首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified electrode, nickel(II)-baicalein complex modified multiwall carbon nanotube paste electrode (Ni(II)-BA-MWCNT-PE), has been fabricated by electrodepositing Ni(II)-BA complex on the surface of MWCNT-PE in alkaline solution. The Ni(II)-BA-MWCNT-PE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni(II)-BA-carbon paste electrode (CPE). It also shows better electrocatalytic activity toward the oxidation of glycine than Ni(II)-MWCNT-PE. Kinetic parameters such as the electron transfer coefficient α, rate constant ks of the electrode reaction, the diffusion coefficient D of glycine, and the catalytic rate constant kcat of the catalytic reaction are determined. Moreover, the catalytic currents present linear dependence on the concentration of glycine from 20 μM to 1.0 mM by amperometry. The detection limit and sensitivity are 9.2 μM and 3.92 μA mM−1, respectively. The modified electrode for glycine determination is of the property of simple preparation, fast response, and good stability.  相似文献   

2.
A new electrochemical sensor for the determination of norepinephrine (NE), acetaminophen (AC) and tryptophan (Trp) is described. The sensor is based on carbon paste electrode (CPE) modified with 3,4-dihydroxybenzaldehyde-2,4-dinitrophenylhydrazone (DDP) and takes the advantages of carbon nanotubes (CNTs), which makes the modified electrode highly sensitive for the electrochemical detection of these compounds. Cyclic voltammetry (CV) at various scan rates was used to investigate the redox properties of the modified electrode. The apparent charge transfer rate constant, k(s), and transfer coefficient, α, for electron transfer between DDP and CNT paste electrode were calculated. The mediated oxidation of NE at the modified electrode was investigated by CV and the values of k, α and diffusion coefficient (D) were calculated. Under the optimum pH of 7.0, the oxidation of NE occurs at a potential about 215 mV less positive than that of the unmodified CPE. Differential pulse voltammetry (DPV) of NE at the modified electrode exhibited two linear dynamic ranges with a detection limit (3σ) of 77±2 nM. DPV was used for simultaneous determination of NE, AC and Trp at the modified electrode, and quantitation of NE in some real samples by the standard addition method.  相似文献   

3.
This study reports the synthesis and characterization of a novel nanostructure-based electrode for electrochemical studies and determination of captopril (CP). At first manganese titanate nanoceramics were synthesized by the sol–gel method. The structural evaluations of the pure nanopowders were investigated by different techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Then it was used to prepare a new nanostructured manganese titanate carbon paste electrode (MnTiO3/CPE). The characterization of the modified sensor was carried out by comprehensive techniques such as electrochemical impedance spectroscopy (EIS), SEM, and voltammetry. Subsequently, the modified electrode was used for CP catalytic oxidation in the presence of para-aminobenzoic acid (PABA) as a mediator. The results showed that PABA has high catalytic activity for CP oxidation. The electrochemical behavior of CP was studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHA), and differential pulse voltammetry (DPV) techniques. Under the optimized conditions, the catalytic oxidation peak current of CP showed two linear dynamic concentration ranges of 1.0 × 10−8 to 1.0 × 10−7 and 1.0 × 10−7 to 1.0 × 10−6, with a detection limit of 1.6 nM (signal/noise = 3), using the DPV technique. Finally, the proposed method was successfully applied for determination of CP in pharmaceutical and biological samples.  相似文献   

4.
Electrochemical detection of glucose in alkaline solution was performed on La0.88Sr0.12MnO3 (LSMO) nanofibers modified carbon paste electrode. Perovskite-type oxide LSMO nanofibers were prepared by an electrospinning and calcination process. The morphologies, structures, and electrochemical behavior of the nanofibers were characterized by scanning electron microscope, energy dispersive spectrometer, X-ray diffraction, Fourier transform infrared spectrum, and cyclic voltammetry. The modified electrode shows excellent electrocatalytic activity toward glucose. Under optimal conditions, the linear response was obtained in the range of 0.05–100 μM with high sensitivity and rapid response.  相似文献   

5.
A new electrochemical method to monitor biotin–streptavidin interaction on carbon paste electrode, based on silver electrodeposition catalyzed by colloidal gold, was investigated. Silver reduction potential changed when colloidal gold was attached to an electrode surface through the biotin–streptavidin interaction. Thus, the direct reduction of silver ions on the electrode surface could be avoided and therefore, they were only reduced to metallic silver on the colloidal gold particle surface, forming a shell around these particles. When an anodic scan was performed, this shell of silver was oxidized and an oxidation process at +0.08 V was recorded in NH3 1.0 M. Biotinylated albumin was adsorbed on the pretreated electrode surface. This modified electrode was immersed in colloidal gold-streptavidin labeled solutions. The carbon paste electrode was then activated in adequate medium (NaOH 0.1 M and H2SO4 0.1 M) to remove proteins from the electrode surface while colloidal gold particles remained adsorbed on it. Then, a silver electrodeposition at −0.18 V for 2 min and anodic stripping voltammetry were carried out in NH3 1.0 M containing 2.0×10−5 M of silver lactate. An electrode surface preparation was carried out to obtain a good reproducibility of the analytical signal (5.3%), using a new electrode for each experiment. In addition, a sequential competitive assay was carried out to determine streptavidin. A linear relationship between peak current and logarithm of streptavidin concentration from 2.25×10−15 to 2.24×10−12 M and a limit of detection of 2.0×10−15 M were obtained.  相似文献   

6.
Lanthanum hydroxide nanowires modified carbon paste electrode (LNW/CPE) exhibiting an electrocatalytic response toward the oxidation of mefenamic acid (MFA) is described. The catalytic action of the LNW/CPE on the oxidation of MFA via one-electron and one-proton transfer is attributed to the formation of the porous construction and the increase of efficient surface of the electrode due to the adulteration of LNW with carbon powders. Using the LNW/CPE, a linear sweep voltammetric method for the determination of MFA and other drugs with diphenylamine parent is proposed. A linear range of 2.0 x 10(-11) to 4.0 x 10(-9)mol L(-1) is obtained along with a detection limit of 6.0 x 10(-12)mol L(-1).  相似文献   

7.
Dong S  Zhang S  Chi L  He P  Wang Q  Fang Y 《Analytical biochemistry》2008,381(2):199-204
A carbon paste electrode modified with multiwall carbon nanotubes and copper(I) oxide (MWCNT-Cu2O CPME) was fabricated, and the electrochemical behaviors of 19 kinds of natural amino acids at this modified electrode were studied. The experimental results showed that the various kinds of amino acids without any derivatization displayed obvious oxidation current responses at the modified electrode. It was also found that the current response values of amino acids were dependent mainly on pH values of buffer solutions. The phenomenon could be explained by the fact that the amino acids suffered complexation or electrocatalytic oxidation processes under different pH values. Six kinds of amino acids (arginine, tryptophan, histidine, threonine, serine, and tyrosine), which performed high-oxidation current responses in alkaline buffers, were selected to be detected simultaneously by capillary zone electrophoresis coupled with amperometric detection (CZE-AD). These amino acids could be perfectly separated within 20 min, and their detection limits were as low as 10−7 or 10−8 mol L−1 magnitude (signal/noise ratio = 3). The above results demonstrated that MWCNT-Cu2O CPME could be successfully employed as an electrochemical sensor for amino acids with some advantages of convenient preparation, high sensitivity, and good repeatability.  相似文献   

8.
The development of electrochemical biosensors using dehydrogenases associated with the corresponding cofactor is strongly related to the better understanding of NADH oxidation at the electrode surface. The aim is to lower the necessary overvoltage and consequently to escape interferences and electrode fouling. In this paper, we show that carbon paste electrode (CPE) modified with NaY zeolite fulfils this requirements thanks to its hydrophilic surface. Oxidation of NADH at ferrocene (FcH) modified carbon paste electrode exhibits a rather slow electrocatalytic effect. We demonstrated the existence of synergetic effect on the electrocatalytic oxidation of NADH when the CPE is doped with zeolite (NaY) and FcH mediator or with the zeolite exchanged beforehand with the mediator (Y-Ferricinium, YFcH). This cumulative effect permits to reach high sensitivity for NADH detection and offers new way for the development of enzymatic biosensors using dehydrogenases depending on NADH as cofactor.  相似文献   

9.
In this work, CdSe quantum dots (QDs) were synthesized by a simple and rapid microwave activated approach using CdSO4, Na2SeO3 as precursors and thioglycolic acid (TGA) as capping agent molecule. A novel photochemical approach was introduced for the growth of CdS QDs and this approach was used to grow a CdS shell around CdSe cores for the formation of a CdSe/CdS core–shell structure. The core–shells were structurally verified using X‐ray diffraction, transmission electron microscopy and FTIR (Fourier‐transform infrared (FTIR)) spectroscopy. The optical properties of the samples were examined by means of UV–Vis and photoluminescence (PL) spectroscopy. It was found that CdS QDs emit a broad band white luminescence between 400 to 700 nm with a peak located at about 510 nm. CdSe QDs emission contained a broad band resulting from trap states between 450 to 800 nm with a peak located at 600 nm. After CdS shell growth, trap states emission was considerably quenched and a near band edge emission was appeared about 480 nm. Optical studies revealed that the core–shell QDs possess strong ultraviolet (UV) ? visible light photocatalytic activity. CdSe/CdS core–shell QDs, showed an enhancement in photodegradation of Methyl orange (MO) compared with CdSe QDs.  相似文献   

10.
The synthesis of small-sized quantum dots (QDs) (1–10 nm) via the green route has garnered great interest regarding their prospective use in many biological applications (diagnosis, drug delivery and in vivo sensing); this is difficult to achieve using chemical synthesis methods, which produce larger size QD particles and also require hazardous reagents. Here, we synthesized biogenic cadmium sulphide (CdS) QDs using green tea extract as the reducing agent to produce particles that were homogeneous and a smaller size of 2–4 nm. We also elucidated the (a) protein binding, (b) antibacterial use and (c) sensing applications of biogenic CdS QDs in this present work. The biosynthesized CdS QDs were found to have extensive antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Enterococcus faecalis bacterial strains. The introduction of QDs in biological medium can lead to the formation of protein–QD complexes; therefore we investigated the binding interaction of CdS QDs with the carrier protein human serum albumin (HSA) in vitro. The synthesized CdS QDs quenched the intrinsic fluorescence of HSA through a static quenching mechanism and the binding constant (Kb) was in the order of 104 M−1. It was also observed that the presence of biogenic CdS QDs affected the HSA–ligand interactions in vitro. The synthesized CdS made highly effective sensors for tetracycline, rifampicin, and bilirubin with limit of detection (LOD) values of 99, 141 and 29 ng/ml, respectively.  相似文献   

11.
Ning Liu  Ping Yang 《Luminescence》2013,28(4):542-550
Novel hybrid SiO2‐coated CdTe quantum dots (QDs) were created using CdTe QDs coated with a hybrid SiO2 shell containing Cd2+ ions and a sulfur source via a sol–gel process in aqueous solution. Aqueous CdTe QDs with tunable emitting color created through a reaction between cadmium chloride and sodium hydrogen telluride was used as cores for the preparation of hybrid SiO2‐coated CdTe QDs. In our experiments we found that the surface state of the cores and preparation conditions that affect the formation of the hybrid SiO2 shell also greatly affect photoluminescence of the hybrid SiO2‐coated CdTe QDs. The generation of CdS‐like clusters in the vicinity of the CdTe QDs, caused the quantum size effect of the QDs to be greatly reduced, which changes photoluminescence properties of the hybrid QDs fundamentally. Namely, the novel hybrid SiO2 shell played an important role in generating a series of specific optical properties. In addition, the novel hybrid SiO2 shell can be created if no CdTe QD is added. In order to gain an insight into the inter structure of the hybrid shell, we characterized the hybrid SiO2‐coated CdTe QDs using X‐ray diffraction analysis and discuss the formation mechanism of such a hybrid structure. This work is significant because the novel hybrid SiO2‐coated CdTe QDs with its excellent properties can be used in many applications, such as biolabeling and optoelectronic devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Direct electron transfer of hemoglobin modified with quantum dots (QDs) (CdS) has been performed at a normal graphite electrode. The response current is linearly dependent on the scan rate, indicating the direct electrochemistry of hemoglobin in that case is a surface-controlled electrode process. UV–vis spectra suggest that the conformation of hemoglobin modified with CdS is little different from that of hemoglobin alone, and the conformation changes reversibly in the pH range 3.0–10.0. The hemoglobin in a QD film can retain its bioactivity and the modified electrode can work as a hydrogen peroxide biosensor because of its peroxidase-like activity. This biosensor shows an excellent response to the reduction of H2O2 without the aid of an electron mediator. The catalytic current shows a linear dependence on the concentration of H2O2 in the range 5 × 10−7–3 × 10−4 M with a detection limit of 6 × 10−8 M. The response shows Michaelis–Menten behavior at higher H2O2 concentrations and the apparent Michaelis–Menten constant is estimated to be 112 μM.  相似文献   

13.
The current study describes the electrografting of 2,4-diamino-1,3,5-triazine (AT) groups at the surfaces of glassy carbon electrode (GCE) and indium tin oxide (ITO) through in situ diazotization of melamine. The presence of AT groups at the surface of the electrode was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Furthermore, graphene oxide (GO) was self-assembled on AT grafted GCE. The oxygen functional groups present on the surface of GO were electrochemically reduced to form an electrochemically reduced graphene oxide (ERGO) on AT grafted electrode surface. Raman spectra show the characteristic D and G bands at 1340 and 1605 cm−1, respectively, which confirms the successful attachment of GO on AT grafted surface, and the ratio of D and G bands was increased after the electrochemical reduction of GO. EIS shows that the electron transfer reaction of [Fe(CN)6]3−/4− was higher at the ERGO modified electrode than at bare, AT grafted, and GO modified GCEs. The electrocatalytic activity of ERGO was investigated toward the oxidation of methylxanthines. It shows excellent electrocatalytic activity toward these methylxanthines by not only shifting their oxidation potentials toward less positive potentials but also enhancing their oxidation currents.  相似文献   

14.
A novel amperometric biosensor for xanthine was developed based on covalent immobilization of crude xanthine oxidase (XOD) extracted from bovine milk onto a hybrid nanocomposite film via glutaraldehyde. Toward the preparation of the film, a stable colloids solution of core–shell Fe3O4/polyaniline nanoparticles (PANI/Fe3O4 NPs) was dispersed in solution containing chitosan (CHT) and H2PtCl6 and electrodeposited over the surface of a carbon paste electrode (CPE) in one step. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used for characterization of the electrode surface. The developed biosensor (XOD/CHT/Pt NPs/PANI/Fe3O4/CPE) was employed for determination of xanthine based on amperometric detection of hydrogen peroxide (H2O2) reduction at –0.35 V (vs. Ag/AgCl). The biosensor exhibited a fast response time to xanthine within 8 s and a linear working concentration range from 0.2 to 36.0 μM (R2 = 0.997) with a detection limit of 0.1 μM (signal/noise [S/N] = 3). The sensitivity of the biosensor was 13.58 μA μM−1 cm−2. The apparent Michaelis–Menten (Km) value for xanthine was found to be 4.7 μM. The fabricated biosensor was successfully applied for measurement of fish and chicken meat freshness, which was in agreement with the standard method at the 95% confidence level.  相似文献   

15.
Core–shell structured quantum dot (QD)–silica fluorescent nanoparticles have attracted a great deal of attention due to the excellent optical properties of QDs and the stability of silica. In this study, core–shell structured CdTe/CdS@SiO2@CdTe@SiO2 fluorescent nanospheres were synthesized based on the Stöber method using multistep silica encapsulation. The second silica layer on the CdTe QDs maintained the optical stability of nanospheres and decreased adverse influences on the probe during subsequent processing. Red‐emissive CdTe/CdS QDs (630 nm) were used as a built‐in reference signal and green‐emissive CdTe QDs (550 nm) were used as a responding probe. The fluorescence of CdTe QDs was greatly quenched by added S2?, owing to a S2?‐induced change in the CdTe QDs surface state in the shell. Upon addition of Cd2+ to the S2?‐quenched CdTe/CdS@SiO2@CdTe@SiO2 system, the responding signal at 550 nm was dramatically restored, whereas the emission at 630 nm remained almost unchanged; this response could be used as a ratiometric ‘off–on’ fluorescent probe for the detection of Cd2+. The sensing mechanism was suggested to be: the newly formed CdS‐like cluster with a higher band gap facilitated exciton/hole recombination and effectively enhanced the fluorescence of the CdTe QDs. The proposed probe shows a highly sensitive and selective response to Cd2+ and has potential application in the detection of Cd2+ in environmental or biological samples.  相似文献   

16.
“Giant” core/shell quantum dots (g‐QDs) are a promising class of materials for future optoelectronic technologies due to their superior chemical‐ and photostability compared to bare QDs and core/thin shell QDs. However, inadequate light absorption in the visible and near‐infrared (NIR) region and frequent use of toxic heavy metals (e.g., Cd and Pb) are still major challenges for most g‐QDs (e.g., CdSe/CdS) synthesized to date. The synthesis of NIR, heavy metal‐free, Zn‐treated spherical CuInSe2/CuInS2 g‐QDs is reported using the sequential cation exchange method. These g‐QDs exhibit tunable NIR optical absorption and photoluminescence (PL) properties. Transient fluorescence spectroscopy shows prolonged lifetime with increasing shell thickness, indicating the formation of quasi type‐II band alignment, which is further confirmed by simulations. As a proof‐of‐concept, as‐synthesized g‐QDs are used to sensitize TiO2 as a photoanode in a photoelectrochemical (PEC) cell, demonstrating an efficient and stable PEC system. These results pave the way toward synthesizing NIR heavy metal‐free g‐QDs, which are very promising components of future optoelectronic technologies.  相似文献   

17.
The use of bacterial cells to produce fluorescent semiconductor nanoparticles (quantum dots, QDs) represents a green alternative with promising economic potential. In the present work, we report for the first time the biosynthesis of CdS QDs by acidophilic bacteria of the Acidithiobacillus genus. CdS QDs were obtained by exposing A. ferrooxidans, A. thiooxidans and A. caldus cells to sublethal Cd2+ concentrations in the presence of cysteine and glutathione. The fluorescence of cadmium-exposed cells moves from green to red with incubation time, a characteristic property of QDs associated with nanocrystals growth. Biosynthesized nanoparticles (NPs) display an absorption peak at 360 nm and a broad emission spectra between 450 and 650 nm when excited at 370 nm, both characteristic of CdS QDs. Average sizes of 6 and 10 nm were determined for green and red NPs, respectively. The importance of cysteine and glutathione on QDs biosynthesis in Acidithiobacillus was related with the generation of H2S. Interestingly, QDs produced by acidophilic bacteria display high tolerance to acidic pH. Absorbance and fluorescence properties of QDs was not affected at pH 2.0, a condition that totally inhibits the fluorescence of QDs produced chemically or biosynthesized by mesophilic bacteria (stable until pH 4.5–5.0). Results presented here constitute the first report of the generation of QDs with improved properties by using extremophile microorganisms.  相似文献   

18.
Abstract

The direct electron transfer of immobilized haemoglobin (Hb) on nano-TiO2 and dodecyltrimethylammonium bromide (DTAB) film modified carbon paste electrode (CPE) and its application as a hydrogen peroxide (H2O2) biosensor were investigated. On nano-TiO2/DTAB/Hb/CPE, Hb displayed a rapid electron transfer process with participation of one proton and with an electron transfer rate constant which estimated as 0.29 s??1. Thus, the proposed biosensor exhibited a high sensitivity and excellent electrocatalytic activity for the reduction of H2O2. The catalytic reduction current of H2O2 was proportional to H2O2 concentration in the range of 0.2–4.0 mM with a detection limit of 0.07 mM. The apparent Michaelis–Menten constant (Kmapp) of the biosensor was calculated to be 0.127 mM, exhibiting a high enzymatic activity and affinity. This sensor for H2O2 can potentially be applied in determination of other reactive oxygen species as well.  相似文献   

19.
Layered double hydroxides (LDHs) are promising cathode materials for supercapacitors because of the enhanced flow efficiency of ions in the interlayers. However, the limited active sites and monotonous metal species further hinder the improvement of the capacity performance. Herein, cobalt sulfide quantum dots (Co9S8‐QDs) are effectively created and embedded within the interlayer of metal‐organic‐frameworks‐derived ternary metal LDH nanosheets based on in situ selective vulcanization of Co on carbon fibers. The hybrid CF@NiCoZn‐LDH/Co9S8‐QD retains the lamellar structure of the ternary metal LDH very well, inheriting low transfer impedance of interlayer ions. Significantly, the selectively generated Co9S8‐QDs expose more abundant active sites, effectively improving the electrochemical properties, such as capacitive performance, electronic conductivity, and cycling stability. Due to the synergistic relationship, the hybrid material delivers an ultrahigh electrochemical capacity of 350.6 mAh g?1 (2504 F g?1) at 1 A g?1. Furthermore, hybrid supercapacitors fabricated with CF@NiCoZn‐LDH/Co9S8‐QD and carbon nanosheets modified by single‐walled carbon nanotubes display an outstanding energy density of 56.4 Wh kg?1 at a power density of 875 W kg?1, with an excellent capacity retention of 95.3% after 8000 charge–discharge cycles. Therefore, constructing hybrid electrode materials by in situ‐created QDs in multimetallic LDHs is promising.  相似文献   

20.
The cathodic reduction of oxygen to hydrogen peroxide, the current efficiency for the production of H2O2 and the oxidation of veratryl alcohol with an in situ generated hydrogen peroxide‐lignin peroxidase complex were studied in this paper. The complex was prepared by utilizing a novel preparation technique in an electrochemical reactor. The oxidation of veratryl alcohol (VA; 3,4‐dimethoxybenzyl alcohol) was carried out with or without lignin peroxidase under an electric field. The redox properties of veratryl alcohol on a carbon electrode in the presence of lignin peroxidase have been investigated using cyclic voltammetry. The kinetics of veratryl alcohol oxidation in an electrochemical reactor were compared to the oxidation when hydrogen peroxide was supplied externally. Further, the oxidation of veratryl alcohol by lignin peroxidase was optimized in terms of enzyme dosage, pH, and electrical potential. The novel electroenzymatic method was found to be effective using in situ generated hydrogen peroxide for the oxidation of veratryl alcohol by lignin peroxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号