首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human kallikrein 8 (KLK8) is a member of the human kallikrein gene family of serine proteases, and its protein, hK8, has recently been suggested to serve as a new ovarian cancer marker. To gain insights into the physiological role of hK8, the active recombinant enzyme was obtained in a pure state for biochemical and enzymatic characterizations. hK8 had trypsin-like activity with a strong preference for Arg over Lys in the P1 position, and its activity was inhibited by typical serine protease inhibitors. The protease degraded casein, fibronectin, gelatin, collagen type IV, fibrinogen, and high-molecular-weight kininogen. hK8 also converted human single-chain tissue-type plasminogen activator (65 kDa) to its two-chain form (32 and 33 kDa) by specifically cleaving the peptide bond Arg275-Ile276. This conversion resulted in a drastic increase in the activity of the activator toward the fluorogenic substrate Pyr-Gly-Arg-MCA and plasminogen in the absence of fibrin. Our findings suggest that hK8 may be implicated in ECM protein degradation in the area surrounding hK8-producing cells.  相似文献   

2.
Streptococcus suis serotype 2 binding to extracellular matrix proteins   总被引:4,自引:0,他引:4  
Streptococcus suis serotype 2 is a major swine and human pathogen that causes septicemia and meningitis. The ability of S. suis serotype 2 to bind to different extracellular matrix (ECM) proteins was evaluated by ELISA. All 23 strains tested bound to plasma and cellular fibronectin and collagen types I, III, and V, some to fibrin, vitronectin, and laminin, and none to the other ECM proteins tested. An unencapsulated isogenic mutant bound to ECM proteins better than its parental encapsulated strain, suggesting that the polysaccharide capsule interfered with binding. Cross-inhibition was observed between soluble plasma fibronectin and collagens in the ECM adherence assay, indicating that binding domains for both proteins exist on the same or nearby bacterial surface molecules. On the other hand, pre-incubation with plasma fibronectin increased binding to collagen IV, suggesting that S. suis might use fibronectin as a bridging molecule. The results of heat treatment and proteolytic digestion suggest that adhesins for these ECM proteins are proteinaceous in nature.  相似文献   

3.
Studies of astronauts, experimental animals, and cells have shown that, after spaceflights, the function of the thyroid is altered by low-gravity conditions. The objective of this study was to investigate the cytoskeleton and extracellular matrix (ECM) protein synthesis of papillary thyroid cancer cells grown under zero g. We investigated alterations of ONCO-DG 1 cells exposed to simulated microgravity on a three-dimensional random-positioning machine (clinostat) for 30 min, 24 h, 48 h, 72 h, and 120 h (n=6, each group). ONCO-DG 1 cells grown under microgravity exhibited early alterations of the cytoskeleton and formed multicellular spheroids. The cytoskeleton was disintegrated, and nuclei showed morphological signs of apoptosis after 30 min. At this time, vimentin was increased. Vimentin and cytokeratin were highly disorganized, and microtubules (α–tubulin) did not display their typical radial array. After 48 h, the cytoskeletal changes were nearly reversed. The formation of multicellular spheroids continued. In parallel, the accumulation of ECM components, such as collagen types I and III, fibronectin, chondroitin sulfate, osteopontin, and CD44, increased. The levels of both transforming growth factor beta-1 (TGF-β1) and TGF-β receptor type II proteins were elevated from 24 h until 120 h clinorotation. Gene expression of TGF-β1 was clearly enhanced during culture under zero g. The amount of E-cadherin was enhanced time-dependently. We suggest that simulated weightlessness rapidly affects the cytoskeleton of papillary thyroid carcinoma cells and increases the amount of ECM proteins in a time-dependent manner.The work of Augusto Cogoli was supported by ETH Zurich, Switzerland.  相似文献   

4.
Summary Lymph nodes contain an extensive array of extracellular matrix fibers frequently referred to as reticular fibers because of their reticular pattern and positive reaction with silver stains. These fibers are known to contain primarily type-III collagen. In the present study, frozen and plastic-embedded sections of mouse and human lymph nodes were subjected to immunostaining with a panel of monospecific antibodies directed against type-IV collagen, type-III collagen, laminin, entactin, and heparan sulfate proteoglycan. Immunofluorescent staining revealed that, in addition to being uniformly stained with antibodies to type-III collagen, these fibers also stained positively with antibodies to type-IV collagen and to other basement-membrane-specific components. Furthermore, the basement-membrane-specific antibodies stained the outer surface of individual fibers. These same type-III collagen-rich fibers were distinct from blood vascular basement membranes since they did not react with antibodies to factor VIII-related antigen, an endothelial-cell-specific marker. The role of these basement-membrane-specific components associated with the reticular fibers of lymphoid tissue is unknown. However, it is possible that the ligands promote attachment of reticular fibroblasts as well as macrophages and lymphocytes to the extracellular matrix fibers.  相似文献   

5.
6.
A method for the quantitation of Coomassie blue-stained proteins in cylindrical polyacrylamide gels is described. It involves an elution of the dye with an 80% methanol solution in a sealed Pyrex tube at 100 degrees C for 3 h and a measurement of its concentration at 585 nm. Using a 6.5% polyacrylamide gel and bovine serum albumin as a protein standard, the curve of absorbance of the dye solution as a function of the amount of protein was observed to be linear up to 30-40 micrograms of protein and as little as 0.8-1.0 micrograms of protein could be measured. The validity of the method was indicated by the values obtained for the relative proportions of the human erythrocyte membrane proteins. Using this method, the color yields of several proteins varying widely with respect to their size, amino acid composition, and carbohydrate content were determined in a 6.5% polyacrylamide gel. The results showed that they were generally the same except for proteins having a high carbohydrate content which were significantly lower.  相似文献   

7.
Osteoclasts are signaled by the bone matrix proteins fibronectin (FN), vitronectin (VN), and osteopontin (OPN) via integrins. To perform their resorptive function, osteoclasts cycle between compact (polarized), spread (non‐resorbing) and migratory morphologies. Here we investigate the effects of matrix proteins on osteoclast morphology and how those effects are mediated using RAW 264.7 cells differentiated into osteoclasts on FN, VN, and OPN‐coated culture dishes. After 96 h, 80% of osteoclasts on FN were compact while 25% and 16% on VN were in compact and migratory states respectively. In contrast, OPN induced osteoclast spreading. Furthermore, osteoclasts formed on VN and FN were two‐ to fourfold smaller than those formed on OPN in the 21–30 nuclei/osteoclast group. These effects were not due to defects in cytoskeletal reorganization of osteoclasts on VN and FN, demonstrated by the ability of these cells to spread in response to 35 ng/ml macrophage colony stimulating factor (M‐CSF). Conversely, osteoclasts on OPN failed to spread when induced by M‐CSF. Moreover, the extracellular pH on FN and VN (7.25 and 7.3, respectively) was significantly lower than that on OPN (~7.4). We further investigated the role of extracellular pH and found that at pH 7.5 the duration of an osteoclast's compact phase was 25.6 min and that of the spread phase was 62.5 min. Reducing the pH to 7.0 increased the frequency of osteoclast cycling by threefold. These results show that matrix proteins play a role in regulating osteoclast morphology, possibly via altering extracellular and intracellular pH. J. Cell. Biochem. 111: 350–361, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
The ability of Candida albicans to adhere to subendothelial extracellular matrix (ECM) may be important in the pathogenesis of disseminated candidiasis. ECM proteins, such as fibronectin, laminin, and types I and IV collagen bind C. albicans avidly. These proteins all possess heparin-binding domains. The influence of the glycosaminoglycans (GAGS) including heparin, heparan sulfate and dextran sulfate on C. albicans adherence to subendothelial ECM and ECM proteins was studied. It was demonstrated that the GAGS inhibited C. albicans adherence to ECM and ECM proteins. This possibly occurred by the GAGS binding to the ECM proteins and, in so doing, masking a preferred ligand for C. albicans adherence.  相似文献   

9.
Ina retrospective study validated by a standardized clinical and radiologicalexamination, the bone regeneration in 90 patients with cystic mandibulardefectswas examined. In 50 patients bony defect reconstructions with humandemineralised bone matrix (HDBM) were carried out, while in a comparable groupof 40 patients the hollow pockets were left to regenerate bone spontaneously.The bone regeneration after the implantation of human demineralised bone matrix(HDBM) was subjected to a comparative validation. Osteoinductive proteinspresent in HDBM (bone morphogenetic proteins) can diffuse into the implant seatand induce new bone formation (osteoinduction). A markedly faster and morethorough bone regeneration was demonstrated after the surgical therapy ofcysticmandibular lesions with HDBM than without. HDBM also proved to be exceptionallybiocompatible.  相似文献   

10.
11.
BackgroundMetals and their ions allow specific modifications of the biological properties of bioactive materials that are intended for application in bone tissue engineering. While there is some evidence about the impact of particles derived from orthopedic Cobalt-Chromium-Molybdenum (Co-Cr-Mo) alloys on cells, there is only limited data regarding the influence of the essential trace element Mo and its ions on the viability, osteogenic differentiation as well as on the formation and maturation of the primitive extracellular matrix (ECM) of primary human bone marrow-derived stromal cells (BMSCs) available so far.MethodsIn this study, the influence of a wide range of molybdenum (VI) trioxide (MoO3), concentrations on BMSC viability was evaluated via measurement of fluorescein diacetate metabolization. Thereafter, the impact of three non-cytotoxic concentrations of MoO3 on the cellular osteogenic differentiation as well as on ECM formation and maturation of BMSCs was assessed.ResultsMoO3 had no negative influence on BMSC viability in most tested concentrations, as viability was in fact even enhanced. Only the highest concentration (10 mM) of MoO3 showed cytotoxic effects. Cellular osteogenic differentiation, measured via the marker enzyme alkaline phosphatase was enhanced by the presence of MoO3 in a concentration-dependent manner. Furthermore, MoO3 showed a positive influence on the expression of relevant marker genes for osteogenic differentiation (osteopontin, osteocalcin and type I collagen alpha 1) and on the formation and maturation of the primitive ECM, as measured by collagen deposition and ECM calcification.ConclusionMoO3 is considered as an attractive candidate for supplementation in biomaterials and qualifies for further research.  相似文献   

12.
When the plasma membranes of caput and cauda epididymal spermatozoa of hamster were evaluated for their ability to undergo phosphorylation, a differential phosphorylation of the membrane proteins was observed. In the plasma membranes of the caput epididymal spermatozoa (immature), twelve proteins were phosphorylated (100, 76, 67, 65, 55, 52, 47, 42, 38, 32, 30, and 20 kD), whereas in the plasma membranes of cauda epididymal spermatozoa (mature), a differential phosphorylation pattern was observed with respect to the 94, 67, 52, and 47 kD proteins. The 94 kD protein was found to be phosphorylated and the 67 kD protein was found to be not phosphorylated in cauda spermatozoal plasma membrane (Cd SPM) in contrast to this protein in caput spermatozoal plasma membrane (Cpt SPM). The 52 and 47 kD proteins were also more intensely phosphorylated in Cd SPM than Cpt SPM. The 100 kilodalton protein, although present in both Cpt and Cd sperm plasma membranes, was found to be phosphorylated at the tyrosine residues only in the Cd SPM, as indicated by the Western blot using antiphosphotyrosine antibody. Further, a differential phosphorylation of the substrate proteins present in the Cpt and Cd SPM was seen when Mg2+ in the assay buffer was replaced by other divalent cations. For instance, Zn2+ stimulated the phosphorylation of an 85 kD protein in cauda SPM and not in the caput SPM and Ca2+ stimulated the phosphorylation of a 76 kD protein only in the cauda SPM. The phosphoproteins in both the plasma membranes were found to be phosphorylated predominantly at the tyrosine residue. The differential phosphorylation of a 100 kD protein at tyrosine in the Cd SPM (Western blot), which is absent in the immature Cpt SPM, also indicated that certain proteins in the hamster spermatozoa are phosphorylated in a maturation-specific manner. Mol. Reprod. Dev. 47:341–350, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Yu F  Iyer D  Anaya C  Lewis JP 《Proteomics》2006,6(22):6023-6032
Prevotella intermedia binds and invades a variety of host cells. This binding is most probably mediated through cell surface proteins termed adhesins. To identify proteins binding to the host extracellular matrix (ECM) component, fibronectin, and study the molecular mechanism underlying bacterial colonization, we applied proteomic approaches to perform a global investigation of P. intermedia strain 17 outer membrane proteins. 2-DE followed by Far Western Blot analysis using fibronectin as a probe revealed a 29-kDa fibronectin-binding protein, designated here AdpB. The molecular identity of the protein was determined using PMF followed by a search of the P. intermedia 17 protein database. Database searches revealed the similarity of AdpB to multiple bacterial outer membrane proteins including the fibronectin-binding protein from Campylobacter jejuni. A recombinant AdpB protein bound fibronectin as well as other host ECM components, including fibrinogen and laminin, in a saturable, dose-dependent manner. Binding of AdpB to immobilized fibronectin was also inhibited by soluble fibronectin, laminin, and fibrinogen, indicating the binding was specific. Finally, immunoelectron microscopy with anti-AdpB demonstrated the cell surface location of the protein. This is the first cell surface protein with a broad-spectrum ECM-binding abilities identified and characterized in P. intermedia 17.  相似文献   

14.
Cysteine residues in proteins are targets of numerous post-translational modifications and play important roles in protein structure and enzymatic function. Consequently, understanding the full biochemistry of proteins depends on determining the oxidation state and availability of the residues to be modified. We have developed a highly sensitive assay that accurately determines the number of unmodified cysteine residues in GST-fusion proteins. Only picomoles of protein are required for each reaction, which are carried out in 96-well glutathione-coated plates. Free unmodified cysteine residues are labeled and quantified using biotin and HRP-conjugated streptavidin. Our assay can be used to quantify reactions targeting sulfhydryl groups in proteins. We demonstrate this assay using full-length and truncation mutants of the SNARE proteins syntaxin1A, SNAP-25B, and synaptobrevin2, which have 0–4 cysteines. We are able to accurately determine the number of cysteine residues in each protein and follow the modification of these cysteines by oxidation and reaction with NEM (N-ethylmaleimide). This assay is as simple as running an ELISA or Western blot and, because of its high resolution, should allow detailed analysis of the chemistry of cysteine residues in proteins.  相似文献   

15.
To examine the stability of bone matrix proteins for crystal dislocation, the immunolocalization of type I collagen, bone sialoprotein, and osteopontin was investigated during different stages of fixation and decalcification. Four-week-old rat femurs were rapidly frozen, and were sectioned without fixation or decalcification. Thereafter, following or bypassing fixation in 4% paraformaldehyde, these sections were decalcified in 5% EDTA for 0-5 min. Before decalcification, marked radiopacity of bone matrix was observed in contact microradiography (CMR) images, and electron probe microanalysis (EPMA) demonstrated intense localization for phosphorus and calcium. In fixed and unfixed sections without decalcification, immunolocalization of bone matrix proteins were almost restricted to osteoid. After 1 min of decalcification, reduced radiopacity was apparent in the CMR images, and less phosphorus and calcium was observed by EPMA, which completely disappeared by 5 min decalcification. After 3-5 min of decalcification, unfixed sections showed that these proteins were immunolocalized in bone matrix, but were not detectable in osteoid. However, fixed sections demonstrated that these were found in both bone matrix and osteoid. The present findings suggest that bone matrix proteins are embedded in calcified matrix which is separated from the aqueous environment and that they hardly move, probably due to firm bonding with each other. In contrast, matrix proteins in osteoid are subject to loss after decalcification because they may be bound to scattered apatite crystals, not to each other.  相似文献   

16.
17.
Phosphorylation is the most widely studied posttranslational modification. Its role within the cell has been the focus of numerous large‐scale studies. Recently there is growing evidence on the biological significance of extracellular phosphorylation. The analysis of these phosphopeptides is complicated by the abundance of glycosylation in the extracellular space, since glycopeptides are also enriched by the methods used for phosphopeptide isolation. Thus, we optimized IMAC for phosphorylation analysis of secreted proteins, specifically in human serum. Selectivity and efficiency of different enrichment conditions used in earlier large‐scale phosphoproteomic studies were evaluated. We found that minimizing hydrophilic interactions in the enrichment allowed selective phosphopeptide isolation. Using a two‐step IMAC enrichment protocol under these conditions led to the identification of ~100 phosphorylation sites from the tryptic digest of as little as 40 μL human serum.  相似文献   

18.
Aberrant migration of smooth muscle cells (SMCs) is a key feature of restenosis. Since extracellular matrix proteins and their receptors of the integrin family play a critical role in this process, it is instrumental to understand their contribution to cell migration and invasive motility of SMC on the molecular level. Therefore, we investigated the role of alpha(v)-containing integrins expressed by primary human coronary artery smooth muscle cells (hCASMCs) in vitronectin (VN)-initiated signaling events and cell migration. In hCASMC plated on VN, alpha(v)-containing integrins were localized at focal adhesion sites. Haptotactic stimulation through VN led to a dose-dependent increase in cell migration and concomitantly to enhanced tyrosine phosphorylation of focal adhesion kinase. Both events were completely blocked by a specific inhibitor of integrin alpha(v). Additionally, the integrin alpha(v) inhibitor abolished PDGF-BB-stimulated chemotactic migration. Confocal microscopy confirmed the increased tyrosine phosphorylation at VN-initiated focal contact sites in hCASMC, that was abolished upon alpha(v) inhibition. In vitro invasion of hCASMC was severely compromised in the presence of the integrin alpha(v) inhibitor paralleled by decreased levels of secreted matrix metalloprotease 2 (MMP-2). Together, integrin alpha(v) inhibition abrogates tyrosine phosphorylation at focal adhesion sites and diminishes MMP-2 secretion leading to reduced migration and invasion of hCASMCs.  相似文献   

19.
旨在探索骨唾液酸蛋白 (Bone sialoprotein,BSP) 基因沉默对亲骨转移乳腺癌细胞 (MDA-MB-231BO) 与骨基质粘附能力的影响,为以BSP为靶点的乳腺癌骨转移预防和靶向治疗提供实验依据。体外检测BSP基因沉默对乳腺癌细胞与小鼠骨基质粘附能力的影响,MTS法检测细胞增殖能力;扫描电镜观察骨片表面肿瘤细胞粘附情况和骨吸收状况;ELISA法检测骨基质细胞粘附培养上清中TGF-β1和RANKL表达分泌量差异;左心室注射法构建裸鼠骨转移模型,检测不同细胞株在裸鼠体内转移能力。结果提示BSP  相似文献   

20.
Summary Increasing evidence confirms that the extracellular matrix greatly influences cell behaviour and function. Collagen and fibrin are in contact with trophoblast throughout pregnancy. To investigate whether these two matrices influence hormon production by the trophoblast, explants from first-trimester chorionic villi were cultured for up to 30 days either a) in medium with agitation, b) embedded in type-I collagen (three-dimensional gels), or c) embedded in fibrin (three-dimensional gels). The supernatant culture medium was changed every 48 h and tested by radioimmunoassay for hCG, progesterone and pregnancy-associated plasma protein A. In addition, after 3, 7, 15, and 30 days of culture villi were fixed and studied by light and electron microscopy. Embedding in the extracellular matrix showed higher and longer-lasting production rates of all measured products and superior structural preservation as compared to cultures with agitation. Collagen matrix proved to be superior to fibrin. As established by several tests, this difference was neither due to thrombin used to polymerize fibrinogen, nor to differences in the diffusion rates through the two different matrices used. We conclude that extracellular matrix, particularly collagen, influences the synthesis of trophoblastic products. Embedding of the villous explants in three-dimensional gels constitutes a new method for long-term cultures of chorionic villi.This study was presented at the workshop Placental-and decidual-specific protein synthesis and secretion: regulation, role and interaction, Zemun, Belgrade, Yugoslavia, 19–20 May, 1988 (Bischof and Castellucci 1988; see also J. Aplin 1989), and at the 11th Rochester Trophoblast Conference, Rochester, N.Y. USA, 9–12 October 1988 (Castellucci et al. 1988)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号