首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The human DNA methyltransferase 3A (DNMT3A) is essential for establishing DNA methylation patterns. Knowing the key factors involved in the regulation of mammalian DNA methylation is critical to furthering understanding of embryonic development and designing therapeutic approaches targeting epigenetic mechanisms. We observe substrate inhibition for the full length DNMT3A but not for its isolated catalytic domain, demonstrating that DNMT3A has a second binding site for DNA. Deletion of recognized domains of DNMT3A reveals that the conserved PWWP domain is necessary for substrate inhibition and forms at least part of the allosteric DNA binding site. The PWWP domain is demonstrated here to bind DNA in a cooperative manner with μM affinity. No clear sequence preference was observed, similar to previous observations with the isolated PWWP domain of Dnmt3b but with one order of magnitude weaker affinity. Potential roles for a low affinity, low specificity second DNA binding site are discussed.  相似文献   

2.
The enzyme acetyl-CoA:isopenicillin N acyltransferase (IAT) is a peroxisomal enzyme that mediates the final step of penicillin biosynthesis in the filamentous fungi Penicillium chrysogenum and Aspergillus nidulans. However, the precise role of peroxisomes in penicillin biosynthesis is still not clear. To be able to use the power of yeast genetics to solve the function of peroxisomes in penicillin biosynthesis, we introduced IAT in the yeast Hansenula polymorpha. To this purpose, the P. chrysogenum penDE gene, encoding IAT, was amplified from a cDNA library to eliminate the three introns and introduced in H. polymorpha. In this organism IAT protein was produced as a 40 kDa pre-protein and, as in P. chrysogenum, processed into an 11 and 29 kDa subunit, although the efficiency of processing seemed to be slightly reduced relative to P. chrysogenum. The P. chrysogenum IAT, produced in H. polymorpha, is normally localized in peroxisomes and in cell-free extracts IAT activity could be detected. This is a first step towards the introduction of the penicillin biosynthesis pathway in H. polymorpha.  相似文献   

3.
Lipoxygenases (LOXs) and cyclooxygenases (COXs) metabolize poly-unsaturated fatty acids into inflammatory signaling molecules. Modulation of the activity of these enzymes may provide new approaches for therapy of inflammatory diseases. In this study, we screened novel anacardic acid derivatives as modulators of human 5-LOX and COX-2 activity. Interestingly, a novel salicylate derivative 23a was identified as a surprisingly potent activator of human 5-LOX. This compound showed both non-competitive activation towards the human 5-LOX activator adenosine triphosphate (ATP) and non-essential mixed type activation against the substrate linoleic acid, while having no effect on the conversion of the substrate arachidonic acid. The kinetic analysis demonstrated a non-essential activation of the linoleic acid conversion with a KA of 8.65 μM, αKA of 0.38 μM and a β value of 1.76. It is also of interest that a comparable derivative 23d showed a mixed type inhibition for linoleic acid conversion. These observations indicate the presence of an allosteric binding site in human 5-LOX distinct from the ATP binding site. The activatory and inhibitory behavior of 23a and 23d on the conversion of linoleic compared to arachidonic acid are rationalized by docking studies, which suggest that the activator 23a stabilizes linoleic acid binding, whereas the larger inhibitor 23d blocks the enzyme active site.  相似文献   

4.
Tyrosyl DNA phosphodiesterase 2 (TDP2), a newly discovered enzyme that cleaves 5′-phosphotyrosyl bonds, is a potential target for chemotherapy. TDP2 possesses both 3′- and 5′-tyrosyl-DNA phosphodiesterase activity, which is generally measured in a gel-based assay using 3′- and 5′-phosphotyrosyl linkage at the 3′ and 5′ ends of an oligonucleotide. To understand the enzymatic mechanism of this novel enzyme, the gel-based assay is useful, but this technique is cumbersome for TDP2 inhibitor screening. For this reason, we have designed a novel assay using p-nitrophenyl-thymidine-5′-phosphate (T5PNP) as a substrate. This assay can be used in continuous colorimetric assays in a 96-well format. We compared the salt and pH effect on product formation with the colorimetric and gel-based assays and showed that they behave similarly. Steady-state kinetic studies showed that the 5′ activity of TDP2 is 1000-fold more efficient than T5PNP. Tyrosyl DNA phosphodiesterase 1 (TDP1) and human AP-endonuclease 1 (APE1) could not hydrolyze T5PNP. Sodium orthovanadate, a known inhibitor of TDP2, inhibits product formation from T5PNP by TDP2 (IC50 = 40 mM). Our results suggest that this novel assay system with this new TDP2 substrate can be used for inhibitor screening in a high-throughput manner.  相似文献   

5.
Takayanagi T 《Bio Systems》2011,105(1):83-88
Cell-mediated cytotoxicity assays are widely implemented to evaluate cell-mediated cytotoxic activity, and some assays are analyzed using the analogy of enzyme kinetics. In the analogy, the effector cell is regarded as the enzyme, the target cell as the substrate, the effector cell-target cell conjugate as the enzyme-substrate complex and the dead target cell as the product. However, the assumptions analogous to those of enzyme kinetics are not always true in cell-mediated cytotoxicity assays, and the parameter analogous to the Michaelis-Menten constant is not constant but is dependent on the number of effector cells. Therefore I present novel mathematical models for cell-mediated cytotoxicity assays without applying enzyme kinetics. I instead use combinations and probability, because analysis of cell-mediated cytotoxicity assays by applying enzyme kinetics seems controversial. With my original models, I demonstrate simulations of the data in previously published papers. The results are exhibited in the same forms as the corresponding data. Comparing the simulation results with the published data, the results seem to agree well with the data. From simulations of cytotoxic assays with bulk effector cells, it appears that bystanders in bulk effector cells increase both the cytotoxic activity and the motility of effector cells.  相似文献   

6.
Cell-permeable pancaspase inhibitors such as zAsp-CH2-DCB and zVAD-fmk are widely used to examine the involvement of caspases in cell death models. While examining the caspase-dependence of staurosporine (STS)-induced neuroblastoma cell death, we found that zVAD-fmk but not zAsp-CH2-DCB inhibits apoptosis. Time course analysis revealed that, in contrast to zVAD-fmk which constantly inhibited the processing of endogenous caspase substrates, zAsp-CH2-DCB inhibited substrate processing only for the first few hours after its addition to the culture medium. However, when the caspase activity in lysates prepared from cells treated with STS and zAsp-CH2-DCB was measured in vitro, quite unexpectedly, it was found that zAsp-CH2-DCB completely inhibits the STS-mediated activation of caspases throughout the observation period even when it apparently failed to inhibit the processing of caspase substrates within intact cells. These findings together suggest that there exists a cellular mechanism that inactivates zAsp-CH2-DCB in a reversible manner. This reversible inactivation was an active, intracellular process requiring de novo protein synthesis and was observed in another cell line HeLa and with different apoptotic stimuli such as ultraviolet irradiation. Our results have important implications that require consideration when designing experiments involving the use of caspase inhibitors as well as interpreting their results.  相似文献   

7.
A direct and convenient spectrophotometric assay has been developed for methionine aminopeptidases (MetAPs). The method employs the hydrolysis of a substrate that is a methionyl analogue of p-nitroaniline (L-Met-p-NA), which releases the chromogenic product p-nitroaniline. This chromogenic product can be monitored continuously using a UV-Vis spectrophotometer set at 405 nm. The assay was tested with the type I MetAP from Escherichia coli (EcMetAP-I) and the type II MetAP from Pyrococcus furiosus (PfMetAP-II). Using L-Met-p-NA, the kinetic constants k(cat) and K(m) were determined for EcMetAP-I and PfMetAP-II and were compared with those obtained with a standard high-performance liquid chromatography (HPLC) discontinuous assay. The assay has also been used to determine the temperature dependence of the kinetic constant k(cat) for PfMetAP-II as well as to screen two novel pseudopeptide inhibitors of MetAPs. The results demonstrate that L-Met-p-NA provides a fast, convenient, and effective substrate for both type I and type II MetAPs and that this substrate can be used to quickly screen inhibitors of MetAPs.  相似文献   

8.
Protein kinase CK2 is emerging as a target in neoplastic diseases. Inhibition of CK2 by small compounds could lead to new therapies by counteracting the elevated CK2 activities found in a variety of tumors. Currently, CK2 inhibitors are primarily evaluated by a radiometric in vitro assay tracing the amount of transferred γ-(32)P from ATP to a substrate peptide. Here, we present two alternative assays abandoning radioisotopes. The first assay is based on F?rster resonance energy transfer between the fluorescence donor EDANS and the acceptor molecule DABCYL within the CK2 substrate peptide [DABCYL]-RRRDDDSDDD-[EDANS]. This peptide comprises a cleavage site for pancreatic elastase, which is located next to the phosphate acceptor serine. Only the non-phosphorylated peptide can be cleaved by elastase, disrupting the FRET effect. Thus fluorescence intensity is inversely correlated with CK2 activity. The second non-radiometric assay deploys the changing of charge that occurs within the peptide substrate RRRDDDSDDD upon phosphorylation by CK2. Substrate and product of a CK2 reaction consequently show a difference in electrophoretic mobility and thus can be separated by capillary electrophoresis. Absorption detection enabled quantification of both peptide species and allowed the determination of IC(50) values. This method facilitated the testing of a small compound library by which benzofuran derivatives were identified as potent CK2 inhibitors with IC(50) values in the submicromolar range.  相似文献   

9.
Human microtubule affinity-regulating kinase 4 (MARK4) is considered as an encouraging drug target for the design and development of inhibitors to cure several life-threatening diseases such as Alzheimer disease, cancer, obesity, and type-II diabetes. Recently, we have reported four ligands namely, BX-912, BX-795, PKR-inhibitor, and OTSSP167 (hydrochloride) which bind preferentially to the two different constructs of human MARK4 containing kinase domain. To ensure the role of ubiquitin-associated (UBA) domain in the ligand binding, we made a newer construct of MARK4 which contains both kinase and UBA domains, named as MARK4-F3. We observed that OTSSP167 (hydrochloride) binds to the MARK4-F3 with a binding constant (K) of 3.16 × 106, M?1 (±.21). However, UBA-domain of MARK4-F3 doesn’t show any interaction with ligands directly as predicted by the molecular docking. To validate further, ATPase inhibition assays of all three constructs of MARK4 in the presence of mentioned ligands were carried out. An appreciable correlation between the binding experiments and ATPase inhibition assays of MARK4 was observed. In addition, cell-proliferation inhibition activity for all four ligands on the Human embryonic kidney (HEK-293) and breast cancer cell lines (MCF-7) was performed using MTT assay. IC50 values of OTSSP167 for HEK-293 and MCF-7 were found to be 58.88 (±1.5), and 48.2 (±1.6), respectively. OTSSP167 among all four inhibitors, showed very good enzyme inhibition activity against three constructs of MARK4. Moreover, all four inhibitors showed anti-neuroblastoma activity and anticancer properties. In conclusion, OTSSP167 may be considered as a promising scaffold to discover novel inhibitors of MARK4.  相似文献   

10.
T Fu  Y Sugimoto  Y Okano  H Kanoh  Y Nozawa 《FEBS letters》1992,300(3):301-304
A series of nonpeptidic human renin inhibitors with a 4-methoxymethoxypiperidinylamide at the P4 position of the molecule exhibited slow tight binding to the enzyme. Replacement of the methoxymethoxy moiety on the piperidine ring with H, OH, methoxyethyl, propyloxy or n-butyl eliminated the effect. The inhibition was partially reversed by prolonged dialysis at 4°C, arguing against formation of a covalent bond in the tightened complex.  相似文献   

11.
Novel 2-aminoanilide histone deacetylase (HDAC) inhibitors were designed to increase their contact with surface residues surrounding the HDAC active site compared to the contacts made by existing clinical 2-aminoanilides such as SNDX-275, MGCD0103, and Chidamide. Their HDAC selectivity was assessed using p21 and klf2 reporter gene assays in HeLa and A204 cells, respectively, which provide a cell-based readout for the inhibition of HDACs associated either with the p21 or klf2 promoter. A subset of the designed compounds selectively induced p21 over klf2 relative to the clinical reference compound SNDX-275. A representative lead compound from this subset had antiproliferative effects in cancer cells associated with induction of acetylated histone H4, endogenous p21, cell cycle arrest, and apoptosis. The p21- versus klf2-selective compounds described herein may provide a chemical starting point for developing clinically-differentiated HDAC inhibitors for cancer therapy.  相似文献   

12.
A simple and versatile method is developed for covalently binding a protein ligand onto a matrix irrespective of functional groups either on the ligand or the matrix. Prerequisite of the method is a novel proteinaceous photolinker having multiple light-activable functional groups. We have made photoreactive-BSA – a proteinaceous photolinker by the reaction of bovine serum albumin (BSA) with excess of 1-fluoro-2-nitro-4-azidobenzene (FNAB). When an enzyme is placed on an inert polystyrene matrix in presence of photoreactive-BSA and exposed to light the later forms highly reactive nitrenes some of which bind to the matrix and the rest to the ligand resulting simultaneous formation of covalent bonds with the matrix and the enzyme. The method is further exemplified by performing ELISA by covalent binding of antigen or antibody on a polystyrene microtiter plate in just 30 min using photoreactive-BSA. ELISA carried out in less than 3 h using photoreactive-BSA showed comparable results with that of conventional ELISA carried out in 18 h. Thus the method is potentially useful for rapid ELISA or covalent immobilization of ligands onto an inert surface without prior activation.  相似文献   

13.
Several radioreceptor assays using tritiated saxitoxin ([(3)H]STX) were developed to identify a suitable primary screening method for the detection and characterization of soluble saxitoxin binding proteins from biological extracts. Assays using anion and cation exchange, protein binding, and traditional charcoal radioreceptor methods were compared with two previously reported formats. A protein binding assay incorporating filters of mixed cellulose esters (MCE) outperformed all other assay strategies with maximal signal, low background, exceptional reproducibility, minimal matrix effects, and high throughput. Binding site titrations verified that an increase in total protein in the assay led to a concomitant linear increase in the amount of specifically bound [(3)H]STX within the range of 1-90microg total protein. Saturation binding experiments demonstrated that the binding sites were saturable and that nonspecific binding was linear. The MCE assay was unaffected by 600mM NaCl and 500mM KCl. Likewise, minimal variation of specific binding was observed between pH 5 and pH 9, but inhibition was observed below pH 5.  相似文献   

14.
Translin is a highly conserved mammalian RNA and DNA-binding protein involved in DNA recombination and RNA trafficking. Crystal structures of mouse and human translin have been solved, but do not provide information about nucleic acid binding or recognition. Translin has a partner protein, translin-associated factor x (trax), which is believed to regulate translin’s subcellular locale and affinity for certain RNA and DNA sequences. Here we present a comparative study of recombinant translin and translin-trax complex binding to specific RNA and DNA sequences. It was observed that translin preferentially binds to G-rich RNA sequences whereas translin-trax preferentially binds G-rich DNA sequences. Translin can bind mRNA sequences with sub-micromolar Kd values, and the complex with trax can bind G-rich DNA with similar affinity. We conclude that trax acts to regulate translin’s RNA and DNA binding affinities as part of a cellular RNA trafficking mechanism.  相似文献   

15.
16.
Metal-fluoride complexes have been used to induce E2P-like states with the aim of studying the events that occur during E2P hydrolysis in P-type ATPases. In the present work, we compared the E2P-like state induced by a beryllium fluoride complex (BeFx) with the actual E2P state formed through backdoor phosphorylation of the Na,K-ATPase. Formation of E2P and E2P-like states were investigated employing the styryl dye RH421. We found that BeFx is the only fluorinated phosphate analog that, like Pi, increases the RH421 fluorescence. The observed rate constant, kobs, for the formation of E2P decreases with [Pi] whereas that of E2BeFx increases with [BeFx]. This might wrongly be taken as evidence of a mechanism where the binding of BeFx induces a conformational transition. Here, we rather propose that, like for Pi, binding of BeFx follows a conformational-selection mechanism, i.e. it binds to the E2 conformer forming a complex that is much more stable than E2P, as seen from its impaired capacity to return to E1 upon addition of Na+. Although E2P and E2BeFx are able to form states with 2 occluded Rb+, both enzyme complexes differ in that the affinity for the binding and occlusion of the second Rb+ is much lower in E2BeFx than in E2P. The higher rates of Rb+ occlusion and deocclusion observed for E2BeFx, as compared to those observed for other E2P-like transition and product states suggest a more open access to the cation transport sites, supporting the idea that E2BeFx mimics the E2P ground state.  相似文献   

17.
2-Ethynylnaphthalene (2EN) is an effective mechanism-based inhibitor of CYP2B4. There are two inhibitory components: (1) irreversible inactivation of CYP2B4 (a typical time-dependent inactivation), and (2) a reversible component. The reversible component was unusual in that the degree of inhibition was not simply a characteristic of the enzyme-inhibitor interaction, but dependent on the size of the substrate molecule used to monitor residual activity. The effect of 2EN on the metabolism of seven CYP2B4 substrates showed that it was not an effective reversible inhibitor of substrates containing a single aromatic ring; substrates with two fused rings were competitively inhibited by 2EN; and larger substrates were non-competitively inhibited. Energy-based docking studies demonstrated that, with increasing substrate size, the energy of 2EN and substrate co-binding in the active site became unfavorable precisely at the point where 2EN became a competitive inhibitor. Hierarchical docking revealed potential allosteric inhibition sites separate from the substrate binding site.  相似文献   

18.
Specific binding sites for cholecystokinin (CCK) have been characterized in a particulate membrane fraction of rat cerebral cortex using a biologically active 125I-labeled derivative of the C-terminal octapeptide of CCK (CCK-8) prepared by reaction with the iodinated form of the imidoester (125IIE), methyl-p-hydroxybenzimidate. The time course of binding to cortical membranes was rapid, temperature dependent, and saturable. Half-maximal binding at 24 degrees C was reached in 30 min and full binding at 120 min. At 37 degrees C there was only a slight increase in 125IIE-CCK-8 bound after 15 min. The addition of a large excess of CCK-8 after 30 min of binding at 24 degrees C caused a prompt and rapid decline in radioligand bound showing that the interaction was reversible. There was a progressive decline in the amount of 125IIE-CCK-8 bound to membranes with increasing concentrations of CCK-8 and other structurally related peptides. CCK-8 displaced 50% of the radioligand at 4 nM, CCK-33 at 10 nM, and gastrin (desulfated CCK-8) at 60 nM. Secretin, a structurally unrelated peptide, was unable to displace the radioligand from cortical membranes at 1.0 microM. Finally, 125IIE-CCK-8 exposed to cortical membranes or to buffers that had previously contained such membranes for 60 min at 24 degrees C bound equally as well to fresh cortical membranes as control radioligand that had not been exposed to the same conditions. Thus the 125I-CCK-8 radioligand used in this study was highly resistant to degradative processes in rat brain tissue.  相似文献   

19.
Motivated by the problem of microbial deposition, a dynamic model is developed for the attachment of a Brownian particle to a surface mediated by colloidal forces as well as macromolecular bridging. The model predicts the attachment probability of the particle to the surface based upon the free energy as a function of fluctuating bond number and separation distance from the surface. From this model, the mean first-passage time approach is used to predict the mean time required for the particle moving from the unattached state to the attached state based on the properties of the binding macromolecules. This approach provides an analytical approximation for mean transition time from the secondary energy minimum as well as the attachment rate constant for the general case where neither binding nor particle diffusion are necessarily rate-limiting.  相似文献   

20.
A novel class of potent and selective inhibitors of KDR incorporating an indazole moiety 1 is reported. The discovery, synthesis, and structure–activity relationships of this series of inhibitors have been investigated. The most promising compounds were also profiled to determine their pharmacokinetic properties and evaluated in a VEGF-induced vascular permeability assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号