首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compact single-domain antibodies (sdAbs) are nearly 13 times smaller than full-size monoclonal antibodies (mAbs) and have a number of advantages for biotechnological applications, such as small size, high specificity, solubility, stability, and great refolding capacity. Carcinoembryonic antigen (CEA) is a tumor-associated glycoprotein expressed in a variety of cancers. Detection of CEA on the tumor cell surface may be carried out using anti-CEA antibodies and conventional fluorescent dyes. Semiconductor quantum dots (QDs) are brighter and more photostable than organic dyes; they provide the possibility for labeling of different recognition molecules with QDs of different colors but excitable with the same wavelength of excitation. In this study, the abilities for specific detection of CEA expressed by tumor cells with anti-CEA sdAbs biotinylated in vitro and in vivo, as well as with anti-CEA mAbs biotinylated in vitro, were compared using flow cytometry and the conjugates of streptavidin with QDs (SA-QDs). The results demonstrated that either in vitro or in vivo biotinylated anti-CEA sdAbs are more sensitive for cell staining compared to biotinylated anti-CEA mAbs. The data also show that simultaneous use of biotinylated sdAbs with highly fluorescent SA-QDs can considerably improve the sensitivity of detection of CEA on tumor cell surfaces.  相似文献   

2.
New method to characterize microbial diversity using flow cytometry   总被引:2,自引:0,他引:2  
The majority of microorganisms have yet to be cultivated and represent a vast uncharacterized and untapped resource. Here, we report the utilization of a combination of flow cytometry, cultivation, and molecular genetics to develop new methodologies to access and characterize biodiversity in microbial samples. We demonstrate that fluorescent dyes and combinations of dyes can selectively stain portions of bacterial populations that can be isolated as sub-populations using fluorescence-activated cell sorting (FACS). Microbial sub-populations obtained by FACS differ substantially from the original microbial population, as demonstrated by denaturing gradient gel electrophoresis and determination of 16S rRNA gene sequences. These sub-populations can subsequently be used to inoculate microbial growth media, allowing the isolation of different microbial species from those that can be readily cultivated from the original sample using the same microbial growth media. When this technique was applied to the analysis of activated-sludge and Yellowstone Lake hydrothermal vent samples, comparative analysis of 16S rDNA sequences revealed that FACS allowed the detection of numerous bacterial species, including previously unknown species, not readily detectable in the original sample due to low relative abundance. This approach may result in a convenient methodology to more thoroughly characterize microbial biodiversity.  相似文献   

3.
《Life sciences》1995,56(22):PL421-PL425
In a series of in vitro experiments we characterised the relationship between DNA distribution in the G1, S and G2/M phases of cell cycle and PDE and GST activity in CaCo-2 cells. The DNA distribution in CaCo-2 cells, was assessed by flow cytometry, with fluorescent dyes at different time points of culture. The exponential increase in cell number continued until day 10 when there was cell saturation. The effect of medium replacement on PDE activity was assayed in the first 10 h after medium replacement. The 6th hour is the time at which PDE activity was found to be highest. We have assayed the PDE enzyme with cGMP and cAMP as substrates. Only cAMP was consumed from this enzyme. We found a very close correlation between the DNA distribution in the various phases of the cell cycle and the PDE activity. PDE activity was very high during the active replication phase, whereas GST activity was high after confluency.  相似文献   

4.
Flow cytometry is a sophisticated instrument measuring multiple physical characteristics of a single cell such as size and granularity simultaneously as the cell flows in suspension through a measuring device. Its working depends on the light scattering features of the cells under investigation, which may be derived from dyes or monoclonal antibodies targeting either extracellular molecules located on the surface or intracellular molecules inside the cell. This approach makes flow cytometry a powerful tool for detailed analysis of complex populations in a short period of time. This review covers the general principles and selected applications of flow cytometry such as immunophenotyping of peripheral blood cells, analysis of apoptosis and detection of cytokines. Additionally, this report provides a basic understanding of flow cytometry technology essential for all users as well as the methods used to analyze and interpret the data. Moreover, recent progresses in flow cytometry have been discussed in order to give an opinion about the future importance of this technology.  相似文献   

5.
BACKGROUND: Flow cytometry (FCM) and laser scanning cytometry (LSC) are the routine techniques for fluorescent cell analysis. Recently, we developed a scanning fluorescent microscopy (SFM) technique. This study compares SFM to LSC (two slide-based cytometry, SBC, techniques) and FCM, in experimental and clinical settings. METHODS: For the relative cell-frequency determinations, HT29 colorectal cancer cells and Ficoll separated blood mononuclear cells (FSBMCs) were serially diluted (from 1:1 to 1:1,000) and measured by each of the three techniques. For the absolute cell number determinations (only for SBC) FSBMCs were smeared on slides, then HT29 cells were placed on the slide with a micromanipulator (5-50 cells). Tumor cells circulating in the peripheral blood were isolated by magnetic separation from clinical blood samples of colorectal cancer patients. All samples were double-stained by CD45 ECD and CAM5.2 FITC antibodies. For slides, TOTO-3 and Hoechst 33258 DNA dyes were applied as nuclear counter staining. RESULTS: In the relative cell frequency determinations, the correlations between the calculated value and measured values by SFM, LSC, and FCM were r(2) = 0.79, 0.62, and 0.84, respectively (for all P < 0.01). In the absolute cell frequency determinations, SFM and LSC correlated to a high degree (r(2) = 0.97; P < 0.01). CONCLUSIONS: SFM proved to be a reliable alternative method, providing results comparable to LSC and FCM. SBC proved to be more suitable for rare-cell detection than FCM. SFM with digital slides may prove an acceptable adaptation of conventional fluorescent microscopes in order to perform rare-cell detection.  相似文献   

6.
Flow cytometers based on optical sensing utilize external light sources and fluorescent dyes to measure one or more specific components or properties of individual cells or subcellular particles in liquid suspension. To provide for independent excitation of two dyes used in double staining experiments we have constructed a high resolution flow cytometer that uses two laser beams to provide two wavelengths of excitation. These beams are separated spatially so that cells flow through them sequentially, with a time separation of about 20 musec. Since the dyes are excited sequentially their emission occurs at different times and their emission spectra may overlap without causing any difficulty in analysis. We have developed new light collection optics that permit up to four measurements to be made on each cell. This approach greatly increases the number of dye combinations that can be used in flow cytometry, thus removing a significant limitation of single illumination instruments.  相似文献   

7.
Summry— The study of spermatogenic cell physiology has been hindered by the absence of unbiased methods of identification of cells upon which single cell techniques are being applied. In this work, we have used histochemical techniques, digital videoimaging, quantification of chromatin-bound DNA probes, and measurements of cell diameter to identify single spermatogenic cells at different periods of development. Our criteria of identification permit the definition of four developmental stages of spermatogenesis on which to perform single cell analyses: spermatogonia B/preleptotene spermatocytes, leptotene/zygotene spermatocytes, pachytene spermatocytes, and round spermatids. The use of voltage-sensitive dyes and Ca2+-sensitive dyes does not interfere with the estimations of DNA content. The estimations of DNA content of spermatogenic cells can be performed both with near-UV exciged dyes (H33342) and long wavelength-excited dyes (ethidium bromide), allowing the use of a wide range of physiological and immunocytochemical fluorescent probes to study the spermatogenic process.  相似文献   

8.
Conventional flow cytometry using scattering and fluorescent detection methods has been a fundamental tool of biological discoveries for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents the long-term study of cells in their native environment. Here, we summarize recent advances of new generation flow cytometry for in vivo noninvasive label-free or targeted detection of cells in blood, lymph, bone, cerebral and plant vasculatures using photoacoustic (PA) detection techniques, multispectral high-pulse-repetition-rate lasers, tunable ultrasharp (up to 0.8nm) rainbow plasmonic nanoprobes, positive and negative PA contrasts, in vivo magnetic enrichment, time-of-flight cell velocity measurement, PA spectral analysis, and integration of PA, photothermal (PT), fluorescent, and Raman methods. Unique applications of this tool are reviewed with a focus on ultrasensitive detection of normal blood cells at different functional states (e.g., apoptotic and necrotic) and rare abnormal cells including circulating tumor cells (CTCs), cancer stem cells, pathogens, clots, sickle cells as well as pharmokinetics of nanoparticles, dyes, microbubbles and drug nanocarriers. Using this tool we discovered that palpation, biopsy, or surgery can enhance CTC release from primary tumors, increasing the risk of metastasis. The novel fluctuation flow cytometry provided the opportunity for the dynamic study of blood rheology including red blood cell aggregation and clot formation in different medical conditions (e.g., blood disorders, cancer, or surgery). Theranostics, as a combination of PA diagnosis and PT nanobubble-amplified multiplex therapy, was used for eradication of CTCs, purging of infected blood, and thrombolysis of clots using PA guidance to control therapy efficiency. In vivo flow cytometry using a portable fiber-based devices can provide a breakthrough platform for early diagnosis of cancer, infection and cardiovascular disorders with a potential to inhibit, if not prevent, metastasis, sepsis, and strokes or heart attack by well-timed personalized therapy.  相似文献   

9.
In fluorescence-based flow cytometry, cellular viability is determined with membrane-impermeable fluorescent reagents that specifically enter and label plasma membrane-compromised nonviable cells. A recent technological advance in flow cytometry uses antibodies conjugated to elemental metal isotopes, rather than to fluorophores, to allow signal detection by atomic mass spectrometry. Unhampered by the limitations of overlapping emission fluorescence, mass cytometry increases the number of parameters that can be measured in single cells. However, mass cytometry is unable to take advantage of current fluorescent viability dyes. An alternative methodology was therefore developed here in which the platinum-containing chemotherapy drug cisplatin was used to resolve live and dead cells by mass cytometry. In a 1-min incubation step, cisplatin preferentially labeled nonviable cells from both adherent and suspension cultures, resulting in a platinum signal quantifiable by mass cytometry. This protocol was compatible with established sample processing steps for intracellular cytometry. Furthermore, the live/dead ratios were comparable between mass- and fluorescence-based cytometry. Importantly, although cisplatin is a known DNA-damaging agent, a 1-min "pulse" of cisplatin did not induce observable DNA damage or apoptotic responses even within 6-h post-exposure. Cisplatin can therefore be used as a viability reagent for a wide range of mass cytometry protocols.  相似文献   

10.
In this study, we have used different fluorescent dyes and techniques to characterize the heterogeneity and changes of the physiological states encountered by the marine bacterium Deleya aquamarina during a 92-day starvation survival experiment at 20 and 5(deg)C. Changes of physiological states were investigated on a single-cell basis by flow cytometry and epifluorescence microscopy in conjunction with fluorescent dyes specific for various cellular functions and constituents. Heterogeneities within populations with regard to functions (respiration, substrate responsiveness, enzymatic activity, and cytoplasmic membrane permeability), constituent (DNA), and cell volume (light scatter) were compared to the evolution of viable plate counts (CFU). At 20(deg)C, CFU changes were divided into three stages corresponding to stability up to day 13 followed by a rapid drop between days 13 and 42 and then by stabilization at a level of 10 to 20% during the remaining survival period. Most of the cellular fractions showing a metabolic activity were close to the evolution of the culturable cells, suggesting the absence of viable but nonculturable cells. On the other hand, cells with selective cytoplasmic membrane permeability but without any metabolic activity were observed, and this stage was followed by DNA alteration occurring at different rates after the loss of membrane cytoplasmic permeability. We observed a greater maintenance of culturability, physiological functions, DNA, and cellular volume at the lower temperature. These results have different ecological implications from both methodological and conceptual viewpoints.  相似文献   

11.
The fast and reliable estimation of the genome sizes of various species would allow for a systematic analysis of many organisms and could reveal insights into evolutionary processes. Many methods for the estimation of genome sizes have already been described. The classical methods are based on the determination of the phosphate content in the DNA backbone of total DNA isolated from a defined number of cells or on reassociation kinetics of high molecular weight genomic DNA (c(0)t assay). More recent techniques employ DNA-specific fluorescent dyes in flow cytometry analysis, image analysis or absorption cytometry after Feulgen staining. The method presented here is based on the absolute quantification of genetic elements in a known amount (mass) of genomic DNA by real-time quantitative PCR. The method was evaluated on three different eukaryotic species, Saccharomyces cerevisiae (12.1 Mb), Xiphophorus maculatus (550 Mb) and Homo sapiens sapiens (2.9 Gb), and found to be fast, highly accurate and reliable.  相似文献   

12.
Particle-mediated ballistic delivery of fluorescent dyes has been recently used to label neuronal populations in a rapid and efficient fashion. Here we describe detailed protocols for this technique as well as recent improvements in its implementation. This technique allows rapid labeling of entire neurons in a Golgi-like manner after membranes of individual neurons are contacted by particles coated with lipophilic dyes. Neurons can be labeled by dyes of different colors at controlled densities to facilitate the study of structural interactions between cells. Furthermore, in conjunction with other histochemical labeling methods, the technique can be used to study changes in neuronal structures associated with pathologic processes in animal models or postmortem human brain. In addition to lipophilic dyes, water-soluble molecules such as calcium indicators can also be delivered efficiently with this technique. The method of ballistic delivery of indicators thus provides new avenues to probe the structure and function of the nervous system.  相似文献   

13.
Gadolinium ion (Gd(3+)) complexes are commonly used as magnetic resonance imaging (MRI) contrast agents to enhance signals in T(1)-weighted MR images. Recently, several methods to achieve cell-permeation of Gd(3+) complexes have been reported, but more general and efficient methodology is needed. In this report, we describe a novel method to achieve cell permeation of Gd(3+) complexes by using hydrophobic fluorescent dyes as a cell-permeability-enhancing unit. We synthesized Gd(3+) complexes conjugated with boron dipyrromethene (BDP-Gd) and Cy7 dye (Cy7-Gd), and showed that these conjugates can be introduced efficiently into cells. To examine the relationship between cell permeability and dye structure, we further synthesized a series of Cy7-Gd derivatives. On the basis of MR imaging, flow cytometry, and ICP-MS analysis of cells loaded with Cy7-Gd derivatives, highly hydrophobic and nonanionic dyes were effective for enhancing cell permeation of Gd(3+) complexes. Furthermore, the behavior of these Cy7-Gd derivatives was examined in mice. Thus, conjugation of hydrophobic fluorescent dyes appears to be an effective approach to improve the cell permeability of Gd(3+) complexes, and should be applicable for further development of Gd(3+)-based MRI contrast agents.  相似文献   

14.
BACKGROUND: Polychromatic analysis of biological specimens has become increasingly important because of the emerging new fields of high-content and high-throughput single cell analysis for systems biology and cytomics. Combining different technologies and staining methods, multicolor analysis can be pushed forward to measure anything stainable in a cell. We term this approach hyperchromatic cytometry and present different components suitable for achieving this task. For cell analysis, slide based cytometry (SBC) technologies are ideal as, unlike flow cytometry, they are non-consumptive, i.e. the analyzed sample is fixed on the slide and can be reanalyzed following restaining of the object. METHODS AND RESULTS: We demonstrate various approaches for hyperchromatic analysis on a SBC instrument, the Laser Scanning Cytometer. The different components demonstrated here include (1) polychromatic cytometry (staining of the specimen with eight or more different fluorochromes simultaneously), (2) iterative restaining (using the same fluorochrome for restaining and subsequent reanalysis), (3) differential photobleaching (differentiating fluorochromes by their different photostability), (4) photoactivation (activating fluorescent nanoparticles or photocaged dyes), and (5) photodestruction (destruction of FRET dyes). Based on the ability to relocate cells that are immobilized on a microscope slide with a precision of approximately 1 microm, identical cells can be reanalyzed on the single cell level after manipulation steps. CONCLUSION: With the intelligent combination of several different techniques, the hyperchromatic cytometry approach allows to quantify and analyze all components of relevance on the single cell level. The information gained per specimen is only limited by the number of available antibodies and sterical hindrance.  相似文献   

15.
The regulation of cell proliferation is central to tissue morphogenesis during the development of multicellular organisms. Furthermore, loss of control of cell proliferation underlies the pathology of diseases like cancer. As such there is great need to be able to investigate cell proliferation and quantitate the proportion of cells in each phase of the cell cycle. It is also of vital importance to indistinguishably identify cells that are replicating their DNA within a larger population. Since a cell′s decision to proliferate is made in the G1 phase immediately before initiating DNA synthesis and progressing through the rest of the cell cycle, detection of DNA synthesis at this stage allows for an unambiguous determination of the status of growth regulation in cell culture experiments.DNA content in cells can be readily quantitated by flow cytometry of cells stained with propidium iodide, a fluorescent DNA intercalating dye. Similarly, active DNA synthesis can be quantitated by culturing cells in the presence of radioactive thymidine, harvesting the cells, and measuring the incorporation of radioactivity into an acid insoluble fraction. We have considerable expertise with cell cycle analysis and recommend a different approach. We Investigate cell proliferation using bromodeoxyuridine/fluorodeoxyuridine (abbreviated simply as BrdU) staining that detects the incorporation of these thymine analogs into recently synthesized DNA. Labeling and staining cells with BrdU, combined with total DNA staining by propidium iodide and analysis by flow cytometry1 offers the most accurate measure of cells in the various stages of the cell cycle. It is our preferred method because it combines the detection of active DNA synthesis, through antibody based staining of BrdU, with total DNA content from propidium iodide. This allows for the clear separation of cells in G1 from early S phase, or late S phase from G2/M. Furthermore, this approach can be utilized to investigate the effects of many different cell stimuli and pharmacologic agents on the regulation of progression through these different cell cycle phases.In this report we describe methods for labeling and staining cultured cells, as well as their analysis by flow cytometry. We also include experimental examples of how this method can be used to measure the effects of growth inhibiting signals from cytokines such as TGF-β1, and proliferative inhibitors such as the cyclin dependent kinase inhibitor, p27KIP1. We also include an alternate protocol that allows for the analysis of cell cycle position in a sub-population of cells within a larger culture5. In this case, we demonstrate how to detect a cell cycle arrest in cells transfected with the retinoblastoma gene even when greatly outnumbered by untransfected cells in the same culture. These examples illustrate the many ways that DNA staining and flow cytometry can be utilized and adapted to investigate fundamental questions of mammalian cell cycle control.  相似文献   

16.
Few fluorescent stains specific for cell constituents other than DNA are available. To assess their potential use as fluorescent stains for flow cytometry, the cell staining specificity of 55 compounds, originally synthesized for use as textile dyes and fluorescent brighteners, was explored and their excitation and emission wavebands determined. From these, six dyes were chosen for more detailed analysis. All six are vital stains, with excitation wavelengths allowing their use with an argon ion laser, and specific for a range of cell structures including mitochondria, Golgi bodies, lipid droplets, nuclear membrane, and endoplasmic reticulum. Concentrations as low as 0.01-0.25 microM were found to be adequate for most purposes, and high background fluorescence was not a problem. Their specificity allows differentiation between non-cycling and cycling cells. The properties of two of the stains allows their combination with propidium iodide or ethidium bromide for simultaneous determination of DNA content profiles. Being vital stains, usable at very low concentrations, and specific for a range of cell organelles, these six stains may be of considerable utility in flow cytofluorometry. We suggest that other textile dyes may be of use in flow cytofluorometry, or that their structures may form a starting point for the synthesis of further fluorescent stains of enhanced specificity.  相似文献   

17.
D Marie  D Vaulot    F Partensky 《Applied microbiology》1996,62(5):1649-1655
Novel blue light-excited fluorescent dyes for nucleic acids (YOYO-1, YO-PRO-1, and PicoGreen) were tested on cultures of Escherichia coli and of a variety of marine prokaryotes. Results of flow cytometric DNA analyses were compared with those obtained with the UV-excited dyes bis-benzimide Hoechst 33342 or 4', 6-diamidino-2-phenylindole (DAPI). YOYO-1, YO-PRO-1, and PicoGreen can be used only on aldehyde-fixed cells and need to be supplemented with cofactors such as potassium, citrate, or EDTA. They are highly sensitive to ionic strength. Consequently, seawater culture samples cannot be stained directly with these dyes and require at least a 10-fold dilution with distilled water to obtain reliable fluorescence signals. After treatment with RNase, coefficients of variation for the G1 peak of the DNA distributions of the different strains tested with YOYO-1 or PicoGreen indicated in general an improvement over Hoechst 33342 staining. These novel dyes can be used to enumerate prokaryotic cells by flow cytometry, as demonstrated with E. coli. However, their sensitivity to ionic strength makes them unsuitable for cell cycle analysis in natural samples.  相似文献   

18.
Stem cells possess enormous therapeutic potential in tissue replacement. To study stem cells further, they must be isolated. Techniques are available for enrichment and study of hematopoietic stems cells, but thus far, techniques for purification of spermatogonial stem cells have not been described. Enrichment techniques for hematopoietic stem cells include the use of fluorescence-activated cell sorter analysis with Hoechst 33342 and rhodamine 123 (Rho) dyes. Use of Hoechst dye to isolate spermatogonial stem cells has been unsuccessful in our laboratory, and our results have conflicted with those from other laboratories. Taking advantage of the differential staining of the Rho dye, we report a novel method to enrich murine spermatogonial stem cells. Testicular cells are harvested from cryptorchid ROSA26 male mice. Populations of these cells are then stained with the Hoechst and Rho dyes, allowing them to be sorted by flow cytometry into a side population (SP) of Hoechst low-intensity cells and populations of low (Rho(low)) or high (Rho(hi)) fluorescent intensity. Sterile recipients, W/W(v) mice, with an intrinsic germ cell deficiency were transplanted with the Hoechst SP cells, Rho(low), Rho(hi), and nonsorted donor cells. No spermatogonial stem cell colonies were derived from the Hoechst SP cells. The number of spermatogonial stem cell colonies from transplanted Rho(low) cells showed a 17- and 20-fold enrichment over those of Rho(hi) and nonsorted cells, respectively.  相似文献   

19.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.  相似文献   

20.
When cells are infected with viruses, they notify the immune system by presenting fragments of the virus proteins at the cell surface for detection by T cells. These proteins are digested in the cytoplasm, bound to the major histocompatibility complex I glycoprotein (MHC-I) in the endoplasmic reticulum, and transported to the cell surface. The peptides are cleaved to the precise lengths required for MHC-I binding and detection by T cells. We have developed fluorescent indicators to study the cleavage of peptides in living cells as they are transported from the endoplasmic reticulum to the Golgi apparatus. Specific viral peptides known to be "trimmed" prior to cell surface presentation were labeled with two dyes undergoing fluorescence resonance energy transfer (FRET). When these fluorescent peptides were proteolytically processed in living cells, FRET was halted, so that each labeled fragment and the intact peptide exhibited different fluorescence spectra. Such fluorescent cleavage indicators can be used to study a wide range of biological behaviors dependent on peptide or protein cleavage. However, labeling a peptide with two dyes at precise positions can present a major obstacle to using this technique. Here, we describe two approaches for preparing doubly labeled cleavage indicator peptides. These methods are accessible to researchers using standard laboratory techniques or, for more demanding applications, through cooperation with commercial or core peptide synthesis services using minor modifications of standard synthetic procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号