophan 1Lb bands (291 nm) and the tyrosine 1Lb bands (275 nm). Contributions to the rotatory strength of each band were approximated in terms of specific interactions between chromophores. It was found that the rotatory strength of most of the near-uv transitions arises primarily from coupling interactions involving other side-chain chromophores and amide groups which are in close proximity. Changes which are observed in the lysozyme CD spectrum on binding of tri-N-acetylglucosamine may be explained in terms of changes in the rotatory strength which result from interactions of the 1La transitions of the active-site tryptophans with the acetamide groups of the inhibitor. The reasonable agreement which is found between the experimental and calculated rotatory strengths implies that the crystal conformation of lysozyme must resemble the solution conformation.  相似文献   

4.
Sequence dependence of the B-A conformational transition of DNA   总被引:2,自引:0,他引:2  
J Mazur  A Sarai  R L Jernigan 《Biopolymers》1989,28(7):1223-1233
We have studied, by conformational analysis, the sequence dependence of DNA conformational transition between B- and A-forms. We have considered intramolecular interactions between base pairs, without backbone, to examine their role in the conformational transition between B- and A-forms, and found that base pairs themselves usually have intrinsic conformational preferences for the B- or A-form. Calculation of all ten possible base steps shows that the base combinations, CC (or GG), GC, AT, and TA, have tendencies to assume the A-conformation. Results show that it is particularly easy to slide along the long axis of the base pair for these steps, with AT and CC showing especially flat energies. These calculations show that a preference for the B- or A-conformation depends on the electrostatic energy parameters, in particular, on dielectric and shielding constants; the A-conformation is preferred for low dielectric constant or low shielding. Both the A- and B-conformations are mainly stabilized by electrostatic interactions between favorably juxtaposed atomic charges on base pairs; however, the B-conformation generally has more favorable van der Waals interactions than the A-form. These sequence-dependent conformational preference and environmental effects agree roughly with experimental observations, suggesting that the origin of the conformational polymorphism is attributable to the intrinsic conformational preference of base pairs.  相似文献   

5.
The intensities of the CD bands at about 275 and 190 nm were monitored for DNAs with different G + C contents as a function of temperature. The 190-nm bands showed a nearly complete and cooperative collapse on melting of the DNA, demonstrating that the CD arises from base–base interactions. The small cooperative change on melting shown by the 275-nm bands indicates that base–base interactions do not contribute much CD intensity here. No significant difference in melting temperature was found between the two wavelengths, but the lack of premelting in the 190-nm bands contrasted with the significant premelting in the 275 nm bands. Since the 190-nm bands are particularly sensitive to base–base interactions, the relative positions of the bases must not change much during premelting. Still, changes in such interactions would be noticeable on top of the low intensity of the 275-nm bands. Premelting is discussed in the light of recent studies on DNA conformation.  相似文献   

6.
The absorption spectra and circular dichroism (CD) have been measured for aqueous solutions of acridine orange of a constant concentration, [D] = 5 × 10?5M, mixed with poly(S-carboxyethyl-L -cysteine) in various mixing ratios, [P]/[D], ranging from 330 to 11, at different pH. The absorption spectra of the dye–polymer solutions are hypochromic, and the main band is located at 470 nm, accompanying a shoulder at 500 nm. At alkaline pH, no CD is induced in the visible region. At neutral and acidic pH, where the polymer is in the β-conformation, CD is induced in the visible and near-uv regions. A pair of CD bands is located at the region around 450 nm, when the pH is around the neutrality, while it appears at the region around 500 nm at acidic pH. Thus, the optically active species of bound dye changes from dimer to monomer on lowering the pH. These species form dissymmetric arrays along a polypeptide chain. The fraction of bound dye forming dissymmetric sequences is not high, but most of bound dye is adsorbed randomly on the ionized carboxyl groups of polypeptide chain and gives rise to hypochromism only. A dissymmetric structure of dye–polymer complexes is presented, in which the polymer has the β-conformation and the dye cations, either dimeric or monomeric, bind to its side chains, in such a way that the longer axes of molecular planes of bound dye form a two-fold, right-handed helix along the extended polypeptide chain. A zeroth-order calculation of CD based on the coupled oscillator model leads to the result that each dissymmetric array of dye consists, on the average, of two dimeric or monomeric cations. This low number of bound cations in a dissymmetric array and the large fraction of randomly adsorbed dye suggest that the hydrophobic interaction of dye with the polymer is strong, so that dye cations are adsorbed sparsely on both sides of the extended polypeptide chain.  相似文献   

7.
CD spectra of bovine pancreatic ribonuclease A (RNase A) and its subtilisin-modified form (RNase S) have been calculated, based upon high-resolution structures from x-ray diffraction. All known transitions in the peptide and side-chain groups, especially the aromatic and disulfide groups, have been included. Calculations have been performed with both the matrix method and with first-order perturbation theory. A newly developed method for treating the electrostatic interactions among transition charge densities and between static charge distributions and transition charge densities is used. The effects of local electrostatic fields upon the group transition energies are included for all transitions. Rotational strengths generated by the matrix method were combined with Gaussian band shapes to generate theoretical CD spectra. The calculated spectra reproduce the signs and approximate magnitudes of the near-uv CD bands of both RNase A and S. Agreement is most satisfactory for the negative 275 nm band, dominated by tyrosine contributions. In agreement with two previous studies by other workers, coupling between Tyr 73 and Tyr 115 is the single most important factor in this band. The positive band observed near 240 nm is dominated by disulfide contributions, according to our results. The far-uv CD spectrum is poorly reproduced by the calculations. The observed 208 nm band, characteristic of α-helices, is absent from the calculated spectrum, probably because the helices in RNase are short. A strong positive couplet centered near 190 nm is predicted but not observed. Possible reasons for these incorrect predictions of the current theoretical model in the far-uv are discussed. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
D S Moore  T E Wagner 《Biopolymers》1974,13(5):977-986
Theoretical calculations of the near ultraviolet (uv) circular dichroism of double-helical DNA and RNA models were performed in order to evaluate the effects, on the calculated circular dichroism, of including the interactions of near uv quantum transitions of the nucleic acid bases with classical polarizable bonds of the sugar-phosphate backbone. Double-helical models (A-form, B-form, and C-form DNA and RNA-11) from X-ray diffraction data were used in the calculations. The results indicate that the contributions to the circular dichroism in the near uv region, of these types of interactions, provide calculated spectra that are slightly altered from calculated spectra when only base–base transition interactions were considered.  相似文献   

9.
We have calculated the uv linear dichroism for the A- and B-forms of DNA using π-π* transition moments and band components determined from the free DNA bases. The reduced dichroism (LDR) as a function of wavelength is estimated is in the 220–300-nm region, for both the oriented-gas model and a simple exciton model. For B-form DNA, LDR is obtained to ?1.48S (S being the orientation factor) over the whole wavelenth region by both models. For A-form DNA, LDR is not constant, but changes monotonically from about ?1.15S at 220 nm to about ?1.35S to ?1.45S at 300 nm, depending on base combination and degree of interaction (?1.35S for the oriented gas). It is emphasized that a common assumption of a single “effective” transition moment of the principal band at 260 nm may not generally be made because of the extensive overlap of differently polarized bands. The possibility of using the reduced dichroism curve for characterizing the secondary structure of DNA is discussed.  相似文献   

10.
Evidence for Z-form RNA by vacuum UV circular dichroism.   总被引:8,自引:8,他引:0       下载免费PDF全文
J H Riazance  W A Baase  W C Johnson  Jr  K Hall  P Cruz    I Tinoco  Jr 《Nucleic acids research》1985,13(13):4983-4989
Circular dichroism (CD) spectra in the vacuum UV region for different conformations of poly d(G-C) X poly d(G-C) and poly r(G-C) X poly r(G-C) are very characteristic. The CD of the RNA in the A-form (6 M NaClO4 and 22 degrees C) is very similar to that of the DNA in 80% alcohol where it is believed to be in the A-form. With the exception of the longest wavelength transition, the CD of the RNA in 6 M NaClO4 at 46 degrees C is similar to the CD of the DNA under conditions where it is believed to be in the Z-form (2 M NaClO4). This substantiates that poly r(G-C) X poly r(G-C) assumes a left-handed Z-conformation in 6 M NaClO4 above 35 degrees C. CD spectra for the left-handed Z-forms of both the RNA and DNA are characterized by an intense negative peak at 190-195 nm, a crossover at about 184 nm, and an intense positive peak below 180 nm. The right-handed A- and B-forms of RNA and DNA all have an intense positive peak in their CD spectra near 186 nm. The large difference in CD in the range 185-195 nm for right- and left-handed conformations of nucleic acids can be used to identify the sense of helix winding.  相似文献   

11.
Investigations of DNA using CD spectroscopy show that the P-form is available in a wide variety of methanol–ethanol mixtures when the water content is low. Increasing the temperature or the ethanol content of a 95% methanol solution causes DNA to undergo a cooperative transition to the P-form. However, this transition cannot be reversed on cooling, or on adding methanol. Thus P-form DNA appears to be stable at high methanol concentrations, but it is usually not observed because the DNA is trapped by a kinetic barrier. P-form DNA will instantaneously assume the native B-form on addition of water, confirming earlier reports that P-form DNA is not strand separated [E. Kay (1976) Biochemistry 15 , 5241]. CD spectra extended to 190 nm show that there is no base–base interaction in the P-form. However, the P-form is extremely stable to heat denaturation in solvents which promote hydrogen bonding between the base pairs. A number of models that can account for the properties of P-form DNA are discussed.  相似文献   

12.
Changes in the 31P-nmr spectra of sonicated natural DNA fragments were investigated in ethanol solutions where the fragments underwent, as checked by CD, the B-to-A conformational transition. The study produced the following conclusions: (1) The high DNA concentrations used for the 31P-nmr measurements promote the transition compared to dilute solutions that are commonly used for CD measurements. (2) The B-to-A transition was reflected in a cooperative downfield shift of the DNA 31P-nmr resonance, consistent with unwinding of the double helix. (3) Prior to the transition, the changes in chemical shift of double-and single-stranded DNAs were almost identical. It thus appears that the effect of ethanol on the geometry and hydration of phosphodiester linkages does not depend heavily on DNA base–base interactions. (4) The A-form resonances were 30–40% narrower than the B-form resonances, which is attributed to marked sequence-dependent variations in the latter conformation and to their reduction in the former. (5) The B-form DNA aggregated in the concentrated 31P-nmr samples in the presence of ethanol, judged from a milky opalescence of the solution and a substantial broadening of its 31P-nmr resonance. The broadening abruptly disappeared as soon as DNA adopted the A-form so that DNA, in dependence on the secondary structure, showed different tendencies to condense in the presence of ethanol. The condensation increased cooperativity of the B-to-A interconversion.  相似文献   

13.
Circular dichroism has been commonly employed to infer the conformation of DNA in solution. The basis of the conformational assignments is the work of Tunis-Schneider and Maestre, wherein CD spectra of DNA were obtained under conditions comparable to those employed in the x-ray diffraction studies of A-, B-, and C-DNA. It has recently been suggested that the CD spectrum of DNA in chromatin, which is similar to the CD spectrum of the C-form DNA, is a superposition of the normal B-DNA spectrum and a single negative band, centered at 275 nm. This negative band is qualitatively identical to the spectrum for condensed Ψ-form DNA. We have employed the hydrodynamic methods of quasielastic light scattering and sedimentation velocity to determine the extent of DNA tertiary structural alteration in 5.5M LiCl as a possible explanation of the C-form CD spectrum. These studies suggest an eightfold contraction of the Stokes hydrodynamic volume for calf thymus DNA in going from 0.4M NH4Ac to 5.5M LiCl, with no change in molecular weight. The estimated maximum presistence length of DNA in 5.5M LiCl is estimated to be 20.0 nm compared to the “minimum” value of 44.7 nm in NaCl solutions. The value 20.0 nm corresponds to a maximum radius of 16.7 nm for a “continuously coiled” cylinder of DNA, which compares with the value 5.0 nm of DNA in the nucleosome unit of chromatin.  相似文献   

14.
Jin Y  Sakurai H  Nagai Y  Nagai M 《Biopolymers》2004,74(1-2):60-63
The deoxy-form of human adult hemoglobin (Hb A) exhibits a distinct negative CD band at 287 nm that disappears in the oxy-form. It has been suggested that the negative CD band is due to the environmental alteration of Tyr-alpha 42 or Trp-beta 37 at the alpha(1)beta(2) contact upon deoxygenation. To evaluate the contributions of the aromatic residues at the alpha(1)beta(2) contact and the penultimate tyrosine residues of the alpha and beta subunits (alpha 140 and beta 145) to the negative CD band, three recombinant (r) Hbs (rHb Ser-alpha 42, rHb His-beta 37, and rHb Thr-beta 145) were produced in Escherichia coli, and we compared the near-uv CD spectra of these three rHbs and Hb Rouen (Tyr-alpha 140-->His) with the spectra of Hb A under the condition in which all mutant Hbs were able to undergo the T-->R transition (Hill's n > 2.0). The contributions of Tyr-alpha 42, Trp-beta 37, Tyr-alpha 140, and Tyr-beta 145 to the negative CD band were estimated from changes in the ellipticity of the negative CD band at 287 nm to be 4, 18, 32, and 27%, respectively. These results indicate that environmental alteration of the penultimate tyrosine residues caused by the formation of salt bridges upon the R-->T transition is primarily responsible for the negative CD band.  相似文献   

15.
The visible and near-uv absorption and circular dichroic spectra were determined for spinach and poplar plastocyanin under a variety of conditions. The visible spectra showed that the copper center was invariant to changes in species, chemical modification with ethylenediamine, and addition of high concentrations of salt [2.7 M (NH4)2SO4]. In contrast, the near-uv spectra were sensitive to these conditions. Reduction of plastocyanin also altered its near-uv absorption and circular dichroic spectra. It is unlikely that these spectral changes were due to charge transfer bands since the near-uv CD spectrum of apo-plastocyanin was almost identical to that of reduced plastocyanin. There were no corresponding changes in the far-uv spectra which monitor protein secondary structure. The most likely explanation is that the protein has a flexible tertiary conformation. Conformational changes may be important in regulating electron transport. If plastocyanin is a mobile electron carrier, differential binding of the oxidized and reduced forms of plastocyanin to its reaction partners cytochrome f and P700 could facilitate electron transport.  相似文献   

16.
Kunihiko Gekko 《Biopolymers》1979,18(8):1989-2003
The effects of neutralization, charge density, concentration, counterion, and added salts on CD spectra of carboxymethyldextran (Cm-dextran) were systematically investigated in order to understand the polyelectrolytic effects of ionic polysaccharides on CD spectra. CD curves of sodium Cm-dextran showed a negative band near 214 nm due to the carboxyl n – π* transition, but the acid spectrum indicated an additional positive band near 225–228 nm, depending on the charge density. The increase in charge density caused the increase in the magnitude of ellipticity and the red shift of the band. The magnitude of the CD band showed a remarkable concentration dependence in water without any change of position and shape but was independent of concentration in the presence of salt. CD spectra of Cm-dextran were drastically influenced by the kind of counterion and added salts. These variations of CD spectra under different conditions are discussed from the viewpoint of ion binding and the intermolecular and intramolecular electrostatic interactions of this polysaccharide.  相似文献   

17.
Abstract It is well known, that local B→A transformation in DNA is involved in several biological processes. In vitro B?A transition is sequence-specific. The physical basis of this specificity is not known yet. Here we analyze the effect of intramolecular interactions on the structural behavior of the GG/CC and AA/TT steps. These steps exemplify sequence specific bias to the B- or A-form structure. Optimization of potential energy of the molecular systems composed of an octanucle-otide, neutralized by Na(+) and solvated with TIP3P water molecules in rectangular box with periodic boundary conditions gives the statistically representative sets of low energy structures for GG/CC and AA/TT steps in the middle of the diverse flanking sequences. Permissible 3D variations of GG/CC and AA/TT, and correlation of the relative motion of base pairs in these steps were analyzed. AA/TT step permits high variability for low energy conformers in the B-form DNA and small variability for low energy conformers in the A-form DNA. In contrast GG/CC step permits high variability for low energy conformers in the A-form DNA and small variability for low energy conformers in the B-form DNA. The relative motion of base pairs in GG/CC step is high correlated, while in AA/TT step this correlation is notably less. Atom-atom interactions inside-the-step always favors the B-form and their component - stacking interactions (atomatom interactions between nucleic bases) is crucial for the duplex stabilization. Formation of the A-form for both steps is a result of interactions with the flanking sequences and water-cation environment in the box. The average energy difference between conformations presenting B-form and A-form for the GG/CC step is high, while for the AA/TT step it is rather low. Thus, intramolecular interactions in GG/CC and AA/TT steps affect the possible conformational diversity ("conformational entropy") of the A- and B- type structures of DNA step. This determines the known bias of the A-form DNA depending on the enrichment of sequences with GG/CC. If structural tuning during the process of protein-DNA complex formation lead to the local B→A transformation of DNA, it is largely directed by high conformational diversity of GG/CC step in the A-form. In such a case the presence in the target site of both kinds of examined steps ensures the reversible character of ligand binding.  相似文献   

18.
Complexes of actinomycin D with model dexoxynucleoides have been studied by means of absorption spectroscopy and CD spectroscopy and CD spectroscopy. The CD spectra of the complexes of actinomycin D with 5′-dGMP, pdG-dT, pdT-dG, pdG-dA, and pdA-dG, respectively, all resemble one another. It is presumed that in solution the interactions between the guanine residues and actinomycin D in these complexes are the same as found in the crystalling 1:2 actinomycin D:dG complex [Jain, S. C. & Sobell, H. M. (1972) J. Mol. Biol. 68 , 1–20]. The CD spectrum of the Complexes with pdG-dC differs from of the complexes just mentioned, and resembles those of the complexes formed by actinomycin D with calf-thymus DNA and with poly(dG-dC)-poly(dG-dC). These resulls are consisent with, the nontion that pdG-dC froms a double-staranded intercalated complex with actinomycin D, and that the dG-dC sequence is an important binding site for actinomycin D in polydeoxynucleotides. Titrations of actinomycin D with monodeoxynucleotides were monitored at 380, 425, 440,465, and 480, nm in both absorption and CD modes. Comparisons fo saturation profiles at these wavelengths reveal that the curves obtained at various wavelenths do not superimpose with each other, so that they must reflect different titation processes. In complex formation wiht any given nucleotide, the apparent binding affinity monitored at these wavelengths decreases in the order given above. Based on these resulted and on features noted in the CD spectra of certain complexes, it is concluded that a minimum of theree electronic transitions underlie the visible absorption band of actinomycin D, extending earlier findigs. Comparing the titration proffiles obtained with dAMP and dIMP with the result for these systems in mmr titratins [Krugh, T. R. & Chen, Y. C. (1975) Biochemistry 14 , 4912–4922], it is concluded that one transition, centered at 370 nm, monitors preponderantly effects occurring at the 6 (benzenoid) nucleotide binding site and a second transition, located at 490 nm, is sensitive preferentially to processes occurring at the 4 ( quinoid) binding site. The latter is probably closely asscoiated with 2-amino and /or 3-carbonyl substituents. The third transition, identified with the absorption maxium at 420–440 nm, appears to reflect contributions arising in the entire phenoxazone chromophore. Using these band assignments, it is concluded that the benzenoid site binds nucleotides 1.5–3 times more avidly than does the quinoid site. CD titrations resolve these processes more effectively than do abscrption titrations. Aspects of the structures of these complexes formed in solution are discussed.  相似文献   

19.
The thermal denaturation of ribonuclease A (RNase A) in the presence of phosphate at neutral pH was studied by differential scanning calorimetry (DSC) and a combination of optical spectroscopic techniques to probe the existence of intermediate states. Fourier transform infrared (FTIR) spectra of the amide I' band and far-uv circular dichroism (CD) spectra were used to monitor changes in the secondary structure. Changes in the tertiary structure were monitored by near-uv CD. Spectral bandshape changes with change in temperature were analyzed using factor analysis. The global unfolding curves obtained from DSC confirmed that structural changes occur in the molecule before the main thermal denaturation transition. The analysis of the far-uv CD and FTIR spectra showed that these lower temperature-induced modifications occur in the secondary structure. No pretransition changes in the tertiary structure (near-uv CD) were observed. The initial changes observed in far-uv CD were attributed to the fraying of the helical segments, which would explain the loss of spectral intensity with almost no modification of spectral bandshape. Separate analyses of different regions of the FTIR amide I' band indicate that, in addition to alpha-helix, part of the pretransitional change also occurs in the beta-strands.  相似文献   

20.
Abstract

We have determined the rise per base pair and persistence length of A-form DNA in trifluoroethanol solutions for fragments 350–900 base pairs in length that best describe rotational diffusion coefficients determined by transient electric birefringence. The 2.6 A spacing between base pairs found in crystal and fiber A-form structures is preserved in solution. The persistence length is about 1500 A, or about three times longer than for B-form DNA. There is no apparent electrostatic contribution to the persistence length in the salt concentration range 0.2–2.0 mM Na cacodylate. This suggests an even closer association between DNA and its neutralizing counterions than predicted by condensation theory, perhaps due to a sheath of trifluoroethanol excluded water surrounding the A-form helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号