首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipase B from Candida antarctica (CALB) is not very adequate to prepare crosslinked enzyme aggregates (CLEAs). Although the precipitation step is easy using different precipitants, the crosslinking step becomes a problem due to the low amount of Lys residues in this enzyme. In this paper, we have enriched the enzyme in amino groups by chemical amination of the enzyme using ethylenediamine and carbodiimide. The modification was performed using a solid phase strategy modifying the enzyme adsorbed on octyl-Sepharose. After desorption from the support, the enzyme was more active at pH 7.0 than the unmodified enzyme. This modified enzyme showed to be suitable to produce CLEAs. Using this modified enzyme, precipitation is also effective but the crosslinking step did not fail in giving an intense intermolecular crosslinking. This way, the CLEA did not release enzyme molecules even if boiled in SDS. Stability of this CLEA was higher in both thermal and cosolvent inactivation experiments than that of the coCLEA produced by coagregation of BSA and CALB; another alternative to produce a CLEA of this interesting enzyme.The strategy may be of high interest for many other enzymes as a way to both permit the production of CLEAs and to improve enzyme stability during CLEA production.  相似文献   

2.
Yeom SJ  Kim YS  Lim YR  Jeong KW  Lee JY  Kim Y  Oh DK 《Biochimie》2011,93(10):1659-1667
Mannose-6-phosphate isomerase catalyzes the interconversion of mannose-6-phosphate and fructose-6-phosphate. The gene encoding a putative mannose-6-phosphate isomerase from Thermus thermophilus was cloned and expressed in Escherichia coli. The native enzyme was a 29 kDa monomer with activity maxima for mannose 6-phosphate at pH 7.0 and 80 °C in the presence of 0.5 mM Zn2+ that was present at one molecule per monomer. The half-lives of the enzyme at 65, 70, 75, 80, and 85 °C were 13, 6.5, 3.7, 1.8, and 0.2 h, respectively. The 15 putative active-site residues within 4.5 Å of the substrate mannose 6-phosphate in the homology model were individually replaced with other amino acids. The sequence alignments, activities, and kinetic analyses of the wild-type and mutant enzymes with amino acid changes at His50, Glu67, His122, and Glu132 as well as homology modeling suggested that these four residues are metal-binding residues and may be indirectly involved in catalysis. In the model, Arg11, Lys37, Gln48, Lys65 and Arg142 were located within 3 Å of the bound mannose 6-phosphate. Alanine substitutions of Gln48 as well as Arg142 resulted in increase of Km and dramatic decrease of kcat, and alanine substitutions of Arg11, Lys37, and Lys65 affected enzyme activity. These results suggest that these 5 residues are substrate-binding residues. Although Trp13 was located more than 3 Å from the substrate and may not interact directly with substrate or metal, the ring of Trp13 was essential for enzyme activity.  相似文献   

3.
An efficient random mutagenesis procedure coupled to a replica plate screen facilitated the isolation of mutant subtilisins from Bacillus amyloliquefaciens that had altered autolytic stability under alkaline conditions. Out of about 4000 clones screened, approximately 70 produced subtilisins with reduced stability (negatives). Two clones produced a more stable subtilisin (positives) and were identified as having a single mutation, either Ile107Val or Lys213Arg (the wild-type amino acid is followed by the codon position and the mutant amino acid). One of the negative mutants, Met50Val, was at a site where other homologous subtilisins contained a Phe. When the Met50Phe mutation was introduced into the B. amyloliquefaciens gene, the mutant subtilisin was more alkaline stable. The double mutant (Ile107Val/Lys213Arg) was more stable than the isolated single mutant parents. The triple mutant (Met50Phe/Ile107Val/Lys213Arg) was even more stable than Ile107Val/Lys213Arg (up to two times the autolytic half-time of wild-type at pH 12). These studies demonstrate the feasibility for improving the alkaline stability of proteins by random mutagenesis and identifying potential sites where substitutions from homologous proteins can improve alkaline stability.  相似文献   

4.
Cross-linked enzyme aggregates (CLEAs) are prepared by precipitation of an enzyme and then chemical cross-linking the precipitate. Three CLEAs of lipase with glutaraldehyde concentrations of 10 mM (CLEA A), 40 mM (CLEA B) and 60 mM (CLEA C) were prepared. Studies show that there is a trade-off between thermal stability vs transesterification/hydrolysis rate vs enantioselectivity. The initial rates for transesterification of β-citronellol for the uncross-linked enzyme and CLEAs A, B and C were 243, 167, 102 and 40 µmol mg-1 h-1, respectively. Their thermal stabilities in aqueous media, as reflected by their half-life values at 55°C, were 6, 9, 13 and 16 h, respectively. The enantioselectivity, E values (for kinetic resolution of β-citronellol by transesterification) were 19, 74, 11 and 6, respectively. These results show that CLEA C was the most thermostable; the uncross-linked enzyme was best at obtaining the highest transesterification rate; and CLEA A was best suited for the enantioselective synthesis. Scanning electron microscopy (SEM) showed that the morphology of CLEA was dependent upon the extent of cross-linking.  相似文献   

5.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

6.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

7.
Cross-linked enzyme aggregates (CLEAs) are prepared by precipitation of an enzyme and then chemical cross-linking the precipitate. Three CLEAs of lipase with glutaraldehyde concentrations of 10 mM (CLEA A), 40 mM (CLEA B) and 60 mM (CLEA C) were prepared. Studies show that there is a trade-off between thermal stability vs transesterification/hydrolysis rate vs enantioselectivity. The initial rates for transesterification of β-citronellol for the uncross-linked enzyme and CLEAs A, B and C were 243, 167, 102 and 40 µmol mg?1 h?1, respectively. Their thermal stabilities in aqueous media, as reflected by their half-life values at 55°C, were 6, 9, 13 and 16 h, respectively. The enantioselectivity, E values (for kinetic resolution of β-citronellol by transesterification) were 19, 74, 11 and 6, respectively. These results show that CLEA C was the most thermostable; the uncross-linked enzyme was best at obtaining the highest transesterification rate; and CLEA A was best suited for the enantioselective synthesis. Scanning electron microscopy (SEM) showed that the morphology of CLEA was dependent upon the extent of cross-linking.  相似文献   

8.
Addition of bovine serum albumin (BSA) as a proteic feeder facilitates obtaining cross-linked enzyme aggregates (CLEAs) in cases where the protein concentration in the enzyme preparation is low and/or the enzyme activity is vulnerable to the high concentration of glutaraldehyde required to obtain aggregates. CLEAs of Pseudomonas cepacia lipase and penicillin acylase were prepared. CLEA of lipase prepared in the presence of BSA retained 100% activity whereas CLEA prepared without BSA retained only 0.4% activity of the starting enzyme preparation. Lipase CLEA showed 12-fold increase in activity over free enzyme powder when the CLEA was used in transesterification of tributyrin. For the transesterification of Jatropha oil, while free enzyme powder required 8 h and 50 mg lipase to obtain 77% conversion, CLEA required only 6 h and 6.25 mg lipase to obtain 90% conversion. In the case of penicillin acylase, 86% activity could be retained in CLEA prepared with BSA whereas CLEA made without BSA retained only 50% activity. CLEA prepared without BSA lost 20% activity after 8 h at 45 degrees C whereas CLEA with BSA retained full activity. CLEA prepared with BSA showed Vmax/Km of 36.3 min-1 whereas CLEA prepared without BSA had Vmax/Km of 17.4 min-1 only. Scanning electron microscopy analysis showed that CLEAs prepared in the presence of BSA were less amorphous and closer in morphology to CLEAs of other enzymes described in the literature.  相似文献   

9.
Summary The catalytic activities of -chymotrypsin, subtilisin Carlsberg, and subtilisin BPN' for hydrolysis of amino acid esters in acetonitrile-water were unusually dependent on the solvent composition. The products obtained as precipitates in high concentrations of acetonitrile were L-amino acids of high optical purities, and effective optical resolution of amino acids was achieved.  相似文献   

10.
Cross-linked enzyme crystals(CLECs) of subtilisin display the improved thermostability in organic solvents, compared to free subtilisin. CLECs are more stable than the free enzyme in octane with a half life of 200 days at 45°C, while that of free enzyme is 5.4 days. CLECs in octane is more stable than in acetonitrile.  相似文献   

11.
We showed that modified proteases could catalyze synthesis of a wide variety of peptides of various lengths and structures both in solution and on solid phase in organic solvents. The following modified proteases were studied as catalysts for enzymatic peptide synthesis in polar organic solvents (acetonitrile, dimethylformamide, and ethanol): pepsin sorbed on celite, a noncovalent complex of subtilisin with sodium dodecylsulfate, and subtilisin or thermolysin covalently immobilized on a cryogel of polyvinyl alcohol. The use of the noncovalent complex of subtilisin with sodium dodecylsulfate and immobilized subtilisin is especially promising for the segment condensation of peptide fragments containing residues of trifunctional amino acids with unprotected ionogenic groups in side chains, such as Lys, Arg, His, Glu, and Asp.  相似文献   

12.
We showed that modified proteases could catalyze synthesis of a wide variety of peptides of various lengths and structures both in solution and on solid phase in organic solvents. The following modified proteases were studied as catalysts for enzymatic peptide synthesis in polar organic solvents (acetonitrile, dimethylformamide, and ethanol): pepsin sorbed on celite, a noncovalent complex of subtilisin with sodium dodecylsulfate, and subtilisin or thermolysin covalently immobilized on a cryogel of polyvinyl alcohol. The use of the noncovalent complex of subtilisin with sodium dodecylsulfate and immobilized subtilisin is especially promising for the segment condensation of peptide fragments containing residues of trifunctional amino acids with unprotected ionogenic groups in side chains, such as Lys, Arg, His, Glu, and Asp.  相似文献   

13.

Introduction

Abdominal aortic aneurysms (AAA) are characterized by a progressive dilatation of the abdominal aorta, and are associated with a high risk of rupture once the dilatation exceeds 55 mm in diameter. A large proportion of AAA develops an intraluminal thrombus, which contributes to hypoxia, inflammation and tissue degradation. We have previously shown that patients with AAA produce clots with altered structure which is more resistant to fibrinolysis. The aim of this study was to investigate genetic polymorphisms of FXIII and fibrinogen in AAA to identify how changes to these proteins may play a role in the development of AAA.

Methods

Subjects of Western/European descent, ≥55 years of age (520 AAA patients and 449 controls) were genotyped for five polymorphisms (FXIII-A Val34Leu, FXIII-B His95Arg, FXIII-B Splice Variant (intron K nt29576C-G), Fib-A Thr312Ala and Fib-B Arg448Lys) by RT-PCR. Data were analysed by χ2 test and CubeX.

Results

The FXIII-B Arg95 allele associated with AAA (Relative risk - 1.240, CI 1.093–1.407, P = 0.006). There was no association between FXIII-A Val34Leu, FXIII-B Splice Variant, Fib-A Thr312Ala or Fib-B Arg448Lys and AAA. FXIII-B His95Arg and FXIII-B Splice variant (intron K nt29576C-G) were in negative linkage disequilibrium (D’ = −0.609, p = 0.011).

Discussion

The FXIII-B Arg95 variant is associated with an increased risk of AAA. These data suggest a possible role for FXIII in AAA pathogenesis.  相似文献   

14.
韩笑奇  白姝  史清洪 《生物工程学报》2016,32(12):1676-1684
以葡萄糖氧化酶(GOx)为研究对象,系统地研究了钙离子对交联酶聚集体(CLEA)粒子尺寸和微观结构的调控作用以及酶催化性能和实用性的影响。研究结果表明,GOx酶沉淀过程中引入钙离子可显著降低CLEA粒子尺寸并导致粒子内纳米孔道结构逐步消失。在0.1 mmol/L钙离子浓度下,GOx酶的CLEA仍保有清晰的纳米孔道结构。以葡萄糖为底物的GOx酶CLEA催化结果显示,该CLEA粒子的酶活性为对照CLEA粒子的2.69倍。即便1.0 mmol/L钙离子浓度下制备的CLEA粒子的GOx酶活性仍高出对照CLEA粒子约42%。此外,0.1 mmol/L钙离子浓度下制备的CLEA不仅具有更高的底物转化速率和很好的操作稳定性,而且CLEA中GOx酶的最大反应速度显著提高。这些实验结果明确了钙离子对CLEA粒子尺寸和微观结构的调控作用,为制备具有高效生物催化活性的CLEA粒子奠定了基础。  相似文献   

15.
We employed a cross-linked enzyme aggregate (CLEA) method to immobilize formate dehydrogenase (FDH) from Candida boidinii. The optimal conditions for the preparation of CLEAs were determined by examining effects of various parameters: the nature and amount of cross-linking reagent, additive concentration, cross-linking time, and pH during CLEA preparation. The recovered activities of CLEAs were significantly dependent on the concentration of glutaraldehyde; however, the recovered activity was not severely influenced by the content of dextran polyaldehyde as a mild cross-linker. Bovine serum albumin (BSA) was also used as a proteic feeder and enhanced the activity recovery by 130%. The highest recovered activity of CLEA was 18% for formate oxidation reaction and 25% for CO2 reduction reaction. The residual activity of CLEA prepared with dextran polyaldehyde (Dex-CLEA) was over 95% after 10 cycles of reuse. The thermal stability of Dex-CLEA was increased by a factor of 3.6 more than that of the free enzyme. CLEAs of FDH could be utilized efficiently for both NADH regeneration and CO2 reduction.  相似文献   

16.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

17.
The microstructure and the catalytic properties of cross-linked enzyme aggregates (CLEA) of penicillin acylase (PA) obtained under different conditions were investigated. The period of time left between the enzyme precipitation and the cross-linking step was found to influence the structural organization of the resulting enzyme preparation. Confocal fluorescent microscopy of the so-called “fresh” and “mature” CLEAs PA allowed to estimate the “characteristic” diameter of CLEA PA particles, which appeared to be about 1.6 μm, and revealed that the “mature” type was composed of relatively big particles as compared to the “fresh” type. Complementary kinetic studies showed that the “mature” CLEA PA were more effective in both hydrolytic and synthetic reactions. It was suggested that the aggregate size might regulate the extent of covalent modification of PA and thereby influence the catalytic properties of CLEA.  相似文献   

18.
Lipase from Rhizopus oryzae (ROL) was immobilized as crosslinked enzyme aggregate (CLEA) via precipitation with ammonium sulfate and simultaneous crosslinking with glutaraldehyde. The optimum conditions of the immobilization process were determined. Lipase CLEAs showed a twofold increase in activity when Tween 80‐pretreated lipase was used for CLEA preparation. CLEAs were shown to have several advantages compared to free lipase. CLEAs were more stable at 50°C and 60°C as well as for a wide range of pH. After incubation at 50°C, CLEA showed 74% of initial activity whereas free enzyme was totally inactivated. Reduction of Schiff bases has been performed for the first time in the CLEA preparation process significantly improving the chemically modified CLEAs' reusability, thus providing an enzyme with high potential for recycling even under aqueous reaction conditions where enzyme leakage is, in general, one of the major problems. The CLEA retained 91% activity after 10 cycles in aqueous medium. The immobilized enzyme was used for kinetic resolution reactions. Results showed that immobilization had an enhancing effect on the conversion (c) as well as on the enantiomeric ratio (E). ROL CLEA displayed five times higher enantioselectivity for the hydrolysis of (R,S)‐1‐phenylethyl acetate and likewise 1.5 times higher enantioselectivity for the transesterification of racemic (RS)‐1‐phenylethanol with vinylacetate. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 937–945, 2012 This article was published online on June 26, 2012. An edit was subsequently requested. This notice is included in the online and print versions to indicate that both have been corrected [27 June 2012].  相似文献   

19.
The requirements for FAD-attachment to His71 of 6-hydroxy-D-nicotine oxidase (6-HDNO) were investigated by site-directed mutagenesis. The following amino acid replacements were introduced into the sequence Arg67-Ser68-Gly69-Gly70-His71 of the 6-HDNO-polypeptide: 1) Arg67 was replaced with Ala (A1 mutant); 2) Ser68 was replaced with Ala (A2 mutant); and 3) Arg67 was replaced with Lys (K mutant). The substitution in mutant A2 had no effect on flavinylation, measured as [14C]FAD incorporation into apo-6-HDNO. Replacement of Arg67 with Ala prevented, but replacement with Lys permitted the flavinylation of His71. Mutant A1 showed no 6-HDNO activity, whereas the replacement of Ser with Ala in mutant A2 had only a slight effect on 6-HDNO activity. The substitution of Lys for Arg67, however, reduced the specific 6-HDNO activity in extracts of Escherichia coli cells expressing the mutant polypeptide from 50.3 to 17.5 milliunits/mg protein. It is concluded that a basic amino acid residue (Arg67 or Lys67) is required to mediate the attachment of FAD to His71, and while Lys can substitute for Arg67 in this function, it can only partially replace Arg67 in the enzyme reaction mechanism of 6-HDNO.  相似文献   

20.
Formation of the integrin alphabeta heterodimer is essential for cell surface expression and function. At the core of the alphabeta interface is a conserved Arg/Lys "finger" from the beta-subunit that inserts into a cup-like "cage" formed of two layers of aromatic residues in the alpha-subunit. We evaluated the role of this residue in heterodimer formation in an alphaA-lacking and an alphaA-containing integrin alphaVbeta3 and alphaMbeta2 (CD11b/CD18), respectively. Arg261 of beta3 was mutated to Ala or Glu; the corresponding Lys252 of beta2 was mutated to Ala, Arg, Glu, Asp, or Phe; and the effects on heterodimer formation in each integrin examined by ELISA and immunoprecipitation in HEK 293 cells cotransfected with plasmids encoding the alpha- and beta-subunits. The Arg261Glu (but not Arg261Ala) substitution significantly impaired cell surface expression and heterodimer formation of alphaVbeta3. Although Lys252Arg, and to a lesser extent Lys252Ala, were well tolerated, each of the remaining substitutions markedly reduced cell surface expression and heterodimer formation of CD11b/CD18. Lys252Arg and Lys252Ala integrin heterodimers displayed a significant increase in binding to the physiologic ligand iC3b. These data demonstrate an important role of the Arg/Lys finger in formation of a stable integrin heterodimer, and suggest that subtle changes at this residue affect the activation state of the integrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号