首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The zebrafish has become a major model system for biomedical research and is an emerging model for the study of behaviour. While adult zebrafish express a visually mediated shoaling preference, the onset of shoaling behaviour and of this preference is unknown. To assess the onset of these behaviours, we first manipulated the early social environment of larval zebrafish subjects, giving them three model shoaling partners of the same pigment phenotype. We then assayed the subjects' preferences using binary preference tests in which we presented subjects with two shoals, one shoal of fish exhibiting the same pigment pattern phenotype as their models and another shoal with a radically different pigment pattern. To determine whether or not the visually mediated preference could be altered once it was established, we further manipulated the social environment of a number of subjects, rearing them with one model shoal and testing them, then changing their social consorts and retesting them. Our results demonstrate that larval zebrafish shoal early in their development, but do not exhibit a shoaling preference until they are juveniles. Moreover, we find that the shoaling preference is stable, as changing the social environment of fish after they had acquired a preference did not change their preference. These data will facilitate investigations into the mechanisms underlying social behaviour in this vertebrate model system.  相似文献   

6.
7.
8.
9.
The major objective of this study was to investigate the behavioural responses of several zooplankton species to the presence of the scyphozoan jellyfish, Catostylus mosaicus. Specific aims included: identifying taxa that were not captured by C. mosaicus; investigating whether some of these taxa were able to detect and avoid water that had been exposed to C. mosaicus; and determining if positive phototaxis of crab megalopae was suppressed in the presence of C. mosaicus. Zooplankton not caught by C. mosaicus were identified by comparing the zooplankton present in the water column to those on the oral arms of the jellyfish. C. mosaicus mainly caught mollusc veligers and copepods, but did not catch crab megalopae, small prawns or post-flexion fish larvae. The hypothesis that these taxa were able to avoid swimming in water exposed to C. mosaicus was tested using water-choice experiments in a flume tank. A significant proportion (18-25%) of larval barramundi (Lates calcarifer) avoided swimming in the plume of water that had been exposed to C. mosaicus but mud crab (Scylla serrata) megalopae and juvenile prawns showed no response. The effect of C. mosaicus on the positive phototaxis of S. serrata megalopae was tested using 1 m tall glass towers. Megalopae were exposed to one of four treatments: filtered seawater (a control), an oral arm of C. mosaicus, an oral arm that had been sealed in plastic, and mucus from C. mosaicus. Megalopae migrated higher into the water column in the control than in treatments containing cues from the jellyfish. These findings suggest that blooms of jellyfish may induce behavioural changes in some zooplankton.  相似文献   

10.
The present study examined the influence of air exposure at different temperatures: a common perturbation associated with aquaculture handling practices, on immune responses in zhikong scallop Chlamys farreri. Scallops were exposed to air for 2 h, 6 h, 12 h and 24 h at 5 °C, 17 °C and 25 °C respectively. Thereafter, a recovery period of 24 h at 17 °C was applied. Haemocyte mortality, phagocytosis and reactive oxygen species (ROS) production of haemocytes, acid phosphatase (ACP) and superoxide dismutase (SOD) activity in haemocyte lysates were chosen as immunomarkers of anoxic stress. The results showed that an increase of haemocyte mortality and a decrease of phagocytosis and ACP activity were observed after 2 h of air exposure for all temperatures tested. Moreover, a significant increase of ROS production occurred following 2 h of air exposure at 25 °C and 24 h of air exposure at 17 °C. Significant differences were also observed in haemocyte mortality, percentage of phagocytic cells and ACP and SOD activity depending on the temperature of air exposure. Finally, after 24 h of recovery at 17 °C, percentage of phagocytic haemocytes and ACP activity did not return to initial values. ROS production was significantly higher than before the recovery period and initial values for scallops subjected to air exposure at 5 °C. In our study, scallops showed a relative low anoxia tolerance under a high temperature. All the scallops air exposed to 25 °C died after the 6 h sampling. In conclusion, air exposure associated to aquaculture practices was demonstrated to strongly affect functional immune activities of scallop haemocytes, and high temperature air exposure caused reduced survival of scallops.  相似文献   

11.
The aim of the present study was to identify a collection of 35 Cupriavidus isolates at the species level and to examine their capacity to nodulate and fix N(2). These isolates were previously obtained from the root nodules of two promiscuous trap species, Phaseolus vulgaris and Leucaena leucocephala, inoculated with soil samples collected near Sesbania virgata plants growing in Minas Gerais (Brazil) pastures. Phenotypic and genotypic methods applied for this study were SDS-PAGE of whole-cell proteins, and 16S rRNA and gyrB gene sequencing. To confirm the ability to nodulate and fix N(2), the presence of the nodC and nifH genes was also determined, and an experiment was carried out with two representative isolates in order to authenticate them as legume nodule symbionts. All 35 isolates belonged to the betaproteobacterium Cupriavidus necator, they possessed the nodC and nifH genes, and two representative isolates were able to nodulate five different promiscuous legume species: Mimosa caesalpiniaefolia, L. leucocephala, Macroptilium atropurpureum, P. vulgaris and Vigna unguiculata. This is the first study to demonstrate that C. necator can nodulate legume species.  相似文献   

12.
The ways in which challenging environments during development shape the brain and behaviour are increasingly being addressed. To date, studies typically consider only single variables, but the real world is more complex. Many factors simultaneously affect the brain and behaviour, and whether these work independently or interact remains untested. To address this, zebrafish (Danio rerio) were reared in a two-by-two design in housing that varied in structural complexity and/or exposure to a stressor. Fish experiencing both complexity (enrichment objects changed over time) and mild stress (daily net chasing) exhibited enhanced learning and were less anxious when tested as juveniles (between 77 and 90 days). Adults tested (aged 1 year) were also less anxious even though fish were kept in standard housing after three months of age (i.e. no chasing or enrichment). Volumetric measures of the brain using magnetic resonance imaging (MRI) showed that complexity alone generated fish with a larger brain, but this increase in size was not seen in fish that experienced both complexity and chasing, or chasing alone. The results highlight the importance of looking at multiple variables simultaneously, and reveal differential effects of complexity and stressful experiences during development of the brain and behaviour.  相似文献   

13.
A field experiment was done to quantify the mortality of fish released during a recreational angling tournament in Botany Bay, Australia. Participating boat-based anglers were divided into two groups, each representing different typical catch-and-release events. The first group (termed the ‘live weigh-in group’) retained the largest two individuals of 4 species (dusky flathead, Platycephalus fuscus, yellowfin bream, Acanthopagrus australis, sand whiting, Sillago ciliata, and trevally, Pseudocaranx dentex) in onboard holding tanks and then presented these to researchers at designated weigh-in times and stations. Gear, operational and handling data were collected before 125 fish were tagged using plastic t-bar tags, returned to the anglers and then released into two sea cages. The second group (termed the ‘immediate-release group’) immediately released 224 fish into two sea cages, after they were tagged and relevant data recorded by onboard observers. This group represented those fish routinely discarded (i) as part of catch-and-immediate-release tournaments and/or (ii) due to minimum legal sizes and/or personal quotas. Appropriate species and numbers of ‘control’ fish were seined and placed into two sea cages. All fish were monitored for mortalities over 10 days. Dusky flathead, yellowfin bream, trevally and snapper, Pagrus auratus accounted for more than 85% of the total catch. Their adjusted mortalities ranged between 0% and 36.6%. Irrespective of the treatment, most yellowfin bream and snapper deaths occurred within 3 h of being hooked and released into the cages, while trevally and dusky flathead showed a delayed mortality over 4 days. Owing to confounding effects due to their confinement, dusky flathead were excluded from further analyses. Anatomical hook location and the time between capture and release were significant predictors of mortality for yellowfin bream and trevally, respectively (p < 0.01), but none of the various gear, operational or handling factors examined were significant for snapper (p > 0.05). The results are discussed in terms of species-specific variabilities in mortalities, their causal effects and better management of catch-and-release events.  相似文献   

14.
In Amazonian floodplains, plant survival is determined by adaptations and growth strategies to effectively capture sunlight and endure extended periods of waterlogging. By measuring gas exchange, quantum efficiency of photosystem 2 (PSII), and growth parameters, we investigated the combined effects of flooding gradients and light on two common evergreen floodplain tree species, the light-tolerant Cecropia latiloba and the shade-tolerant Pouteria glomerata. Individual plants were subjected to different combinations of light and flooding intensity in short-term and long-term experiments. Plants of C. latiloba lost all their leaves under total submersion treatments (plants flooded to apex and with reduced irradiance) and showed highest maximum assimilation rates (Amax) in not flooded, high light treatments (6.1 μmol CO2 m−2 s−1). Individuals of P. glomerata showed similar patterns, with Amax increasing from 1.9 μmol CO2 m−2 s−1 under total flooding to 7.1 μmol CO2 m−2 s−1 in not flooded, high light treatments. During the long-term flooding experiment, quantum efficiency of PSII (Fv/Fm) of C. latiloba was not affected by partial flooding. In contrast, in P. glomerata Fv/Fm decreased to values below 0.73 after 120 days of total flooding. Moreover, total submergence led P. glomerata to reduce significantly light saturation point (LSP), as compared to C. latiloba. For both species morphological adjustments to long-term flooding, such as the production of adventitious roots, resulted in reduced total biomass, relative growth rate (RGR) and leaf mass ratio (LMR). Growth increase in C. latiloba seemed to be more limited by low-light than by flooding. Therefore, the predominant occurrence of this species is in open areas with high light intensities and high levels of inundation. In P. glomerata flooding induced high reductions of growth and photosynthesis, whereas light was not limiting. This species is more abundant in positions where irradiance is reduced and periods of submergence are slightly modest. We could show that the physiological requirements are directly responsible for the flooding (C. latiloba) and shade (P. glomerata) tolerance of the two species, which explains their local distribution in Amazonian floodplain forests.  相似文献   

15.
16.
Forward genetic screens have been instrumental in defining molecular components of visual function. The zebrafish mutant fading vision (fdv) has been identified in such a screen due to defects in vision accompanied by hypopigmentation in the retinal pigment epithelium (RPE) and body melanocytes. The RPE forms the outer most layer of the retina, and its function is essential for vision. In fdv mutant larvae, the outer segments of photoreceptors are strongly reduced in length or absent due to defects in RPE cells. Ultrastructural analysis of RPE cells reveals dramatic cellular changes such as an absence of microvilli and vesicular inclusions. The retinoid profile is altered as judged by biochemical analysis, arguing for a partial block in visual pigment regeneration. Surprisingly, homozygous fdv vision mutants survive to adulthood and show, despite a persistence of the hypopigmentation, a partial recovery of retinal morphology. By positional cloning and subsequent morpholino knock-down, we identified a mutation in the silver gene as the molecular defect underlying the fdv phenotype. The Silver protein is required for intralumenal fibril formation in melanosomes by amylogenic cleavage. Our data reveal an unexpected link between melanosome biogenesis and the visual system, undetectable in cell culture.  相似文献   

17.
18.
19.
Earthworms ingest large amounts of soil and therefore are continuously exposed to contaminants through their alimentary surfaces. Additionally, several studies have shown that earthworm skin is a significant route of contaminant uptake as well. In order to determine effects of dimethoate, a broad-spectrum organophosphorous insecticide, two ecologically different earthworm species were used - Eisenia andrei and Octolasion lacteum. Although several studies used soil organisms to investigate the effects of dimethoate, none of these studies included investigations of dimethoate effects on biochemical biomarkers in earthworms. Earthworms were exposed to 0.001, 0.005, 0.01, 0.5 and 1 μg/cm(2) of dimethoate for 24 h, and the activities of acetylcholinesterase, carboxylesterase, catalase and efflux pump were measured. In both earthworm species dimethoate caused significant inhibition of acetylcholinesterase and carboxylesterase activities, however in E. andrei an hormetic effect was evident. Efflux pump activity was inhibited only in E. andrei, and catalase activity was significantly inhibited in both earthworm species. Additionally, responses of earthworm acetylcholinesterase, carboxylesterase and catalase activity to dimethoate were examined through in vitro experiments. Comparison of responses between E. andrei and O. lacteum has shown significant differences, and E. andrei has proved to be less susceptible to dimethoate exposure.  相似文献   

20.
We analyzed the interactions between mutations in antagonistic BMP pathway signaling components to examine the roles that the antagonists play in regulating BMP signaling activity. The dorsalized mutants swirl/bmp2b, snailhouse/bmp7, lost-a-fin/alk8, and mini fin/tolloid were each analyzed in double mutant combinations with the ventralized mutants chordino/chordin and ogon, whose molecular nature is not known. Similar to the BMP antagonist chordino, we found that the BMP ligand mutants swirl/bmp2b and snailhouse/bmp7 are also epistatic to the putative BMP pathway antagonist, ogon, excluding a class of intracellular antagonists as candidates for ogon. In ogon;mini fin double mutants, we observed a mutual suppression of the ogon and mini fin mutant phenotypes, frequently to a wild type phenotype. Thus, the Tolloid/Mini fin metalloprotease that normally cleaves and inhibits Chordin activity is dispensable, when Ogon antagonism is reduced. These results suggest that Ogon encodes a Tolloid and Chordin-independent antagonistic function. By analyzing genes whose expression is very sensitive to BMP signaling levels, we found that the absence of Ogon or Chordin antagonism did not increase the BMP activity remaining in swirl/bmp2b or hypomorphic snailhouse/bmp7 mutants. These results, together with other studies, suggest that additional molecules or mechanisms are essential in generating the presumptive gastrula BMP activity gradient that patterns the dorsal-ventral axis. Lastly we observed a striking increased penetrance of the swirl/bmp2b dominant dorsalized phenotype, when Chordin function is also absent. Loss of the BMP antagonist Chordin is expected to increase BMP signaling levels in a swirl heterozygote, but instead we observed an apparent decrease in BMP signaling levels and a loss of ventral tail tissue. As has been proposed for the fly orthologue of chordin, short gastrulation, our paradoxical results can be explained by a model whereby Chordin both antagonizes and promotes BMP activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号