首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Individual foraging specialisation has important ecological implications, but its causes in group‐living species are unclear. One of the major consequences of group living is increased intragroup competition for resources. Foraging theory predicts that with increased competition, individuals should add new prey items to their diet, widening their foraging niche (‘optimal foraging hypothesis’). However, classic competition theory suggests the opposite: that increased competition leads to niche partitioning and greater individual foraging specialisation (‘niche partitioning hypothesis’). We tested these opposing predictions in wild, group‐living banded mongooses (Mungos mungo), using stable isotope analysis of banded mongoose whiskers to quantify individual and group foraging niche. Individual foraging niche size declined with increasing group size, despite all groups having a similar overall niche size. Our findings support the prediction that competition promotes niche partitioning within social groups and suggest that individual foraging specialisation may play an important role in the formation of stable social groupings.  相似文献   

4.
5.
Prey abundance and the strength of interference in a foraging shorebird   总被引:8,自引:0,他引:8  
Interference is an important component of food competition but is often difficult to detect and measure in natural animal populations. Although interference has been shown to occur between oystercatchers Haematopus ostralegus L. feeding on mussels Mytilus edulis L., four previous studies have not detected interference between oystercatchers feeding on cockles Cerastoderma edule L. In contrast, this study detected interference between cockle-feeding oystercatchers in the Baie de Somme, France. Prey stealing (kleptoparasitism), one of the main causes of interference between mussel-feeders, also occurred between oystercatchers in the Baie de Somme. The kleptoparasitism rate was related to the natural variation in the food supply, tending to be higher when cockles were rare. Feeding rate was negatively related to competitor density, so providing evidence for interference, but, as in mussel-feeders, only above a threshold density of about 50–100 birds ha−1. The strength of interference at a fixed competitor density was related to the cockle food supply, usually being greater when cockles were rare. Previous studies probably failed to detect interference between cockle-feeders because competitor densities were too low, or cockles were too abundant, or because they were not conducted during late winter when interference is most intense. The study shows that natural variation in the food supply can influence the strength of interference within an animal population and provides support for those behaviour-based interference models which predict that the strength of interference will be greatest when competitor densities are high and prey scarce.  相似文献   

6.
7.
8.
9.
10.
11.
Odour signals used in competitive and aggressive interactions between males are well studied in the context of sexual selection. By contrast, relatively little is known about comparable signals used by females, despite current interest in the evolution of female ornaments and weaponry. Available evidence suggests that odour signals are important in competitive interactions between female mammals, with reductions or reversals of male-biased sexual dimorphism in signalling where female competition is intense. Scent marking is often associated with conflict between females over access to resources or reproductive opportunities. Female scent marks may therefore provide reliable signals of competitive ability that could be used both by competitors and potential mates. Consistent with this hypothesis, we report that aggressive behaviour of female house mice is correlated with the amount of major urinary protein (MUP) excreted in their urine, a polymorphic set of proteins that are used in scent mark signalling. Under semi-natural conditions, females with high MUP output are more likely to produce offspring sired by males that have high reproductive success, and less likely to produce offspring by multiple different sires, suggesting that females with strong MUP signals are monopolized by males of particularly high quality. We conclude that odour signals are worthy of more detailed investigation as mediators of female competition.  相似文献   

12.
13.
14.
15.
16.
Conspecifics are usually considered competitors negatively affecting food intake rates. However, their presence can also inform about resource quality by providing inadvertent social information. Few studies have investigated whether foragers perceive conspecifics as informers or competitors. Here, we experimentally tested whether variation in the density of demonstrators ('none', 'low' and 'high'), whose location indicated flower profitability, affected decision-making of bumble-bees Bombus terrestris. Bumble-bees foraged on either 'simple' (two colours) or 'complex' (four colours) artificial floral communities. We found that conspecifics at low density may be used as sources of information in first flower choices, whereas they appeared as competitors over the whole foraging sequence. Low conspecific densities improved foragers' first-visit success rate in the simple environment, and decreased time to first landing, especially in the complex environment. High conspecific densities did not affect these behavioural parameters, but reduced flower constancy in both floral communities, which may alter the efficiency of pollinating visits. These results suggest that the balance of the costs and benefits of conspecific presence varies with foraging experience, floral community and density. Spatio-temporal scales could thus be an important determinant of social information use. This behavioural flexibility should allow bumble-bees to better exploit their environment.  相似文献   

17.
18.
19.
Social insects are premier models for studying the evolution of self-organization in animal societies. Primitively social species may be informative about the early stages of social evolution and transitions in self-organization. Previous worker removal studies in Polistes instabilis paper wasps suggested that dominant but non-egglaying workers play an important role in regulating rates of task performance by inducing foraging in subordinates. We extend previous worker removal studies by quantifying changes in individuals’ behavior following removals, and by measuring associations between behavioral change and individuals’ reproductive capacity (ovary development). Workers changed their rates of aggressive behaviors more than queens following the dominant worker removals. Increases in worker’s rates of aggressive behaviors were correlated with decreases in their foraging rates. Changes in individual rates of social aggression were associated with their reproductive capacity: worker females with well-developed ovaries increased their rates of aggression. Further changes in rates of aggression after the dominant workers were returned also depended on ovary development. These patterns suggest that task performance and potential fecundity are linked in workers, and that worker interactions play a strong role in regulating task performance. We conclude that worker reproductive competition may have influenced the evolution of colony organization in social insects. Received 6 June 2008; revised 11 August 2008; accepted 12 August 2008.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号