首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《IRBM》2008,29(2-3):155-161
A multipurpose Love acoustic wave biosensor is described in this article. As mass loading is one of the main effect involved in acoustic wave sensors, a great range of biomolecules could be detected using such sensors. In this way, the antibody/antigen binding property was used to immobilise the target species. We first compared different coupling agents to link the antibodies sensitive layer to the SiO2 sensor surface. Results showed that GPTS monolayer, allowing covalent attachment of antibodies bioreceptors, is better suited than DTSP and protein G. It permits to obtain a dense, stable and reproducible sensitive layer of antibodies. Then, different biological species with different size and shape like proteins, bacteriophages or bacteria were detected using such sensor. Different models have been chosen to validate the effective detection of a large species range: an anti-mouse antibody has been used to simulate small molecules (< 10 nm) like proteins or toxins, bacteriophage M13 for species lower than 1 μm like virus, and Escherichia coli for bacteria which are typically longer than 1 μm. Each kind of species were successfully quickly detected from few seconds for small proteins to one hour for bacteria, with detection threshold down to 4 ng/mm2 for protein and 106 cfu per milliliter for bacteria.  相似文献   

2.
Wild type T4 bacteriophage and recombinant T4 bacteriophages displaying biotin binding peptide (BCCP) and cellulose binding module (CBM) on their heads were immobilized on nano-aluminum fiber-based filter (Disruptor™), streptavidin magnetic beads and microcrystalline cellulose, respectively. Infectivity of the immobilized phages was investigated by monitoring the phage-mediated growth inhibition of bioluminescent E. coli B and cell lysis using bioluminescent ATP assay. The results showed that phage immobilization resulted in a partial loss of infectivity as compared with the free phage. Nevertheless, the use of a biosorbent based on T4 bacteriophage immobilized on Disruptor™ filter coupled with a bioluminescent ATP assay allowed simultaneous concentration and detection of as low as 6 × 103 cfu/mL of E. coli in the sample within 2 h with high accuracy (CV = 1-5% in log scale). Excess of interfering microflora at levels 60-fold greater than the target organism did not affect the results when bacteriophage was immobilized on the filter prior to concentration of bacterial cells.  相似文献   

3.
Aim: To develop antibody–aptamer functionalized fibre‐optic biosensor for specific detection of Listeria monocytogenes from food products. Methods and Results: Aptamer, a single‐stranded oligonucleotide ligand that displays affinity for the target molecule, was used in the assay to provide sensor specificity. Aptamer‐A8, specific for internalin A, an invasin protein of L. monocytogenes, was used in the fibre‐optic sensor together with antibody in a sandwich format for detection of L. monocytogenes from food. Biotinylated polyclonal anti‐Listeria antibody, P66, was immobilized on streptavidin‐coated optical waveguide surface for capturing bacteria, and Alexa Fluor 647‐conjugated A8 was used as a reporter. The biosensor was able to selectively detect pathogenic Listeria in pure culture and in mixture with other bacteria at a concentration of approx. 103 CFU ml?1. This sensor also successfully detected L. monocytogenes cells from artificially contaminated (initial inoculation of 102 CFU 25 g?1) ready‐to‐eat meat products such as sliced beef, chicken and turkey after 18 h of enrichment. Conclusion: Based on the data presented in this study, the antibody–aptamer functionalized fibre‐optic biosensor could be used as a detection tool for sensitive and specific detection of L. monocytogenes from foods. Significance and Impact of the Study: The study demonstrates feasibility and novel application of aptamer on fibre‐optic biosensor platform for the sensitive detection of L. monocytogenes from food products.  相似文献   

4.
A highly sensitive electrochemical DNA biosensor made of polyaniline (PANI) and gold nanoparticles (AuNPs) nanocomposite (AuNPs@PANI) has been used for the detection of trace concentration of Ag+. In the presence of Ag+, with the interaction of cytosine–Ag+–cytosine (C–Ag+–C), cytosine-rich DNA sequence immobilized onto the surface of AuNPs@PANI has a self-hybridization and then forms a duplex-like structure. The whole detection procedure of Ag+ based on the developed biosensor was evaluated by electrochemical impedance spectroscopy. On semi-logarithmic plots of the log Ag+ concentration versus peak current, the results show that the prepared biosensor can detect silver ions at a wide linear range of 0.01–100 nM (R = 0.9828) with a detection limit of 10 pM (signal/noise = 3). Moreover, the fabricated sensor exhibits good selectivity and repeatability. The detection of Ag+ was determined by Ag+ self-induced conformational change of DNA scaffold that involved only one oligonucleotide, showing its convenience and availability.  相似文献   

5.
Fast and simple detection of pathogens is of utmost importance in health care and the food industry. In this article, a novel technology for the detection of pathogenic bacteria is presented. The technology uses lytic-specific bacteriophages and a nonspecific interaction of cellular components with a luminescent lanthanide chelate. As a proof of principle, Escherichia coli-specific T4 bacteriophage was used to infect the bacteria, and the cell lysis was detected. In the absence of E. coli, luminescent Eu3+–chelate complex cannot be formed and low time-resolved luminescence signal is monitored. In the presence of E. coli, increased luminescence signal is observed as the cellular contents are leached to the surrounding medium. The luminescence signal is observed as a function of the number of bacteria in the sample. The homogeneous assay can detect living E. coli in bacterial cultures and simulated urine samples within 25 min with a detection limit of 1000 or 10,000 bacterial cells/ml in buffer or urine, respectively. The detection limit is at the clinically relevant level, which indicates that the method could also be applicable to clinical settings for fast detection of urine bacteria.  相似文献   

6.
In this article, a phage-based magnetoelastic sensor for the detection of Salmonella typhimurium is reported. Filamentous bacteriophage specific to S. typhimurium was used as a biorecognition element in order to ensure specific and selective binding of bacteria onto the sensor surface. Phage was immobilized onto the surface of the sensors by physical adsorption. The phage immobilized magnetoelastic sensors were exposed to S. typhimurium cultures with different concentrations ranging from 5x10(1) to 5x10(8) cfu/ml, and the corresponding changes in resonance frequency response of the sensor were studied. It was experimentally established that the sensitivity of the magnetoelastic sensors was higher for sensors with smaller physical dimensions. An increase in sensitivity from 159 Hz/decade for a 2 mm sensor to 770 Hz/decade for a 1 mm sensor was observed. Scanning electron microscopy (SEM) analysis of previously assayed biosensors provided visual verification of frequency changes that were caused by S. typhimurium binding to phage immobilized on the sensor surface. The detection limit on the order of 10(3) cfu/ml was obtained for a sensor with dimensions 1x0.2x0.015 mm.  相似文献   

7.
《Process Biochemistry》2014,49(9):1393-1401
In this study, a microbial biosensor for hydrogen sulfide (H2S) detection based on Thiobacillus thioparus immobilized in a gelatin matrix was developed. The T. thioparus was immobilized via either surface adsorption on the gelatin matrix or entrapment in the matrix. The bacterial and gelatin concentration in the support were then varied in order to optimize the sensor response time and detection limit for both methods. The optimization was conducted by a statistical analysis of the measured biosensor response with various bacterial and polymer concentrations. According to our experiments with both immobilization methods, the optimized conditions for the entrapment method were found to be a gelatin concentration of 1% and an optical density of 82. For the surface adsorption method, 0.6% gelatin and an optical density of 88 were selected as the optimal conditions. A statistical model was developed based on the extent of the biosensor response in both methods of immobilization. The maximum change in the potential of the solution was 23.16 mV for the entrapment method and 34.34 mV for the surface absorption method. The response times for the entrapment and adsorption methods were 160 s and 105 s, respectively. The adsorption method is more advantageous for the development of a gas biosensor due to its shorter response time.  相似文献   

8.
The surface plasmon resonance (SPR) technique is a well-established method for the measurement of molecules binding to surfaces and the quantification of binding constants between surface-immobilized proteins and proteins in solution. In this paper we describe an extension of the methodology to study bacteriophage-bacterium interactions. A two-channel microfluidic SPR sensor device was used to detect the presence of somatic coliphages, a group of bacteriophages that have been proposed as fecal pollution indicators in water, using their host, Escherichia coli WG5, as a target for their selective detection. The bacterium, E. coli WG5, was immobilized on gold sensor chips using avidin-biotin and bacteriophages extracted from wastewater added. The initial binding of the bacteriophage was observed at high concentrations, and a separate, time-delayed cell lysis event also was observed, which was sensitive to bacteriophage at low concentrations. As few as 1 PFU/ml of bacteriophage injected into the chamber could be detected after a phage incubation period of 120 min, which equates to an approximate limit of detection of around 10(2) PFU/ml. The bacteriophage-bacterium interaction appeared to cause a structural change in the surface-bound bacteria, possibly due to collapse of the cell, which was observed as an increase in mass density on the sensor chip. These results suggest that this methodology could be employed for future biosensor technologies and for quantification of the bacteriophage concentration.  相似文献   

9.
In the present study, a gold nanoparticle-modified gold electrode (nanogold electrode) was used to develop a novel fluorescein electrochemical DNA biosensor based on a target-induced conformational change. The nanogold electrode was obtained by electrodepositing gold nanoparticles onto a bare gold electrode. This modification not only immobilized probe oligonucleotides, but also adsorbed fluorescein onto the surface of the gold nanoparticles to form an “arch-like” structure. This article compares the electrochemical signal changes caused by the hybridization of “arch-like” DNA on nanogold electrode and linear DNA on bare gold electrode. The results showed that the adsorption effect of nanogold can enhance the sensitivity of the sensor. The linear range of target ssDNA is from 2.0 × 10−9 M to 2.0 × 10−8 M with a correlation coefficient of 0.9956 and detection limit (3σ) of 7.10 × 10−10 M. Additionally, the specificity and hybridization response of this simple sensor were investigated.  相似文献   

10.
Antisense RNA complementary to a putative helicase gene (hel3.1) of a cos-type Streptococcus thermophilus bacteriophage was used to impede the proliferation of a number of cos-type S. thermophilus bacteriophages and one pac-type bacteriophage. The putative helicase gene is a component of the Sfi21-type DNA replication module, which is found in a majority of the S. thermophilus bacteriophages of industrial importance. All bacteriophages that strongly hybridized a 689-bp internal hel3.1 probe were sensitive to the expression of antisense hel3.1 RNA. A 40 to 70% reduction in efficiency of plaquing (EOP) was consistently observed, with a concomitant decrease in plaque size relative to that of the S. thermophilus parental strain. When progeny were released, the burst size was reduced. Growth curves of S. thermophilus NCK1125, in the presence of variable levels of bacteriophage κ3, showed that antisense hel3.1 conferred protection, even at a multiplicity of infection of approximately 1.0. When the hel3.1 antisense RNA cassette was expressed in cis from the κ3-derived phage-encoded resistance (PER) plasmid pTRK690::ori3.1, the EOP for bacteriophages sensitive to PER and antisense targeting was reduced to between 10−7 and 10−8, beyond the resistance conferred by the PER element alone (less than 10−6). These results illustrate the first successful applications of antisense RNA and explosive delivery of antisense RNA to inhibit the proliferation of S. thermophilus bacteriophages.  相似文献   

11.
A label-free optical biosensor based on a nanostructured porous Si is designed for rapid capture and detection of Escherichia coli K12 bacteria, as a model microorganism. The biosensor relies on direct binding of the target bacteria cells onto its surface, while no pretreatment (e.g. by cell lysis) of the studied sample is required. A mesoporous Si thin film is used as the optical transducer element of the biosensor. Under white light illumination, the porous layer displays well-resolved Fabry-Pérot fringe patterns in its reflectivity spectrum. Applying a fast Fourier transform (FFT) to reflectivity data results in a single peak. Changes in the intensity of the FFT peak are monitored. Thus, target bacteria capture onto the biosensor surface, through antibody-antigen interactions, induces measurable changes in the intensity of the FFT peaks, allowing for a ''real time'' observation of bacteria attachment.The mesoporous Si film, fabricated by an electrochemical anodization process, is conjugated with monoclonal antibodies, specific to the target bacteria. The immobilization, immunoactivity and specificity of the antibodies are confirmed by fluorescent labeling experiments. Once the biosensor is exposed to the target bacteria, the cells are directly captured onto the antibody-modified porous Si surface. These specific capturing events result in intensity changes in the thin-film optical interference spectrum of the biosensor. We demonstrate that these biosensors can detect relatively low bacteria concentrations (detection limit of 104 cells/ml) in less than an hour.  相似文献   

12.
The aim of this study was to demonstrate that flow cytometry (FACS) could potentially be employed for rapid viability assessment of probiotic bacteria immobilized or encapsulated in complex matrices. Lactobacillus rhamnosus GG was immobilized within six different protein environments using whey protein isolate (WPI) and yoghurt matrices and encapsulated within protein micro-beads, all of which ranged in structural complexity. Following a series of environmental-stress trials, survival of the strain was examined using FACS compared to traditional plate count techniques. Cell extraction and digestive pre-treatments were designed to release cells and reduce the protein background, respectively, which represent compositional obstacles for efficient FACS analysis. Physico-chemical properties of protein-probiotic components revealed the mechanism necessary for efficient cell delivery during FACS analysis. This assay required 40 min sample preparation and distinct functional populations were discriminated based on fluorescent properties of thiazole orange (TO) and propidium iodide (PI). This assay yielded 45-50 samples/h, a detection range of 102-1010 cfu/ml of homogenate and generated correlation coefficients (r) of 0.95, 0.92 and 0.93 in relation to standard plate counts during heat, acid and storage trials, respectively. In conclusion, this methodology provides impetus for dynamic progression of FACS for rapid viability assessment of live bacteria immobilized/encapsulated within complex protein systems.  相似文献   

13.
Three microalgal species (Dictyosphaerium chlorelloides (D.c.), Scenedesmus intermedius (S.i.) and Scenedesmus sp. (S.s.)) were encapsulated in silicate sol–gel matrices and the increase in the amount of chlorophyll fluorescence signal was used to quantify simazine. Influence of several parameters on the preparation of the sensing layers has been evaluated: effect of pH on sol–gel gelation time; effect of algae density on sensor response; influence of glycerol (%) on the membrane stability. Long term stability was also tested and the fluorescence signal from biosensors remained stable for at least 3 weeks. D.c. biosensor presented the lowest detection limits for simazine (3.6 μg L−1) and the broadest dynamic calibration range (19–860 μg L−1) with IC50 125 ± 14 μg L−1. Biosensor was validated by HPLC with UV/DAD detection. The biosensor showed response to those herbicides that inhibit the photosynthesis at photosystem II (triazines: simazine, atrazine, propazine, terbuthylazine; urea based herbicides: linuron). However, no significant increases of fluorescence response was obtained for similar concentrations of 2,4-D (hormonal herbicide) or Cu(II). The combined use of two biosensors that use two different genotypes, sensitive and resistant to simazine, jointly allowed improving microalgae biosensor specificity.  相似文献   

14.
An amperometric biosensor was developed for determination of urea using electrodeposited rhodium on a polymer membrane and immobilized urease. The urease catalyzes the hydrolysis of urea to NH4+ and HCO3 ions and the liberated ammonia is catalytically and electrochemically oxidized by rhodium present in the rhodinized membrane on the Pt working electrode. Three types of rhodinized polymer membranes were prepared by varying the number of electrodeposition cycles: membrane 1 with 10 deposition cycles, membrane 2 with 40 cycles and membrane 3 with 60 cycles. The morphologies of the rhodinized membranes were investigated by scanning electron microscopy and the results showed that the deposition of rhodium was like flowers with cornices-like centers. The influence of the amount of electrodeposited rhodium over the electrode sensitivity to different concentrations of ammonia was examined initially based on the cyclic voltammetric curves using the three rhodium modified electrodes. The obtained results convincingly show that electrode with rhodinized membrane 1, which contain the lowest amount of electrodeposited rhodium is the most active and sensitive regarding ammonia. It was found that the anodic oxidation peak of ammonia to nitrogen occurs at 0.60 V. In order to study the performance of urease amperometric sensor for the determination of urea, experiments at constant potential (0.60 V) were performed. The current–time experiments were carried out with urease rhodinized membrane 1 (10 cycles). The amperometric response increased linearly up to 1.75 mM urea. The detection limit was 0.05 mM. The urea biosensor exhibited a high sensitivity of 1.85 μA mM−1 cm−2 with a response time 15 s. The Michaelis–Menten constant Km for the urea biosensor was calculated to be 6.5 mM, indicating that the immobilized enzyme featured a high affinity to urea. The urea sensor showed a good reproducibility and stability. Both components rhodium and urease contribute to the decreasing of the production cost of biosensor by avoiding the use of a second enzyme.  相似文献   

15.
Acetylcholinesterase (AChE) was immobilized on chemically modified poly-(acrylonitrile-methyl-methacrylate-sodium vinylsulfonate) membranes in accordance with three different methods, the first of which involved random enzyme immobilization via glutaraldehyde, the second one—site-specific enzyme immobilization via glutaraldehyde and Concanavalin A (Con A) and the third method—modified site-specific enzyme immobilization via glutaraldehyde in the presence of a mixture of multiwall carbon nanotubes and albumin (MWCNs + BSA), glutaraldehyde and Con A. Preliminary tests for the activity of immobilized AChE were carried out using these three methods. The third method was selected as the most efficient one for the immobilization of AChE and the prepared enzyme carriers were used for the construction of amperometric biosensors for the detection of acetylthiocholine (ATCh).A five level three factorial central composite design was chosen to determine the optimal conditions for the enzyme immobilization with three critical variables: concentration of enzyme, Concanavalin A and MWCNs. The design illustrated that the optimum values of the factors influencing the amperometric current were CE: 70 U mL−1; CCon A: 1.5 mg mL−1 and CMWCN: 11 mg mL−1, with an amperometric current 0.418 μA. The basic amperometric characteristics of the constructed biosensor were investigated. A calibration plot was obtained for a series of ATCh concentrations ranging from 5 to 400 μM. A linear interval was detected along the calibration curve from 5 to 200 μM. The correlation coefficient for this concentration range was 0.995. The biosensor sensitivity was calculated to be 0.065 μA μM−1 cm−2. The detection limit with regard to ATCh was calculated to be 0.34 μM. The potential application of the biosensor for detection and quantification of organophosphate pesticides was investigated as well. It was tested against sample solutions of Paraoxon. The biosensor detection limit was determined to be 1.39 × 10−12 g L−1 of Paraoxon, as well as the interval (10−11 to 10−8 g L−1) within which the biosensor response was linearly dependant on the Paraoxon concentration. Finally the storage stability of the enzyme carrier was traced for a period of 120 days. After 30-day storage the sensor retained 76% of its initial current response, after 60 days—68% and after 120 days—61%.  相似文献   

16.
Foodborne pathogen detection using biomolecules and nanomaterials may lead to platforms for rapid and simple electronic biosensing. Integration of single walled carbon nanotubes (SWCNTs) and immobilized antibodies into a disposable bio-nano combinatorial junction sensor was fabricated for detection of Escherichia coli K-12. Gold tungsten wires (50 µm diameter) coated with polyethylenimine (PEI) and SWCNTs were aligned to form a crossbar junction, which was functionalized with streptavidin and biotinylated antibodies to allow for enhanced specificity towards targeted microbes. In this study, changes in electrical current (ΔI) after bioaffinity reactions between bacterial cells (E. coli K-12) and antibodies on the SWCNT surface were monitored to evaluate the sensor''s performance. The averaged ΔI increased from 33.13 nA to 290.9 nA with the presence of SWCNTs in a 108 CFU/mL concentration of E. coli, thus showing an improvement in sensing magnitude. Electrical current measurements demonstrated a linear relationship (R2 = 0.973) between the changes in current and concentrations of bacterial suspension in range of 102–105 CFU/mL. Current decreased as cell concentrations increased, due to increased bacterial resistance on the bio-nano modified surface. The detection limit of the developed sensor was 102 CFU/mL with a detection time of less than 5 min with nanotubes. Therefore, the fabricated disposable junction biosensor with a functionalized SWCNT platform shows potential for high-performance biosensing and application as a detection device for foodborne pathogens.  相似文献   

17.
Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.  相似文献   

18.
We have designed an electrochemical DNA biosensor based on stem-loop structured probes for enzymatic detection of Pseudomonas aeruginosa 16S ribosomal RNA (rRNA) in composting degradation. The probe modified with a thiol at its 5′ end and a biotin at its 3′ end was immobilized on a gold electrode through self-assembly. The stem-loop structured probes were “closed” when target was absent, then the hybridization of the target induced the conformational changes to “open”, along with the biotin at its 3′ end binding with streptavidin-horseradish peroxidase (HRP), and subsequent quanti?cation of the target was detected via electrochemical detecting the enzymatic product in the presence of substrate. Under the optimum experiment conditions, the amperometric current response to HRP-catalyzed reaction was linearly related to the logarithm of the target nucleic acid concentration, ranging from 0.3 and 600 pg/μL, with the detection limit of 0.012 pg/μL. A correlation coefficient of 0.9960 was identified. The 16S rRNA extracted from P. aeruginosa was analyzed by this proposed sensor. The results were in agreement with the reference values deduced from UV spectrometric data. The biosensor was indicative of good precision, stability, sensitivity, and selectivity.  相似文献   

19.
Biolayer interferometry (BLI) is an optical technique that uses fiber-optic biosensors for label-free real-time monitoring of protein–protein interactions. In this study, we coupled the advantages of the Octet Red BLI system (automation, fluidics-free, and on-line monitoring) with a signal enhancement step and developed a rapid and sensitive immunological-based method for detection of biowarfare agents. As a proof of concept, we chose to demonstrate the efficacy of this novel assay for the detection of agents representing two classes of biothreats, proteinaceous toxins, and bacterial pathogens: ricin, a lethal plant toxin, and the gram-negative bacterium Francisella tularensis, the causative agent of tularemia. The assay setup consisted of biotinylated antibodies immobilized to the biosensor coupled with alkaline phosphatase-labeled antibodies as the detection moiety to create nonsoluble substrate crystals that precipitate on the sensor surface, thereby inducing a significant wavelength interference. It was found that this BLI-based assay enables sensitive detection of these pathogens (detection limits of 10 pg/ml and 1 × 104 pfu/ml ricin and F. tularensis, respectively) within a very short time frame (17 min). Owing to its simplicity, this assay can be easily adapted to detect other analytes in general, and biowarfare agents in particular, in a rapid and sensitive manner.  相似文献   

20.
d-Amino acid oxidase (DAAO) purified from goat kidney was immobilized covalently via N-ethyl-N-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry onto poly indole 5-carboxylic acid (Pin5-COOH)/zinc sulfide nanoparticles (ZnSNPs) hybrid film electrodeposited on surface of an Au electrode. A highly sensitive d-amino acid biosensor was constructed using this enzyme electrode as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through potentiostat. The biosensor showed optimum response within 3 s at pH 7.5 and 35 °C, when polarized at 0.15 V vs. Ag/AgCl. There was a linear relationship between biosensor response (mA) and d-alanine concentration in the range 0.001–2.0 mM. The sensitivity of the biosensor was 58.85 μA cm?2 mM?1 with a detection limit of 0.001 mM (S/N = 3). The enzyme electrode was used 120 times over a period of 2 months when stored at 4 °C. The biosensor has an advantage over earlier enzyme sensors that it has no leakage of enzyme during reuse and is unaffected by the external environment due to the protective layer of poly indole-5-carboxylic acid film. The biosensor was evaluated and employed for measurement of d-amino acid level in fruits and vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号