首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asparagine-linked glycosylation is the most common post-translational modification of proteins catalyzed in eukaryotes by the multiprotein complex oligosaccharyltransferase. Apart from the catalytic Stt3p, the roles of the subunits are ill defined. Here we describe functional investigations of the Ost3/6p components of the yeast enzyme. We developed novel analytical tools to quantify glycosylation site occupancy by enriching glycoproteins bound to the yeast polysaccharide cell wall, tagging glycosylated asparagines using endoglycosidase H glycan release, and detecting peptides and glycopeptides with LC-ESI-MS/MS. We found that the paralogues Ost3p and Ost6p were required for efficient glycosylation of distinct defined glycosylation sites. Our results describe a novel method for relative quantification of glycosylation occupancy in the genetically tractable yeast system and show that eukaryotic oligosaccharyltransferase isoforms have different activities toward protein substrates at the level of individual glycosylation sites.  相似文献   

2.
The current state of proteomics requires a choice between targeted and global discovery methods. A method, that combines targeted and data‐independent acquisition for absolute quantification of all identified plasma proteins, in a single sequential window acquisition of all theoretical fragment ions (SWATH) acquisition run, using a panel of spike‐in standards (SIS), is established and optimized. The absolute quantification (AQ) of SWATH and multiple‐reaction monitoring‐high resolution (MRM‐HR) acquisition methods are compared using the 100 protein PlasmaDive SIS panel spiked into non‐depleted human plasma. SWATH provides equivalent quantification and differentially abundant protein profiles as MRM‐HR. Absolute quantities of the SIS peptides from the SWATH data are used to estimate the absolute quantities (eAQ) for all the proteins in the run. The eAQ values provide similar quantification and differentially abundant protein profiles as AQ and protein area (PA) values. As a proof‐of‐concept, the eAQ method is applied to 12 plasma samples from six non‐small cell lung cancer (NSCLC) patients and the performance of eAQ values versus peak area quantification is evaluated. There is a strong correlation between AQ and peak area ratios producing significant overlap of differentially abundant proteins. This eAQ method can provide quantitative data equivalent to AQ or peak area values.  相似文献   

3.
Congenital disorders of glycosylation (CDGs) are a family of N-linked glycosylation defects associated with severe clinical manifestations. In CDG type-I, deficiency of lipid-linked oligosaccharide assembly leads to the underoccupancy of N-glycosylation sites on glycoproteins. Although the level of residual glycosylation activity is known to correlate with the clinical phenotype linked to individual CDG mutations, it is not known whether the degree of N-glycosylation site occupancy by itself correlates with the severity of the disease. To quantify the extent of underglycosylation in healthy control and in CDG samples, we developed a quantitative method of N-glycosylation site occupancy based on multiple reaction monitoring LC-MS/MS. Using isotopically labeled standard peptides, we directly quantified the level of N-glycosylation site occupancy on selected serum proteins. In healthy control samples, we determined 98-100% occupancy for all N-glycosylation sites of transferrin and alpha(1)-antitrypsin. In CDG type-I samples, we observed a reduction in N-glycosylation site occupancy that correlated with the severity of the disease. In addition, we noticed a selective underglycosylation of N-glycosylation sites, indicating preferential glycosylation of acceptor sequons of a given glycoprotein. In transferrin, a preferred occupancy for the first N-glycosylation site was observed, and a decreasing preference for the first, third, and second N-glycosylation sites was observed in alpha(1)-antitrypsin. This multiple reaction monitoring LC-MS/MS method can be extended to multiple glycoproteins, thereby enabling a glycoproteomics survey of N-glycosylation site occupancies in biological samples.  相似文献   

4.
The attachment of N-linked oligosaccharide chains to proteins is an important cotranslational process. These chains can, in some cases, serve to stabilize the protein, while in other cases they function as recognition elements. A key enzyme in the N-glycosylation process is oligosaccharyltransferase (OT). In yeast this enzyme, which is found in the endoplasmic reticulum, consists of nine different transmembrane protein subunits. Our general aim is to learn more about the functions of the multiple subunits of yeast OT and their mode of interaction with each other. Using a combination of biochemical and genetic techniques the subunit Ost1p has been shown to recognize Asn-X-Ser/Thr glycosylation sites. The principle tool used in the identification process was a benzophenone-based glycosylation site peptide that was shown to be crosslinked to Ost1p. Our current objective is to identify the domain in the primary structure that is involved in recognition of the glycosylation site sequence. By use of bifunctional crosslinkers, the possible interaction of Ost1p with other subunits of OT will be studied. This work and other studies on the OT subunits are concisely summarized.  相似文献   

5.
Data‐independent acquisition (DIA) approaches, such as SWATH®‐MS, are showing great potential to reliably quantify significant numbers of peptides and proteins in an unbiased manner. These developments have enhanced interest in developing a single DIA method that integrates qualitative and quantitative analysis, eliminating the need of a prebuilt library of peptide spectra, which are created through data‐dependent acquisition methods or from public repositories. Here, we introduce a new DIA approach, referred to as “SWATH‐ID,” which was developed to allow peptide identification as well as quantitation. The SWATH‐ID method is composed of small Q1 windows, achieving better selectivity and thus significantly improving high‐confidence peptide extractions from data files. Furthermore, the SWATH‐ID approach transmits precursor ions without fragmentation as well as their fragments within the same SWATH acquisition period. This provides a single scan that includes all precursor ions within the isolation window as well as a record of all of their fragment ions, substantially negating the need for a survey scan. In this way all precursors present in a small Q1 window are associated with their fragment ions, improving the identification specificity and providing a more comprehensive and in‐depth view of protein and peptide species in complex samples.  相似文献   

6.
An evolving view of the eukaryotic oligosaccharyltransferase   总被引:1,自引:0,他引:1  
Asparagine-linked glycosylation (ALG) is one of the most common protein modification reactions in eukaryotic cells, as many proteins that are translocated across or integrated into the rough endoplasmic reticulum (RER) carry N-linked oligosaccharides. Although the primary focus of this review will be the structure and function of the eukaryotic oligosaccharyltransferase (OST), key findings provided by the analysis of the archaebacterial and eubacterial OST homologues will be reviewed, particularly those that provide insight into the recognition of donor and acceptor substrates. Selection of the fully assembled donor substrate will be considered in the context of the family of human diseases known as congenital disorders of glycosylation (CDG). The yeast and vertebrate OST are surprisingly complex hetero-oligomeric proteins consisting of seven or eight subunits (Ost1p, Ost2p, Ost3p/Ost6p, Ost4p, Ost5p, Stt3p, Wbp1p, and Swp1p in yeast; ribophorin I, DAD1, N33/IAP, OST4, STT3A/STT3B, Ost48, and ribophorin II in mammals). Recent findings from several laboratories have provided overwhelming evidence that the STT3 subunit is critical for catalytic activity. Here, we will consider the evolution and assembly of the eukaryotic OST in light of recent genomic evidence concerning the subunit composition of the enzyme in diverse eukaryotes.  相似文献   

7.
The key step of N-glycosylation of proteins, an essential and highly conserved protein modification, is catalyzed by the hetero-oligomeric protein complex oligosaccharyltransferase (OST). So far, eight genes have been identified in Saccharomyces cerevisiae that are involved in this process. Enzymatically active OST preparations from yeast were shown to be composed of four (Ost1p, Wbp1p, Ost3p, Swp1p) or six subunits (Ost2p and Ost5p in addition to the four listed). Genetic studies have disclosed Stt3p and Ost4p as additional proteins needed for N-glycosylation. In this study we report the identification and functional characterization of a new OST gene, designated OST6, that has homology to OST3 and in particular a strikingly similar membrane topology. Neither gene is essential for growth of yeast. Disruption of OST6 or OST3 causes only a minor defect in N-glycosylation, but an Deltaost3Deltaost6 double mutant displays a synthetic phenotype, leading to a severe underglycosylation of soluble and membrane-bound glycoproteins in vivo and to a reduced OST activity in vitro. Moreover, each of the two genes has also a specific function, since agents affecting cell wall biogenesis reveal different growth phenotypes in the respective null mutants. By blue native electrophoresis and immunodetection, a approximately 240-kDa complex was identified consisting of Ost1p, Stt3p, Wbp1p, Ost3p, Ost6p, Swp1p, Ost2p, and Ost5p, indicating that probably all so far identified OST proteins are constituents of the OST complex. It is also shown that disruption of OST3 and OST6 leads to a defect in the assembly of the complex. Hence, the function of these genes seems to be essential for recruiting a fully active complex necessary for efficient N-glycosylation.  相似文献   

8.
For data‐independent acquisition by means of sequential window acquisition of all theoretical fragment ion spectra (SWATH), a reference library of data‐dependent acquisition (DDA) runs is typically used to correlate the quantitative data from the fragment ion spectra with peptide identifications. The quality and coverage of such a reference library is therefore essential when processing SWATH data. In general, library sizes can be increased by reducing the impact of DDA precursor selection with replicate runs or fractionation. However, these strategies can affect the match between the library and SWATH measurement, and thus larger library sizes do not necessarily correspond to improved SWATH quantification. Here, three fractionation strategies to increase local library size were compared to standard library building using replicate DDA injection: protein SDS‐PAGE fractionation, peptide high‐pH RP‐HPLC fractionation and MS‐acquisition gas phase fractionation. The impact of these libraries on SWATH performance was evaluated in terms of the number of extracted peptides and proteins, the match quality of the peptides and the extraction reproducibility of the transitions. These analyses were conducted using the hydrophilic proteome of differentiating human embryonic stem cells. Our results show that SWATH quantitative results and interpretations are affected by choice of fractionation technique. Data are available via ProteomeXchange with identifier PXD006190.  相似文献   

9.
Asparagine‐linked glycosylation is a common post‐translational modification of proteins catalyzed by oligosaccharyltransferase that is important in regulating many aspects of protein function. Analysis of protein glycosylation, including glycoproteomic measurement of the site‐specific extent of glycosylation, remains challenging. Here, we developed methods combining enzymatic deglycosylation and protease digestion with SWATH‐MS to enable automated measurement of site‐specific occupancy at many glycosylation sites. Deglycosylation with peptide‐endoglycosidase H, leaving a remnant N‐acetylglucosamine on asparagines previously carrying high‐mannose glycans, followed by trypsin digestion allowed robust automated measurement of occupancy at many sites. Combining deglycosylation with the more general peptide‐N‐glycosidase F enzyme with AspN protease digest allowed robust automated differentiation of nonglycosylated and deglycosylated forms of a given glycosylation site. Ratiometric analysis of deglycosylated peptides and the total intensities of all peptides from the corresponding proteins allowed relative quantification of site‐specific glycosylation occupancy between yeast strains with various isoforms of oligosaccharyltransferase. This approach also allowed robust measurement of glycosylation sites in human salivary glycoproteins. This method for automated relative quantification of site‐specific glycosylation occupancy will be a useful tool for research with model systems and clinical samples.  相似文献   

10.
Asparagine-linked glycosylation is a common and vital co- and post-translocational modification of diverse secretory and membrane proteins in eukaryotes that is catalyzed by the multiprotein complex oligosaccharyltransferase (OTase). Two isoforms of OTase are present in Saccharomyces cerevisiae, defined by the presence of either of the homologous proteins Ost3p or Ost6p, which possess different protein substrate specificities at the level of individual glycosylation sites. Here we present in vitro characterization of the polypeptide binding activity of these two subunits of the yeast enzyme, and show that the peptide-binding grooves in these proteins can transiently bind stretches of polypeptide with amino acid characteristics complementary to the characteristics of the grooves. We show that Ost6p, which has a peptide-binding groove with a strongly hydrophobic base lined by neutral and basic residues, binds peptides enriched in hydrophobic and acidic amino acids. Further, by introducing basic residues in place of the wild type neutral residues lining the peptide-binding groove of Ost3p, we engineer binding of a hydrophobic and acidic peptide. Our data supports a model of Ost3/6p function in which they transiently bind stretches of nascent polypeptide substrate to inhibit protein folding, thereby increasing glycosylation efficiency at nearby asparagine residues.  相似文献   

11.
Oligosaccharyltransferase is a multiprotein complex that catalyzes asparagine-linked glycosylation of diverse proteins. Using yeast genetics and glycoproteomics, we found that transient interactions between nascent polypeptide and Ost3p/Ost6p, homologous subunits of oligosaccharyltransferase, were able to modulate glycosylation efficiency in a site-specific manner in vivo. These interactions were driven by hydrophobic and electrostatic complementarity between amino acids in the peptide-binding groove of Ost3p/Ost6p and the sequestered stretch of substrate polypeptide. Based on this dependence, we used in vivo scanning mutagenesis and in vitro biochemistry to map the precise interactions that affect site-specific glycosylation efficiency. We conclude that transient binding of substrate polypeptide by Ost3p/Ost6p increases glycosylation efficiency at asparagines proximal and C-terminal to sequestered sequences. We detail a novel mode of interaction between translocating nascent polypeptide and oligosaccharyltransferase in which binding to Ost3p/Ost6p segregates a short flexible loop of glycosylation-competent polypeptide substrate that is delivered to the oligosaccharyltransferase active site for efficient modification.Asparagine (N)-linked glycosylation is an essential post-translational modification of secretory and membrane proteins in eukaryota and also occurs in archaea and some bacteria (1). Oligosaccharyltransferase (OTase)1 is an integral membrane protein that catalyzes N-glycosylation of nascent polypeptides in the lumen of the endoplasmic reticulum (ER) (2). Eukaryotic OTase is physically associated with the translocon (3) and transfers oligosaccharide from a dolichol-pyrophosphate carrier onto asparagine side-chains of substrate polypeptides (2). The efficiency of glycosylation of asparagine residues is dramatically increased if they are present in glycosylation “sequons” (N-x-T/S; x ≠ P), the peptide recognition motifs of the catalytic site of OTase (4). After the transfer of glycan to protein, the presence of N-glycosylation assists efficient glycoprotein folding in the ER intrinsically and by locally recruiting the disulfide isomerase ERp57 through the lectins calnexin and calreticulin (5). Correctly folded glycoproteins are free to traffic through the Golgi, where further modification and extension of glycan structures can occur (6). The precise glycan structures present on mature glycoproteins are often vital for their biological functions, including those involved in immune response, embryonic development, and cancer (68).OTase in Baker''s yeast, Saccharomyces cerevisiae, is a multiprotein complex consisting of eight subunits (2). The catalytic site is located in Stt3p, and other protein subunits whose functions have been investigated are required for the integrity of the complex and for regulation of substrate specificity. It has been proposed that the requirement of Ost1p (human ribophorin I) for efficient glycosylation of a subset of integral membrane proteins (9) is due to direct physical association (10) to retain potential substrates in close proximity to Stt3p (11). The details and mechanisms of this association are not known. Ost3p and Ost6p are homologous proteins, and the incorporation of either into OTase defines two isoforms of the enzyme with distinct protein substrate specificities (Fig. 1) (1214). Efficient glycosylation of some asparagine residues requires Ost3p-OTase, whereas others require Ost6p-OTase (15). A model of Ost3p/Ost6p function in N-glycosylation site selection has been proposed (16) in which the ER-lumenal peptide-binding grooves transiently tether nascent polypeptide non-covalently or through mixed disulfides, inhibiting local protein folding and increasing the efficiency of glycosylation of nearby asparagine residues. Aspects of this model, including mixed-disulfide formation (17) and non-covalent peptide binding (18), have been tested in vitro. Although it has been established that Ost3p-OTase and Ost6p-OTase have different polypeptide substrate preferences in vivo (1215, 19), the physiological relevance and details of any interactions between Ost3p/Ost6p and substrate polypeptide are unclear.Open in a separate windowFig. 1.Overview of experimental manipulation of yeast OTase isoforms. A, OTase in wild-type yeast has eight subunits, with two isoforms defined by incorporation of either of the homologous Ost3p or Ost6p subunits. Yeast with only (B) Ost3p-OTase or (C) Ost6p-OTase was constructed via genomic deletion of OST3 and OST6 with overexpression of either Ost3p or Ost6p. D, yeast with a single variant OTase isoform was constructed through overexpression of variant Ost3p or Ost6p, for example, Ost3Q103K,Q106K.Here, we used in vivo yeast genetics, glycoproteomics, and in vitro biochemistry to identify the precise sites of interaction between Ost3p/Ost6p and substrate polypeptides that affect the efficiency of N-glycosylation at diverse asparagines. Based on these data, we present a model in which transient binding of nascent polypeptide by Ost3p/Ost6p isolates newly translocating polypeptide from pre-translocated polypeptide, resulting in the formation of a short flexible loop of glycosylation-competent polypeptide substrate in close proximity to the active site of OTase for efficient modification.  相似文献   

12.
Targeted mass spectrometry‐based proteomics approaches enable the simultaneous and reproducible quantification of multiple protein analytes across numerous conditions in biology and clinical studies. These approaches involve e.g. selected reaction monitoring (SRM) typically conducted on a triple quadrupole mass spectrometer, its high‐resolution variant named pseudo‐SRM (p‐SRM), carried out in a quadrupole coupled with an TOF analyzer (qTOF), and “sequential window acquisition of all theoretical spectra” (SWATH). Here we compared these methods in terms of signal‐to‐noise ratio (S/N), coefficient of variance (CV), fold change (FC), limit of detection and quantitation (LOD, LOQ). We have shown the highest S/N for p‐SRM mode, followed by SRM and SWATH, demonstrating a trade‐off between sensitivity and level of multiplexing for SRM, p‐SRM, and SWATH. SRM was more sensitive than p‐SRM based on determining their LOD and LOQ. Although SWATH has the worst S/N, it enables peptide multiplexing with post‐acquisition definition of the targets, leading to better proteome coverage. FC between breast tumors of different clinical‐pathological characteristics were highly correlated (R2>0.97) across three methods and consistent with the previous study on 96 tumor tissues. Our technical note presented here, therefore, confirmed that outputs of all the three methods were biologically relevant and highly applicable to cancer research.  相似文献   

13.
Schwarz M  Knauer R  Lehle L 《FEBS letters》2005,579(29):6564-6568
The key step of N-glycosylation of proteins in the endoplasmic reticulum is catalyzed by the hetero-oligomeric protein complex oligosaccharyltransferase (OST). It transfers the lipid-linked core-oligosaccharide to selected Asn-X-Ser/Thr-sequences of nascent polypeptide chains. Biochemical and genetic approaches have revealed that OST from Saccharomyces cerevisiae consists of nine subunits: Wbp1p, Swp1p, Stt3p, Ost1p, Ost2p, Ost4p, Ost5p, Ostp3 and Ost6p. By blue native polyacrylamide electrophoresis we show that yeast OST consists of two isoforms with distinct functions differing only in the presence of the two related Ost3 and Ost6p proteins. The OST6-complex was found to be important for cell wall integrity and temperature stress. Ost3p and Ost6p are not essential for OST activity, and can in part displace each other in the complex when overexpressed, suggesting a dynamic regulation of the complex formation.  相似文献   

14.
Within the lumen of the rough endoplasmic reticulum, oligosaccharyltransferase catalyzes the en bloc transfer of a high mannose oligosaccharide moiety from the lipid-linked oligosaccharide donor to asparagine acceptor sites in nascent polypeptides. The Saccharomyces cerevisiae oligosaccharyltransferase was purified as a heteroligomeric complex consisting of six subunits (alpha-zeta) having apparent molecular masses of 64 kD (Ost1p), 45 kD (Wbp1p), 34 kD, 30 kD (Swp1p), 16 kD, and 9 kD. Here we report a structural and functional characterization of Ost3p which corresponds to the 34-kD gamma-subunit of the oligosaccharyltransferase. Unlike Ost1p, Wbp1p, and Swp1p, expression of Ost3p is not essential for viability of yeast. Instead, ost3 null mutant yeast grow at wild-type rates on solid or in liquid media irrespective of culture temperature. Nonetheless, detergent extracts prepared from ost3 null mutant membranes are twofold less active than extracts prepared from wild-type membranes in an in vitro oligosaccharyltransferase assay. Furthermore, loss of Ost3p is accompanied by significant underglycosylation of soluble and membrane- bound glycoproteins in vivo. Compared to the previously characterized ost1-1 mutant in the oligosaccharyltransferase, and the alg5 mutant in the oligosaccharide assembly pathway, ost3 null mutant yeast appear to be selectively impaired in the glycosylation of several membrane glycoproteins. The latter observation suggests that Ost3p may enhance oligosaccharide transfer in vivo to a subset of acceptor substrates.  相似文献   

15.
In Saccharomyces cerevisiae, oligosaccharyl transferase (OT) consists of nine different subunits. Three of the essential gene products, Ost1p, Wbp1p, and Stt3p, are N-linked glycoproteins. To study the function of the N-glycosylation of these proteins, we prepared single or multiple N-glycosylation site mutations in each of them. We established that the four potential N-glycosylation sites in Ost1p and the two potential N-glycosylation sites in Wbp1p were occupied in the mature proteins. Interestingly, none of the N-glycosylation sites in these two proteins was conserved, and no defect in growth or OT activity was observed when the N-glycosylation sites were mutated to block N-glycosylation in either subunit. However, in the third glycosylated subunit, Stt3p, there are two adjacent potential N-glycosylation sites (N(535)NTWN(539)NT) that, in contrast to the other subunits, are highly conserved in eukaryotic organisms. Mass spectrometric analysis of a tryptic digest of Stt3p showed that the peptide containing the two adjacent N-glycosylation sites was N-glycosylated at one site. Furthermore, the glycan chain identified as Man(8)GlcNAc(2) is found linked only to Asn(539). Mutation experiments were carried out at these two sites. Four single amino acid mutations blocking either N-glycosylation site (N535Q, T537A, N539Q, and T541A) resulted in strains that were either lethal or extremely temperature sensitive. However, other mutations in the two N-glycosylation sites N(535)NTWN(539)NT (N536Q, T537S, N540Q, and T541S), did not exhibit growth defects. Based on these studies, we conclude that N-glycosylation of Stt3p at Asn(539) is essential for its function in the OT complex.  相似文献   

16.
李兵  刘柳  郭顺星 《菌物学报》2021,40(6):1357-1368
菌索是蜜环菌与宿主互作的组织结构,蜜环菌菌丝形成菌索的分子机制尚不清楚.本研究采用SWATH-MSALL非标记定量蛋白质组学技术,首次对Armillaria mellea菌丝形成菌素过程的蛋白质组学进行了系统研究.在蜜环菌菌丝和菌索中共鉴定蛋白1724个(global FDR 1%),定量蛋白1179个.与菌丝相比,蜜...  相似文献   

17.
数据非依赖采集(DIA)是蛋白质组学领域近年来快速发展的质谱采集技术,其通过无偏碎裂隔离窗口内的所有母离子采集二级谱图,理论上可实现蛋白质样品的深度覆盖,同时具有高通量、高重现性和高灵敏度的优点。现有的DIA数据采集方法可以分为全窗口碎裂方法、隔离窗口序列碎裂方法和四维DIA数据采集方法(4D-DIA)3大类。针对DIA数据的不同特点,主要数据解析方法包括谱库搜索方法、蛋白质序列库直接搜索方法、伪二级谱图鉴定方法和从头测序方法4大类。解析得到的肽段鉴定结果需要进行可信度评估,包括使用机器学习方法的重排序和对报告结果集合的假发现率估计两个步骤,实现对数据解析结果的质控。本文对DIA数据的采集方法、数据解析方法及软件和鉴定结果可信度评估方法进行了整理和综述,并展望了未来的发展方向。  相似文献   

18.
Oligosaccharyltransferase (OST) is an integral membrane protein that catalyzes N-linked glycosylation of nascent proteins in the lumen of the endoplasmic reticulum. Although the yeast OST is an octamer assembled from nonhomologous subunits (Ost1p, Ost2p, Ost3p/Ost6p, Ost4p, Ost5p, Wbp1p, Swp1p, and Stt3p), the composition of the vertebrate OST was less well defined. The roles of specific OST subunits remained enigmatic. Here we show that genomes of most multicellular eukaryotes encode two homologs of Stt3p and mammals express two homologs of Ost3p. The Stt3p and Ost3p homologs are assembled together with the previously described mammalian OST subunits (ribophorins I and II, OST48, and DAD1) into complexes that differ significantly in enzymatic activity. Tissue and cell type-specific differences in expression of the Stt3p homologs suggest that the enzymatic properties of oligosaccharyltransferase are regulated in eukaryotes to respond to alterations in glycoprotein flux through the secretory pathway and may contribute to tissue-specific glycan heterogeneity.  相似文献   

19.
Analysis of plant purple acid phosphatases (PAPs) showed high conservation and different distribution of N-glycosylation sites. Oligosaccharide structures of Lupinus luteus acid phosphatase (Lu_AP) produced in insect cells were determined. Mutant Lu_AP and Phaseolus vulgaris (Ph_AP) phosphatases lacking possibility of N-glycosylation at highly conserved sites were generated and expressed in insect cells. A role for N-glycosylation in the stability of PAPs was indicated by unsuccessful attempts to secrete Ph_AP and Lu_AP mutants generated by replacing Asn residues of conserved glycosylation sequons by Ser residues either singly or in combination. We showed that Ph_AP belongs to the group of glycoproteins that require occupancy of all highly conserved glycosylation sites for secretion, whereas replacing of the third position of the glycosylation sequon indicated that Lu_AP may tolerate the absence of some N-glycans. However, the N-glycan located at the polypeptide C-terminus was crucial for secretion of both enzymes. PAP specific activity of glycosylation mutants successfully secreted was similar to the wild-type recombinant proteins.  相似文献   

20.
Oligosaccharyltransferase catalyzes the transfer of a preassembled high mannose oligosaccharide from a dolichol-oligosaccharide donor to consensus glycosylation acceptor sites in newly synthesized proteins in the lumen of the rough endoplasmic reticulum. The Saccharomyces cerevisiae oligosaccharyltransferase is an oligomeric complex composed of six non-identical subunits (alpha-zeta). The alpha, beta, gamma, and delta subunits of the oligosaccharyltransferase are encoded by the OST1, WBP1, OST3, and SWP1 genes, respectively. Here we describe the functional characterization of the OST2 gene that encodes the epsilon- subunit of the oligosaccharyltransferase. Genomic disruption of the OST2 locus was lethal in haploid yeast showing that expression of the Ost2 protein is essential for viability. Overexpression of the Ost2 protein suppresses the temperature-sensitive phenotype of the wbp1-2 allele and increases in vivo and in vitro oligosaccharyltransferase activity in a wbp1-2 strain. An analysis of a series of conditional ost2 mutants demonstrated that defects in the Ost2 protein cause pleiotropic underglycosylation of soluble and membrane-bound glycoproteins. Microsomal membranes isolated from ost2 mutant yeast show marked reductions in the in vitro transfer of high mannose oligosaccharide from exogenous lipid-linked oligosaccharide to a glycosylation site acceptor tripeptide. Surprisingly, the Ost2 protein was found to be 40% identical to the DAD1 protein (defender against apoptotic cell death), a highly conserved protein initially identified in vertebrate organisms. The protein sequence of ost2 mutant alleles revealed mutations at highly conserved residues in the Ost2p/DAD1 protein sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号