首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexation of Al3+, Zn2+, Cd2+ and Pb2+ by the 3-hydroxyflavones: 3-hydroxy-2-(2-methoxyphenyl)-4H-1-benzopyran-4-one (H1) and 3-hydroxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one (H2), and by the 3-methoxythioflavone: 3-hydroxy-2-(2-methoxyphenyl)-4H-1-benzopyran-4-thione (H3) have been studied spectrophotometrically and fluorimetrically to determine the corresponding complexation constants, Ksp and Kfl, in 5:95 water:ethanol (v/v) solution for which [HClO4] was either 10−2 or 10−5 mol dm−3 and I = 0.10 mol dm−3 (NaClO4) at 298.2 K. Complexation occurs dominantly through the deprotonated ligand for [Al(1)]2+ and [Al(2)]2+ for which log Ksp = 4.51 and 4.73, respectively, in 10−2 mol dm−3 HClO4 and 4.21 and 4.61 in 10−5 mol dm−3 HClO4. For Pb2+ complexation by H1, H2 and H3 is characterized by log Ksp = 2.20, 2.57 and 3.22, respectively, in 10−2 mol dm−3 HClO4 and 4.70, 5.38 and 5.74 in 10−5 mol dm−3 HClO4. Equilibrium mixtures of [Pb(H1)]2+ and [Pb1]+, [Pb(H2)]2+ and [Pb2]+, and [Pb(H3)]2+ and [Pb3]+ appear to be formed. Complexation of Zn2+ and Cd2+ by all three ligands was only detected in 10−5 mol dm−3 HClO4. For Zn2+ complexation by H1, H2 and H3 log Ksp = 3.22, 3.74 and 4.46 and for Cd2+ the corresponding values are 2.39, 2.40 and 3.72 for Cd2+. Only [Al1]2+ and [Al2]2+ show significant fluorescence and are characterized by log Kfl = 6.30 and 7.49 in 10−2 mol dm−3 HClO4.  相似文献   

2.
An unreported graft copolymer of N,N-dimethylacrylamide (DMA) with chitosan has been synthesized under nitrogen atmosphere using peroxymonosulphate/mandelic acid redox pair. The effect of reaction conditions on grafting parameters i.e. grafting ratio, efficiency, conversion, add on and homopolymer has been studied. Experimental results show that maximum grafting has been obtained at 1.0 g dm−3 concentration of chitosan, 30 × 10−2 mol dm−3 concentration of N,N-dimethylacrylamide and 7.0 × 10−3 mol dm−3 concentration of hydrogen ion. It has also been observed that grafting ratio, add on, conversion and efficiency increase upto 3.2 × 10−3 mol dm−3 of mandelic acid, 12.0 × 10−3 mol dm−3 of potassium peroxymonosulphate, 150 min of time and 40 °C of temperature. Grafted polymer has been characterized by FTIR spectroscopy and thermogravimetric analysis. Water swelling capacity of chitosan-g-N,N-dimethylacrylamide has been determined. It has been observed that the graft copolymer is thermally more stable than parent backbone.  相似文献   

3.
A novel nanocomposite material of multiwalled carbon nanotubes (MWCNTs) and room temperature ionic liquid (RTIL) N-butylpyridinium hexafluorophosphate (BPPF6) was explored and used to construct a novel microperoxidase-11 (MP-11) biosensor for the determination of hydrogen peroxide (H2O2). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to characterize the performance of the biosensor. Under the optimized experimental conditions, H2O2 could be detected in a linear calibration range of 0.5 to 7.0 × 10−7 mol L−1 with a correlation coefficient of 0.9949 (n = 9) and a detection limit of 3.8 × 10−9 mol L−1 at 3σ. The modified electrodes displayed excellent electrochemical response, high sensitivity, long-term stability, and good bioactivity and selectivity.  相似文献   

4.
Here, we report on the biodegradation of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] by a novel thermoalkanophilic extracellular esterase from the soil isolate Streptomyces sp. IN1. Preliminary screening and isolation of the bacterium was done using polyhydroxyalkanoate latex medium (PHALM). The isolate was cultured with P(3HB-co-3HV) as the only carbon source and by-products of degradation were derivatized with [N,O-bis(trimethylsilyl)trifluroacetamide] (BSTFA). These products were identified by gas chromatography/mass spectrometry (GC-MS) as silylated hydroxybutyric acid (3HB) and hydroxyvaleric acid, suggesting extracellular depolymerase activity by the isolate. The depolymerase was isolated by (NH4)2SO4 fractionation, dialyzed and purified using fast protein liquid chromatography (FPLC), and confirmed using P(3HB-co-3HV) as a sole source of carbon. The molecular mass of the FPLC purified enzyme occurred between 45 and 66 kDa (SDS-PAGE), but was confirmed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to be 62 kDa. Enzyme activity was significantly inhibited by phenylmethylsulfonyl fluoride (PMSF), dithiothreitol (DTT), and Tween 80, but induced by azide (N3−). Sensitivity to PMSF, DTT, and Tween 80 suggests the involvement of serine as an active site amino acid with disulphide bonds contributing to the catalytic activity, as well as the presence of hydrophobic regions in the enzyme. Non-inhibition of activity by azide indicates that metal ions may not be required as cofactors for activity. This observation was further corroborated by the decrease in enzyme activity in the presence of metal ions such as Ca2+, Mg2+, Na+, and K+. The kinetic parameters, Vmax and Km, in the presence of p-nitrophenylbutyrate as substrate, were determined to be 5.06 × 10−1 ??mol min−1 and 6.73 × 10−1 mM, respectively.  相似文献   

5.
Low concentrations of urea and GuHCl (2 M) enhanced the activity of endoglucanase (EC 3.1.2.4) from Aspergillus aculeatus by 2.3- and 1.9-fold, respectively. The Km values for controls, in the presence of 2 M urea and GuHCl, were found to be 2.4 ± 0.2 × 10−8 mol L−1, 1.4 ± 0.2 × 10−8 mol L−1, and 1.6 ± 0.2 × 10−8 mol L−1, respectively. The dissociation constant (Kd) showed changes in the affinity of the enzyme for the substrate with increases in the Kcat suggesting an increased turnover number in the presence of urea and GuHCl. Fluorescence studies showed changes in the microenvironment of the protein. The increase in the activity of this intermediate state was due to conformational changes accompanied by increased flexibility at the active site.  相似文献   

6.
This study reports the synthesis and characterization of a novel nanostructure-based electrode for electrochemical studies and determination of captopril (CP). At first manganese titanate nanoceramics were synthesized by the sol–gel method. The structural evaluations of the pure nanopowders were investigated by different techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Then it was used to prepare a new nanostructured manganese titanate carbon paste electrode (MnTiO3/CPE). The characterization of the modified sensor was carried out by comprehensive techniques such as electrochemical impedance spectroscopy (EIS), SEM, and voltammetry. Subsequently, the modified electrode was used for CP catalytic oxidation in the presence of para-aminobenzoic acid (PABA) as a mediator. The results showed that PABA has high catalytic activity for CP oxidation. The electrochemical behavior of CP was studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHA), and differential pulse voltammetry (DPV) techniques. Under the optimized conditions, the catalytic oxidation peak current of CP showed two linear dynamic concentration ranges of 1.0 × 10−8 to 1.0 × 10−7 and 1.0 × 10−7 to 1.0 × 10−6, with a detection limit of 1.6 nM (signal/noise = 3), using the DPV technique. Finally, the proposed method was successfully applied for determination of CP in pharmaceutical and biological samples.  相似文献   

7.
We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0 × 10−20 to 1.0 × 10−12 M, and the second segment part is in the range of 1.0 × 10−12 to 1.0 × 10−7 M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer.  相似文献   

8.
Techniques utilizing β-glucuronidase (GUS) activity as an indicator of Escherichia coli (E. coli) presence use labeled glucuronides to produce optical signals. Carboxyumbelliferyl-β-d-glucuronide (CUGlcU) is a fluorescent labeled glucuronide that is soluble and highly fluorescent at natural water pHs and temperatures and, therefore, may be an ideal reagent for use in an in situ optical sensor. This paper reports for the first time the Michaelis-Menten kinetic parameters for the binding of E. coli GUS with CUGlcU as Km = 910 μM, Vmax = 41.0 μM min−1, Vmax/Km 45.0 μmol L−1 min−1, the optimal pH as 6.5 ± 1.0, optimal temperature as 38 °C, and the Gibb's free energy of activation as 61.40 kJ mol−1. Additionally, it was found CUGlcU hydrolysis is not significantly affected by heavy solvents suggesting proton transfer and solvent addition that occur during hydrolysis are not limiting steps. Comparison studies were made with the more common fluorescent molecule methylumbelliferyl-β-d-glucuronide (MUGlcU). Experiments showed GUS preferentially binds to MUGlcU in comparison to CUGlcU. CUGlcU was also demonstrated in a prototype optical sensor for the detection of E. coli. Initial bench testing of the sensor produced detection of low concentrations of E. coli (1.00 × 103 CFU/100 mL) in 230 ± 15.1 min and high concentrations (1.05 × 105 CFU/100 mL) in 8.00 ± 1.01 min.  相似文献   

9.
Clusters [MoS4Ag3(PPh3)3{S2P(OPri)2}] (1), [WS4Ag3(PPh3)3{S2P(OPri)2}] (2) and [WOS3Ag3(PPh3)3{S2P(OPri)2}] (3) were synthesized by the reaction of (NH4)2MoS4/(NH4)2WS4, (NH4)2WOS3 with Ag[S2P(OPri)2]. Their structures have been characterized by X-ray diffraction. The clusters consist of a distorted tetrahedral MS4 (or MOS3) (M = Mo, W) with three Ag atoms and three sulfur atom bridges (Fig. 1), and resemble roughly that of cubane-like clusters. The nonlinear optical (NLO) properties were studied with an 8 ns pulsed laser at 532 nm. Its optical response to the incident light exhibits good optical absorptive and refractive effects, with α2 = 1.56 × 10−10 m W−1, n2 = 3.87 × 10−17 m2 W−1 for cluster 1; α2 = 1.33 × 10−10 m W−1n2 = 6.52 × 10−17 m2 W−1for cluster 2; and α2 = 2.54 × 10−10 m W−1, n2 = 4.07 × 10−17 m2 W−1 for cluster 3 for a 1.56 × 10−4 mol dm−3 CH2Cl2 solution.  相似文献   

10.
Our study aimed to test the ability of aquatic plants to use bicarbonate when acclimated to three different bicarbonate concentrations. To this end, we performed experiments with the three species Ceratophyllum demersum, Egeria densa, Lagarosiphon major to determine photosynthetic rates under varying bicarbonate concentrations. We measured bicarbonate use efficiency, photosynthetic performance and respiration. For all species, our results revealed that photosynthetic rates were highest in replicates grown at low alkalinity. Thus, E. densa had approx. five times higher rates at low (264 ± 15 μmol O2 g−1 DW h−1) than at high alkalinity (50 ± 27 μmol O2 g−1 DW h−1), C. demersum had three times higher rates (336 ± 95 and 120 ± 31 μmol O2 g−1 DW h−1), and L. major doubled its rates at low alkalinity (634 ± 114 and 322 ± 119 μmol O2 g−1 DW h−1). Similar results were obtained for bicarbonate use efficiency by E. densa (136 ± 44 and 43 ± 10 μmol O2 mequiv. L−1 g−1 DW h−1) and L. major (244 ± 29 and 82 ± 24 μmol O2 mequiv. L−1 g−1 DW h−1). As to C. demersum, efficiency was high but unaffected by alkalinity, indicating high adaptation ability to varied alkalinities. A pH drift experiment supported these results. Overall, our results suggest that the three globally widespread worldwide species of our study adapt to low inorganic carbon availability by increasing their efficiency of bicarbonate use.  相似文献   

11.
A detailed investigation on the oxidation of aqueous sulfite and aqueous potassium hexacyanoferrate(II) by the title complex ion has been carried out using the stopped-flow technique over the ranges, 0.01≤[S(IV)]T≤0.05 mol dm−3, 4.47≤pH≤5.12, and 24.9≤θ≤37.6 °C and at ionic strength 1.0 mol dm−3 (NaNO3) for aqueous sulfite and 0.01≤[Fe(CN)6 4−]≤0.11 mol dm−3, 4.54≤pH≤5.63, and 25.0≤θ≤35.3 °C and at ionic strength 1.0 or 3.0 mol dm−3 (NaNO3) for the hexacyanoferrate(II) ion. Both redox processes are dependent on pH and reductant concentration in a complex manner, that is, for the reaction with aqueous sulfite, kobs={(k1K1K2K3+k2K1K4[H+])[S(IV)]T]/([H+]2+K1[H+]+K1K2) and for the hexacyanoferrate(II) ion, kobs={(k1K3K4K5+k2K3K6[H+])[Fe(CN)6 4−]T)/([H+]2+K3[H+]+K3K4). At 25.0 °C, the value of k1′ (the composite of k1K3) is 0.77±0.07 mol−1 dm3 s−1, while the value of k2′ (the composite of k2K4) is (3.78±0.17)×10−2 mol−1 dm3 s−1 for aqueous sulfite. For the hexacyanoferrate(II) ion, k1′ (the composite of k1K5) is 1.13±0.01 mol−1 dm3 s−1, while the value of k2′ (the composite of k2K6) is 2.36±0.05 mol−1 dm3 s−1 at 25.0 °C. In both cases there was reduction of the cobalt(III) centre to cobalt(II), but there was no reduction of the molybdenum(VI) centre. k22, the self-exchange rate constant, for aqueous sulfite (as SO3 2−) was calculated to be 5.37×10−12 mol−1 dm3 s−1, while for Fe(CN)6 4−, it was calculated to be 1.10×109 mol−1 dm3 s−1 from the Marcus equations.  相似文献   

12.
The uptake kinetics of phosphate (Pi) by Myriophyllum spicatum was determined from adsorption and absorption under light and dark conditions. Pi uptake was light dependent and showed saturation following the Michaelis-Menten relation (in light: V = 16.91 × [Pi](1.335 + [Pi]), R2 = 0.90, p < 0.001; in the dark: V = 5.13 × [Pi](0.351 + [Pi]), R2 = 0.77, p < 0.001). Around 77% of the loss of Pi in the water column was absorbed into the tissue of M. spicatum, and only 23% was adsorbed on the surface of the plant shoots. Our study shows that M. spicatum shoots have a much higher affinity (in light: 3.9 μmol g−1 dw h−1 μM−1; in the dark: 3.7 μmol g−1 dw h−1 μM−1) and Vmax (maximum uptake rate, shoot light) for Pi uptake than many other aquatic macrophytes (in light: 0.002-0.23 μmol g−1 dw h−1 μM−1; in the dark: 0.002-0.19 μmol g−1 dw h−1 μM−1), which may provide a competitive advantage over other macrophytes across a wide range of Pi concentrations.  相似文献   

13.
A microchip electrophoresis (MCE) method with chemiluminescence (CL) detection was developed for the determination of carnosine-related peptides, including carnosine, homocarnosine, and anserine, in biological samples. A simple integrated MCE-CL system was built to perform the assays. The highly sensitive CL detection was achieved by means of the CL reaction between hydrogen peroxide and N-(4-aminobutyl)-N-ethylisoluminol-tagged peptides in the presence of adenine as a CL enhancer and Co2+ as a catalyst. Experimental conditions for analyte labeling, MCE separation, and CL detection were studied. MCE separation of the above-mentioned three peptides took less than 120 s. Detection limits (signal/noise ratio [S/N] = 3) of 3.0 × 10−8, 2.8 × 10−8, and 3.4 × 10−8 M were obtained for carnosine, anserine, and homocarnosine, respectively. The current MCE-CL method was applied for the determination of carnosine, anserine, and homocarnosine in human cerebrospinal fluid (CSF) and canine plasma. Homocarnosine was detected at the micromolar (μM) level in the CSF samples analyzed, whereas the levels of carnosine and anserine in these samples were below the detection limit of the assay. Interestingly, both carnosine and anserine were detected in the canine plasma samples, whereas homocarnosine was not.  相似文献   

14.
DnaA protein has the sole responsibility of initiating a new round of DNA replication in prokaryotic organisms. It recognizes the origin of DNA replication, and initiates chromosomal DNA replication in the bacterial genome. In Gram-negative Escherichia coli, a large number of DnaA molecules bind to specific DNA sequences (known as DnaA boxes) in the origin of DNA replication, oriC, leading to the activation of the origin. We have cloned, expressed, and purified full-length DnaA protein in large quantity from Gram-positive pathogen Bacillus anthracis (DnaABA). DnaABA was a highly soluble monomeric protein making it amenable to quantitative analysis of its origin recognition mechanisms. DnaABA bound DnaA boxes with widely divergent affinities in sequence and ATP-dependent manner. In the presence of ATP, the KD ranged from 3.8 × 10−8 M for a specific DnaA box sequence to 4.1 × 10−7 M for a non-specific DNA sequence and decreased significantly in the presence of ADP. Thermodynamic analyses of temperature and salt dependence of DNA binding indicated that hydrophobic (entropic) and ionic bonds contributed to the DnaABA·DNA complex formation. DnaABA had a DNA-dependent ATPase activity. DNA sequences acted as positive effectors and modulated the rate (Vmax) of ATP hydrolysis without any significant change in ATP binding affinity.  相似文献   

15.
In this work, we present an electrochemical DNA sensor based on silver nanoparticles/poly(trans-3-(3-pyridyl) acrylic acid) (PPAA)/multiwalled carbon nanotubes with carboxyl groups (MWCNTs-COOH) modified glassy carbon electrode (GCE). The polymer film was electropolymerized onto MWCNTs-COOH modified electrode by cyclic voltammetry (CV), and then silver nanoparticles were electrodeposited on the surface of PPAA/MWCNTs-COOH composite film. Thiol group end single-stranded DNA (HS-ssDNA) probe was easily covalently linked onto the surface of silver nanoparticles through a 5′ thiol linker. The DNA hybridization events were monitored based on the signal of the intercalated adriamycin by differential pulse voltammetry (DPV). Based on the response of adriamycin, only the complementary oligonucleotides gave an obvious current signal compared with the three-base mismatched and noncomplementary oligonucleotides. Under the optimal conditions, the increase of reduction peak current of adriamycin was linear with the logarithm of the concentration of the complementary oligonucleotides from 9.0 × 10−12 to 9.0 × 10−9 M with a detection limit of 3.2 × 10−12 M. In addition, this DNA sensor exhibited an excellent reproducibility and stability during DNA hybridization assay.  相似文献   

16.
In order to examine the effects of coordinated hydroxide ion and free hydroxide ion in configurational conversion of a tetraamine macrocyclic ligand complex, the kinetics of the cis-to-planar interconversion of cis-[Ni(isocyclam)(H2O)2]2+ (isocyclam, 1,4,7,11-tetraazacyclotetradecane) has been studied spectrophotometrically in basic aqueous solution. The interconversion requires the inversion of one sec-NH center of the folded cis-complex to have the planar species. Kinetic data are satisfactorily fitted by the rate law, R = kOH[OH][cis-[Ni(isocyclam)(H2O)2]2+], where kOH = 3.84 × 103 dm3 mol−1 s−1 at 25.0 ± 0.1 °C with I = 0.10 mol dm−3 (NaClO4). The large ΔH, 61.7 ± 3.2 kJ mol−1, and the large positive ΔS, 30.2 ± 10.8 J K−1 mol−1, strongly support a free-base-catalyzed mechanism for the reaction.  相似文献   

17.
A novel capillary electrophoresis (CE) with chemiluminescence (CL) detection method for the determination of mitoxantrone (MTX) has been developed, which based on the CL reaction of potassium ferricyanide with luminol in sodium hydroxide medium sensitized by MTX. Under optimum analytical conditions, MTX is determined over the range of 7.0 × 10−8–1.0 × 10−6 M with a detection limit of 1.0 × 10−8 M. The relative standard deviation (RSD) was 3.7%, 2.6% and 3.0% for 7.0 × 10−8, 5.0 × 10−7 and 1.0 × 10−6 M MTX (n = 11), respectively. In laboratory-built CE–CL apparatus, the proposed method has been applied to determination of MTX in commercial drug and spiked in human urine and plasma with satisfactory results.  相似文献   

18.
The present paper reports the graft copolymerization of N-vinylformamide onto sodium carboxymethylcellulose by free radical polymerization using potassium peroxymonosulphate/thiourea redox system in an inert atmosphere. The reaction conditions for maximum grafting have been optimized by varying the reaction variables, including the concentration of N-vinylformamide (12.0 × 10−2–28.0 × 10−2 mol dm−3), potassium peroxymonosulphate (4.0 × 10−3–12.0 × 10−3 mol dm−3), thiourea (1.2 × 10−3–4.4 × 10−3 mol dm−3), sulphuric acid (2.0 × 10−3–10.0 × 10−3 mol dm−3), sodium carboxymethylcellulose (0.2–1.8 g dm−3) along with time duration (60–180 min) and temperature (25–45° C). Water swelling capacity, metal ion sorption and flocculation studies of synthesized graft copolymer have been performed with respect to the parent polymer. The graft copolymer has been characterized by FTIR spectroscopy and thermogravimetric analysis.  相似文献   

19.
Gamete production after exposure to hypoxia or sulphide was studied in the marine macroalga Ulva sp. collected in the Sacca di Goro, Italy. Experiments were carried out on discs (12 mm diameter) of thalli cultured in artificial sea water in laboratory at 20 ± 1 °C, 152 μmol m−2 s−1, 16 h photoperiod and 30‰ salinity. Dehydration of thallus was used as inducer of gametogenesis and growth and gamete release during recovery after 10, 20, 30 or 40 min dehydration (20 ± 1 °C, 25% humidity) were analysed. Unlike non-dehydrated thalli the dehydrated ones produced gametes. Thallus discs, non-dehydrated or subjected to 30 min dehydration, were exposed to hypoxia (1.78–4.02 μmol O2 L−1) or sulphide (1 mM) for 3, 5, or 7 days at 20 °C in the dark. Non-dehydrated and dehydrated thalli maintained in normoxic conditions in the dark were the controls. Gamete density was checked by counting at the end of the incubation period and during the subsequent 7 days of recovery under 16 h photoperiod in normoxic conditions. Non-dehydrated thalli maintained in normoxic conditions in the dark released gametes when returned to light suggesting that dark constitutes a stimulus to gamete production. The presence of gametes at the end of 3 days incubation of dehydrated thalli in normoxia demonstrated that gametogenesis can occur even in the dark. However, gametes were not present at the end of incubation in hypoxic and sulphidic conditions. Actually, during hypoxic incubation oxygen consumption in D-thalli was very low, only 0.117 × 10−3 μmol O2 mg−1 h−1 compared to 5.93 × 10−3 μmol O2 mg−1 h−1 in normoxia, denoting a reduction of the metabolic rate that could not sustain gametogenesis. During recovery after incubation in normoxic, hypoxic or sulphidic conditions densities of gametes from dehydrated thalli showed significant differences and resulted after hypoxia > after normoxia > after sulphide. Differences in non-dehydrated thalli were not significant. Dehydrated thalli, still green at the end of the incubation period, underwent blanching in the course of recovery in parallel to gamete production, while non-dehydrated thalli maintained their green colour even after exposure to sulphide. Our findings suggest that macroalga Ulva sp. can survive exposure to darkness, severe hypoxia and high sulphide levels and can maintain gamete production even when the exposure to these stress conditions is joined to dehydration.  相似文献   

20.
We demonstrate a novel protocol for sensitive in situ label-free electrochemical detection of DNA hybridization based on copper complex ([Cu(phen)2]2+, where phen = 1,10-phenanthroline) and graphene (GR) modified glassy carbon electrode. Here, [Cu(phen)2]2+ acted advantageously as both the electrochemical indicator and the anchor for probe DNA immobilization via intercalative interactions between the partial double helix structure of probe DNA and the vertical aromatic groups of phen. GR provided large density of docking site for probe DNA immobilization and increased the electrical conductivity ability of the electrode. The modification procedure was monitored by electrochemical impedance spectroscopy (EIS). Square-wave voltammetry (SWV) was used to explore the hybridization events. Under the optimal conditions, the designed electrochemical DNA biosensor could effectively distinguish different mismatch degrees of complementary DNA from one-base mismatch to noncomplementary, indicating that the biosensor had high selectivity. It also exhibited a reasonable linear relationship. The oxidation peak currents of [Cu(phen)2]2+ were linear with the logarithm of the concentrations of complementary target DNA ranging from 1 × 10−12 to 1 × 10−6 M with a detection limit of 1.99 × 10−13 M (signal/noise = 3). Moreover, the stability of the electrochemical DNA biosensor was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号