首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of mapenterol with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated systematically using fluorescence spectroscopy, absorption spectroscopy, circular dichroism (CD) and molecular docking techniques. Mapenterol has a strong ability to quench the intrinsic fluorescence of BSA and HSA through static quenching procedures. At 291 K, the binding constants, Ka, were 1.93 × 103 and 2.73 × 103 L/mol for mapenterol–BSA and mapenterol–HAS, respectively. Electrostatic forces and hydrophobic interactions played important roles in stabilizing the mapenterol–BSA/has complex. Using site marker competitive studies, mapenterol was found to bind at Sudlow site I on BSA/HSA. There was little effect of K+, Ca2+, Cu2+, Zn2+ and Fe3+ on the binding. The conformation of BSA/HSA was changed by mapenterol, as seen from the synchronous fluorescence spectra. The CD spectra showed that the binding of mapenterol to BSA/HSA changed the secondary structure of BSA/HSA. Molecular docking further confirmed that mapenterol could bind to Sudlow site I of BSA/HSA. According to Förster non‐radiative energy transfer theory (FRET), the distances r0 between the donor and acceptor were calculated as 3.18 and 2.75 nm for mapenterol–BSA and mapenterol–HAS, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Eriocitrin is a flavanone glycoside, which exists in lemon or lime citrus fruits. It possesses antioxidant, anticancer, and anti‐allergy activities. In order to investigate the pharmacokinetics and pharmacological mechanisms of eriocitrin in vivo, the interaction between eriocitrin and bovine serum albumin (BSA) was studied under the simulated physiological conditions by multispectroscopic and molecular docking methods. The results well indicated that eriocitrin and BSA formed a new eriocitrin‐BSA complex because of intermolecular interactions, which was demonstrated by the results of ultraviolet‐visible (UV‐vis) absorption spectra. The intrinsic fluorescence of BSA was quenched by eriocitrin, and static quenching was the quenching mechanism. The number of binding sites (n) and binding constant (Kb) at 310 K were 1.22 and 2.84 × 106 L mol?1, respectively. The values of thermodynamic parameters revealed that the binding process was spontaneous, and the main forces were the hydrophobic interaction. The binding distance between eriocitrin and BSA was 3.43 nm. In addition, eriocitrin changed the conformation of BSA, which was proved by synchronous fluorescence and circular dichroism (CD) spectra. The results of site marker competitive experiments suggested that eriocitrin was more likely to be inserted into the subdomain IIA (site I), which was further certified by molecular docking studies.  相似文献   

3.
The interaction between benzophenone (BP) and bovine serum albumin (BSA) was investigated by the methods of fluorescence spectroscopy combined with UV–Vis absorption and circular dichroism (CD) measurements under simulative physiological conditions. The experiment results showed that the fluorescence quenching of BSA by BP was resulted from the formation of a BP–BSA complex and the corresponding association constants (K a) between BP and BSA at four different temperatures had been determined using the modified Stern–Volmer equation. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be –43.73 kJ mol−1 and −53.05 J mol−1 K−1, respectively, which suggested that hydrogen bond and van der Waals force played major roles in stabilizing the BP–BSA complex. Site marker competitive experiments indicated that the binding of BP to BSA primarily took place in site I (sub-domain IIA). The conformational investigation showed that the presence of BP decreased the α-helical content of BSA and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of BSA molecules.  相似文献   

4.
An easy and effective strategy for synthesizing a ratiometric fluorescent nanosensor has been demonstrated in this work. Novel fluorescent BSA–AuNPs@Tb–AMP (BSA, bovine serum albumin; AMP, adenosine 5′‐monophosphate; AuNPs, Au nanoparticles) metal–organic framework (MOF) nanostructures were synthesized by encapsulating BSA–AuNPs into Tb–AMP MOFs for the detection of 2,6‐pyridinedicarboxylic acid (DPA) and Hg2+. DPA could strongly co‐ordinate with Tb3+ to replace water molecules from the Tb3+ center and accordingly enhanced the fluorescence of Tb–AMP MOFs. The fluorescence of BSA–AuNPs at 405 nm remained constant. While the fluorescence of BSA–AuNPs at 635 nm was quenched after Hg2+ was added, the fluorescence of Tb–AMP MOFs remained constant. Accordingly, a ratiometric fluorescence nanosensor was constructed for detection of DPA and Hg2+. The ratiometric nanosensor exhibited good selectivity to DPA over other substances. The F545/F405 linearly increased with increase of DPA concentration in the range of 50 nM to 10 μM with a detection limit as low as 17.4 nM. F635/F405 increased linearly with increase of Hg2+ concentration ranging from 50 nM to 1 μM with a detection limit as low as 20.9 nM. Additionally, the nanosensor could be successfully applied for the determination of DPA and Hg2+ in running water.  相似文献   

5.
To develop conducting organic polymers (COPs) as luminescent sensors for determination of toxic heavy metals, a new benzene sulfonic acid‐doped polypyrrole (PPy‐BSA) thin film was electrochemically prepared by cyclic voltammetry (CV) on flexible indium tin oxide (ITO) electrode in aqueous solution. PPy‐BSA film was characterized by FTIR spectrometry, X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The optical properties of PPy‐BSA were investigated by ultraviolet (UV)‐visible absorption and fluorescence spectrometry in dimethylsulfoxide (DMSO) diluted solutions. PPy‐BSA fluorescence spectra were strongly quenched upon increasing copper(II) ion (Cu2+) and lead(II) ion (Pb2+) concentrations in aqueous medium, and linear Stern–Volmer relationships were obtained, which indicated the existence of a main dynamic fluorescence quenching mechanism. BSA‐PPy sensor showed a high sensitivity for detection of both metallic ions, Cu2+ and Pb2+, with very low limit of detection values of 3.1 and 18.0 nM, respectively. The proposed quenching‐fluorimetric sensor might be applied to the determination of traces of toxic heavy metallic ions in water samples.  相似文献   

6.
Cholesterol-rich, liquid-ordered (Lo) domains are believed to be biologically relevant, and yet detailed knowledge about them, especially in live cells under physiological conditions, is elusive. Although these domains have been observed in model membranes, understanding cholesterol-lipid interactions at the molecular level, under controlled lipid mixing, remains a challenge. Further, although there are a number of fluorescent lipid analogs that partition into liquid-disordered (Ld) domains, the number of such analogs with a high affinity for biologically relevant Lo domains is limited. Here, we use a new Bodipy-labeled cholesterol (Bdp-Chol) derivative to investigate membrane fluidity, lipid order, and partitioning in various lipid phases in giant unilamellar vesicles (GUVs) as a model system. GUVs were prepared from mixtures of various molar fractions of dioleoylphosphatidylcholine, cholesterol, and egg sphingomyelin. The Ld phase domains were also labeled with 1,1′-didodecyl-3,3,3′,3′-tetramethylindocarbocyanine (DiI-C12) for comparison. Two-photon fluorescence lifetime and anisotropy imaging of Bdp-Chol are sensitive to lipid phase domains in GUVs. The fluorescence lifetime of Bdp-Chol in liquid-disordered, single-phase GUVs is 5.50 ± 0.08 ns, compared with 4.1 ± 0.4 ns in the presence of DiI-C12. The observed reduction of fluorescence lifetime is attributed to Förster resonance energy transfer between Bdp-Chol (a donor) and DiI-C12 (an acceptor) with an estimated efficiency of 0.25 and donor-acceptor distance of 2.6 ± 0.2 nm. These results also indicate preferential partitioning (Kp = 1.88) of Bdp-Chol into the Lo phase. One-photon, time-resolved fluorescence anisotropy of Bdp-Chol decays as a triexponential in the lipid bilayer with an average rotational diffusion coefficient, lipid order parameter, and membrane fluidity that are sensitive to phase domains. The translational diffusion coefficient of Bdp-Chol, as measured using fluorescence correlation spectroscopy, is (7.4 ± 0.3) × 10−8 cm2/s and (5.0 ± 0.2) × 10−8 cm2/s in the Ld and Lo phases, respectively. Experimental translational/rotational diffusion coefficient ratios are compared with theoretical predictions using the hydrodynamic model (Saffman-Delbrück). The results suggest that Bdp-Chol is likely to form a complex with other lipid molecules during its macroscopic diffusion in GUV lipid bilayers at room temperature. Our integrated, multiscale results demonstrate the potential of this cholesterol analog for studying lipid-lipid interactions, lipid order, and membrane fluidity of biologically relevant Lo domains.  相似文献   

7.

Background

Lipocalin (LCN) 2 is associated with multiple acute and chronic inflammatory diseases but the underlying molecular and cellular mechanisms remain unclear. Here, we investigated whether LCN2 is released from macrophages and contributes to pro-atherosclerotic processes and whether LCN2 plasma levels are associated with the severity of coronary artery disease progression in humans.

Methods and Results

In an autocrine-paracrine loop, tumor necrosis factor (TNF)-α promoted the release of LCN2 from murine bone-marrow derived macrophages (BMDM) and vice versa. Moreover, LCN2 stimulation of BMDM led to up-regulation of M1 macrophage markers. In addition, enhanced migration of monocytic J774A.1 cells towards LCN2 was observed. Furthermore, LCN2 increased the expression of the scavenger receptors Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) as well as scavenger receptor class A-1 (SRA-1) and induced the conversion of macrophages to foam cells. In atherosclerotic lesions of low density lipoprotein receptor-deficient (ldlr −/−) mice fed a high fat, high cholesterol diet, LCN2 was found to be co-localized with macrophages in the shoulder region of the atherosclerotic plaque. In addition, LCN2 plasma levels were significantly increased in plasma samples of these mice. Finally, LCN2 plasma levels correlated with the severity of coronary artery disease (CAD) in patients as determined by coronary angiography.

Conclusions

Here we demonstrated that LCN2 plays a pivotal role in processes involved in atherogenesis by promoting polarization and migration of monocytic cells and development of macrophages towards foam cells. Moreover, LCN2 may be used as a prognostic marker to determine the status of CAD progression.  相似文献   

8.
A novel 4-butoxyethoxy-N-octadecyl-1,8-naphthalimide (BON) was synthesized as a fluorescent probe for the determination of proteins. The interactions between BON and bovine serum albumin (BSA) were studied by fluorescence spectroscopy and UV-vis absorption spectroscopy. Fluorescence data revealed that the fluorescence quenching of BSA by BON was likely the result of the formation of the BON-BSA complex. According to the modified Stern-Volmer equation, the binding constants of BON with BSA at four different temperatures were obtained. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated to be −23.27 kJ mol−1 and 10.40 J mol−1 K−1 according to van’t Hoff equation, indicating that the hydrogen bonds and hydrophobic interactions played a dominant role in the binding of BON to BSA. Furthermore, displacement experiments using warfarin indicated that BON could bind to site I of BSA. The effect of BON on the conformation of BSA was also analyzed by synchronous fluorescence and three-dimensional fluorescence spectra. A new fluorescence quenching assay of the proteins BSA using BON in the HCl-Tris (pH 7.4) buffer solution was developed with maximum excitation and emission wavelengths of 373 and 489 nm, respectively. The linear range was 0.1-10.0 × 10−5 mol L−1 with detection limits were determined to be 1.76 × 10−8 mol L−1. The effect of metal cations on the fluorescence spectra of BON in ethanol was also investigated. Determination of protein in human serum by this method gave results which were very close to those obtained by using Coomassie Brilliant Blue G-250 colorimetry.  相似文献   

9.
Lipocalin-2 (LCN2) belongs to the superfamily of lipocalins and plays critical roles in the control of cellular homeostasis during inflammation and in responses to cellular stress or injury. In the liver, LCN2 triggers protective effects following acute or chronic injury, and its expression is a reliable indicator of liver damage. However, little is known about LCN2's functions in the homeostasis and metabolism of hepatic lipids or in the development of steatosis. In this study, we fed wild type (WT) and LCN2-deficient (Lcn2−/−) mice a methionine- and choline-deficient (MCD) diet as a nutritional model of non-alcoholic steatohepatitis, and compared intrahepatic lipid accumulation, lipid droplet formation, mitochondrial content, and expression of the Perilipin proteins that regulate cellular lipid metabolism. We found that Lcn2−/− mice fed an MCD diet accumulated more lipids in the liver than WT controls, and that the basal expression of the lipid droplet coat protein Perilipin 5 (PLIN5, also known as OXPAT) was significantly reduced in these animals. Similarly, the overexpression of LCN2 and PLIN5 were also found in animals that were fed with a high fat diet. Furthermore, the loss of LCN2 and/or PLIN5 in hepatocytes prevented normal intracellular lipid droplet formation both in vitro and in vivo. Restoration of LCN2 in Lcn2−/− primary hepatocytes by either transfection or adenoviral vector infection induced PLIN5 expression and restored proper lipid droplet formation. Our data indicate that LCN2 is a key modulator of hepatic lipid homeostasis that controls the formation of intracellular lipid droplets by regulating PLIN5 expression. LCN2 may therefore represent a novel therapeutic drug target for the treatment of liver diseases associated with elevated fat accumulation and steatosis.  相似文献   

10.
To further understand the mode of action and pharmacokinetics of lisinopril, the binding interaction of lisinopril with bovine serum albumin (BSA) under imitated physiological conditions (pH 7.4) was investigated using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) and molecular docking methods. The results showed that the fluorescence quenching of BSA near 338 nm resulted from the formation of a lisinopril–BSA complex. The number of binding sites (n) for lisinopril binding on subdomain IIIA (site II) of BSA and the binding constant were ~ 1 and 2.04 × 104 M–1, respectively, at 310 K. The binding of lisinopril to BSA induced a slight change in the conformation of BSA, which retained its α‐helical structure. However, the binding of lisinopril with BSA was spontaneous and the main interaction forces involved were van der Waal's force and hydrogen bonding interaction as shown by the negative values of ΔG0, ΔH0 and ΔS0 for the binding of lisinopril with BSA. It was concluded from the molecular docking results that the flexibility of lisinopril also played an important role in increasing the stability of the lisinopril–BSA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The impact of Zn2+ ion on interactions of flavonols galangin (Gal), kaempferol (Kae), quercetin (Que) and myricetin (Myr) with bovine serum albumin (BSA) in aqueous solution were studied by fluorescence quenching technique. The results exhibited that Zn2+ ion affected significantly the interactions and the effect was distinct for the flavonol bearing different number of B-ring hydroxyl. Each flavonol can quench the fluorescence of BSA, displaying a quenching extent of Myr > Que > Kae > Gal, which is in good agreement with the number variation of the B-ring hydroxyl. The presence of Zn2+ ion promoted the quenching for the flavonols, exhibiting an extent of Que > Myr > Kae > Gal. The values of Ka for Kae, Que and Myr decreased whereas KSV and kq for Gal, Kae and Que increased with the number of B-ring hydroxyl. The type of BSA fluorescence quenching for Gal, Kae and Que hardly changed but the preference of static quenching increased. The values of KSV and kq for Myr remarkably decreased and the fluorescence quenching of BSA alternatively occurred via both static and dynamic type instead of only one (static or dynamic). The results suggest the key role of the B-ring hydroxyl and the distinct effect of its number in the interactions. Each flavonol may capture the BSA-bound ZnII in the solution, forming ZnII-flavonol complex that is possibly responsible for BSA fluorescence quenching. The B-ring hydroxyl could establish hydrogen bonds with BSA in the absence of Zn2+ and act as donors for chelating in the presence of Zn2+. The formation of dinuclear ZnII-Myr complex together with the hydrogen bonds between the free B-ring hydroxyl and BSA may contribute to the exceptional behavior of Myr.  相似文献   

12.
Lipocalin-2 is expressed under pernicious conditions such as intoxication, infection, inflammation and other forms of cellular stress. Experimental liver injury induces rapid and sustained LCN2 production by injured hepatocytes. However, the precise biological function of LCN2 in liver is still unknown. In this study, LCN2?/? mice were exposed to short term application of CCl4, lipopolysaccharide and Concanavalin A, or subjected to bile duct ligation. Subsequent injuries were assessed by liver function analysis, qRT-PCR for chemokine and cytokine expression, liver tissue Western blot, histology and TUNEL assay. Serum LCN2 levels from patients suffering from liver disease were assessed and evaluated. Acute CCl4 intoxication showed increased liver damage in LCN2?/? mice indicated by higher levels of aminotransferases, and increased expression of inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1/CCL2, resulting in sustained activation of STAT1, STAT3 and JNK pathways. Hepatocytes of LCN2?/? mice showed lipid droplet accumulation and increased apoptosis. Hepatocyte apoptosis was confirmed in the Concanavalin A and lipopolysaccharide models. In chronic models (4 weeks bile duct ligation or 8 weeks CCl4 application), LCN2?/? mice showed slightly increased fibrosis compared to controls. Interestingly, serum LCN2 levels in diseased human livers were significantly higher compared to controls, but no differences were observed between cirrhotic and non-cirrhotic patients. Upregulation of LCN2 is a reliable indicator of liver damage and has significant hepato-protective effect in acute liver injury. LCN2 levels provide no correlation to the degree of liver fibrosis but show significant positive correlation to inflammation instead.  相似文献   

13.
The binding interactions between megestrol acetate (MA) and bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) were investigated by fluorescence spectroscopy, circular dichroism and molecular modeling. The results revealed that the intrinsic fluorescence of BSA was quenched by MA due to formation of the MA–BSA complex, which was rationalized in terms of a static quenching procedure. The binding constant (Kb) and number of binding sites (n) for MA binding to BSA were 2.8 × 105 L/mol at 310 K and about 1 respectively. However, the binding of MA with BSA was a spontaneous process due to the negative ∆G0 in the binding process. The enthalpy change (∆H0) and entropy change (∆S0) were – 124.0 kJ/mol and –295.6 J/mol per K, respectively, indicating that the major interaction forces in the binding process of MA with BSA were van der Waals forces and hydrogen bonding. Based on the results of spectroscopic and molecular docking experiments, it can be deduced that MA inserts into the hydrophobic pocket located in subdomain IIIA (site II) of BSA. The binding of MA to BSA leads to a slight change in conformation of BSA but the BSA retained its secondary structure, while conformation of the MA has significant change after forming MA–BSA complex, suggesting that flexibility of the MA molecule supports the binding interaction of BSA with MA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The interaction of afatinib (AFB) with bovine serum albumin (BSA) was examined via fluorescence and UV-Vis spectroscopy. Spectrofluorimetric measurements revealed that AFB can strongly quench the BSA intrinsic fluorescence through producing a non-fluorescent complex. This quenching mechanism was thoroughly investigated with regard to the type of quenching, binding constant, number of binding locations and the fundamental thermodynamic parameters. Subsequently, the association constant of AFB with BSA was computed at three different temperatures and was found to range from 7.34 to 13.19 x105 L mol-1. Thermodynamic parameters calculations demonstrated a positive ΔSƟvalue with both negative ΔHϴand ΔGϴvalues for AFB–BSA complex, which in turn infers thata spontaneous binding is taking place with both electrostatic bonding and hydrophobic interactions participating in the binding of AFB and BSA. Similarly, the UV absorption spectra of AFB-BSA system were studied and confirmed the interaction. Conformational alteration of the protein upon binding to AFB was elaborated with the aid of three dimensional fluorescence measurements as well as synchronous fluorescence spectra.  相似文献   

15.
A fluorescent dye, 1-dimethylaminonaphthalene-5-sulfonyl chloride, was used to label bovine serum albumin (BSA), intact and disulfide bridges-cleaved. The fluorescence lifetime and fluorescence anisotropy of the adducts in sodium dodecyl sulfate (SDS) solutions were studied by the nanosecond fluorescence depolarization method. The volume of equivalent sphere (V e) was calculated to be 2.1×10–19 cm3 for BSA with the intact disulfide bridges from the rotational correlation time. The value ofV e was 4.4×10–19 cm3 for the disulfide bridges-cleaved BSA. With an increase in SDS concentration, the rotational correlation time of the intact BSA became longer, while that of the disulfide bridges-cleaved BSA became shorter. This suggests that upon the binding of SDS, the total volume of the intact BSA increases while the expanded state of the protein, caused by the cleavage of the disulfide bridges, becomes compact.  相似文献   

16.
Lipocalin 2 (LCN2), which is highly expressed by dendritic cells (DCs) when treated with dexamethasone (Dex) and lipopolysaccharide (LPS), plays a key role in the defence against bacteria and is also involved in the autocrine apoptosis of T-cells. However, the function of LCN2 when secreted by DCs is unknown: this is a critical gap in our understanding of the regulation of innate and adaptive immune systems. Tolerance, stimulation and suppression are functions of DCs that facilitate the fine-tuning of the immune responses and which are possibly influenced by LCN2 secretion. We therefore examined the role of LCN2 in DC/T-cell interaction. WT or Lcn2−/− bone marrow-derived DCs were stimulated with LPS or LPS+IFN-γ with and without Dex and subsequently co-cultured with T-cells from ovalbumin-specific TCR transgenic (OT-I and OT-II) mice. We found that CD8+ T-cell apoptosis was highly reduced when Lcn2−/− DCs were compared with WT. An in vivo CTL assay, using LPS-treated DCs, showed diminished killing ability in mice that had received Lcn2−/− DCs compared with WT DCs. As a consequence, we analysed T-cell proliferation and found that LCN2 participates in T-cell-priming in a dose-dependent manner and promotes a TH1 microenvironment. DC-secreted LCN2, whose function has previously been unknown, may in fact have an important role in regulating the balance between TH1 and TH2. Our results yield insights into DC-secreted LCN2 activity, which could play a pivotal role in cellular immune therapy and in regulating immune responses.  相似文献   

17.
The binding interaction of the cobalt(II) 1,10-phenanthroline complex (Co(phen) 3 2+ , phen = 1,10-phenanthroline) with bovine serum albumin (BSA) was investigated by fluorescence spectroscopy combined with UV–Vis absorption and circular dichroism measurements under simulative physiological conditions. The experiment results showed that the fluorescence intensity of BSA was dramatically decreased owing to the formation of Co(phen) 3 2+ –BSA complex. The corresponding association constants (K a) between Co(phen) 3 2+ and BSA at four different temperatures were calculated according to the modified Stern–Volmer equation. The enthalpy change (ΔH°) and entropy change (ΔS°) were calculated to be ?2.73 kJ mol?1 and 82.27 J mol?1?K?1, respectively, which suggested that electrostatic interaction and hydrophobic force played major roles in stabilizing the Co(phen) 3 2+ –BSA complex. Site marker competitive experiments indicated that the binding of Co(phen) 3 2+ to BSA primarily took place in site I of BSA. A value of 4.11 nm for the average distance r between Co(phen) 3 2+ (acceptor) and tryptophan residues of BSA (donor) was derived from Förster’s energy transfer theory. The conformational investigation showed that the presence of Co(phen) 3 2+ resulted in the change of BSA secondary structure and induced the slight unfolding of the polypeptides of protein, which confirmed the microenvironment and conformational changes of BSA molecules.  相似文献   

18.
Ye H  Qiu B  Lin Z  Chen G 《Luminescence》2011,26(5):336-341
The interaction between tamibarotene and bovine serum albumin (BSA) was studied using fluorescence quenching technique and ultraviolet–visible spectrophotometry. The results of experiments showed that tamibarotene could strongly quench the intrinsic fluorescence of BSA by a dynamic quenching mechanism. The apparent binding constant, number of binding site and corresponding thermodynamic parameters at different temperatures were calculated respectively, and the main interaction force between tamibarotene and BSA was proved to be hydrophobic force. Synchronous fluorescence spectra showed that tamibarotene changed the molecular conformation of BSA. When BSA concentration was 1.00 × 10?6 mol L?1, the quenched fluorescence ΔF had a good linear relationship with the concentration of tamibarotene in the range 1.00 × 10?6 to 12.00 × 10?6 mol L?1 with the detection limit of 6.52 × 10?7 mol L?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The binding interactions of simvastatin (SIM), pravastatin (PRA), fluvastatin (FLU), and pitavastatin (PIT) with bovine serum albumin (BSA) were investigated for determining the affinity of four statins with BSA through multiple spectroscopic and molecular docking methods. The experimental results showed that SIM, PRA, FLU, and PIT statins quenched the intrinsic fluorescence of BSA through a static quenching process and the stable stains–BSA complexes with the binding constants in the order of 104 M?1 at 298 K were formed through intermolecular nonbond interaction. The values of ΔH0, ΔS0 and ΔG0 in the binding process of SIM, PRA, FLU, and PIT with BSA were negative at the studied temperature range, suggesting that the binding process of four statins and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen-bonding interactions. Moreover, the binding of four statins with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°| under the studied temperature range. From the results of site marker competitive experiments and molecular docking, subdomain IIIA (site II) was the primary binding site for SIM, PRA, FLU, and PIT on BSA. The results of UV–vis absorption, synchronous fluorescence, 3D fluorescence and FT-IR spectra proved that the slight change in the conformation of BSA, while the significant changes in the conformation of SIM, PRA, FLU, and PIT drug in statin–BSA complexes, indicating that the flexibility of statin molecules plays an important role in increasing the stability of statin–BSA complexes.  相似文献   

20.
We investigated the complex interaction between bovine serum albumin (BSA) and curcumin by combining time‐resolved fluorescence and synchronous fluorescence spectroscopy. The interaction was significant and sensitive to fluorescence lifetime and synchronous fluorescence characteristics. Binding of curcumin significantly shortened the fluorescence lifetime of BSA with a bi‐molecular quenching rate constant of kq = 3.17 × 1012 M‐1s‐1. Denaturation by urea unfolded the protein molecule by quenching the fluorescence lifetime of BSA. The tyrosine synchronous fluorescence spectra were blue shifted whereas the position of tryptophan synchronous fluorescence spectra was red shifted during the unfolding process. However, denaturation of urea had little effect on the synchronous fluorescence peak of tyrosine in curcumin‐BSA complex except in the low concentration range; however, it shifted the peak to the red, indicating that curcumin shifted tryptophan moiety to a more polar environment in the unfolded state. Decreases in the time‐resolved fluorescence lifetime and curcumin‐BSA complex during unfolding were recovered during refolding of BSA by a dilution process, suggesting partial reversibility of the unfolding process for both BSA and curcumin‐BSA complex. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号