首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The effects of aluminium concentrations between 0.2 and 30 mM at pH 3.8 ±0.2 on small plants of Norway spruce [(Picea abies (L.) Karst], Scots pine (Pinus sylvestris L.), and Scots pine infected with the ectomycorrhizal fungus Suillus bovinus (L. ex Fr.) O. Kuntze were investigated. The plants were grown at maximum relative growth rate (RG % day–1) with free access but very low external concentrations of nutrients. Steady-state conditions with respect to relative growth rate (RG) and internal nutrient concentrations were achieved before addition of aluminium, which was added as AlCl3 and/or Al(NO3)3. There were reductions in rg at aluminium concentrations of 0.3 mM in spruce, 6 mM in pine and 10 mM in ectomycorrhizal pine, i. e. at aluminium concentrations considerably higher than those normally occurring in the top layer of the mineral soil where most fine roots are found. Nutrient uptake rate per unit root growth rate was calculated for different nutrient elements. The uptake rate of calcium and magnesium was reduced at aluminium concentrations of 0.2 mM (spruce), 1 mM (pine) and 3 mM (ectomycorrhizal pine), without influencing Rg. The results question the validity of the hypothesis of aluminium toxicity to forest tree species at low external concentrations.  相似文献   

2.
In the present study we examine the effects of Al on the uptake of Ca2+ and H2PO-4 in beech (Fagus sylvatica L.) grown in inorganic nutrient solutions and nutrient solutions supplied with natural fulvic acids (FA). All the solutions used were chemically well characterized. The uptake of Al by roots of intact plants exposed to solutions containing 0, 0.15 or 0.3 mM AlCl3 for 24 h, was significantly less if FA (300 mg l−1) were also present in the solutions. The Ca2+(45Ca2+) uptake was less affected by Al in solutions supplied with FA than in solutions without FA. There was a strong negative correlation between the Al and Ca2+ uptake (r2=0.98). When the Al and Ca2+ (45Ca2+) uptake were plotted as a function of the Al3+ activity (or concentration of inorganic mononuclear Al), almost the same response curves were obtained for the -FA and +FA treatments. We conclude that FA-complexed Al was not available for root uptake and therefore could not affect the Ca2+ uptake. The competitive effect of Al on the Ca2+ uptake was also shown in a 5-week cultivation experiment, where the Ca concentration in shoots decreased at an AlCl3 concentration of 0.3 mM. The effect of Al on H2PO4 uptake was more complex. The P content in roots and shoots was not significantly affected, compared with the control, by cultivation for 5 weeks in a solution supplied with 0.3 mM AlCl3, despite a reduction of the H2PO4 concentration in the nutrient solution to about one-tenth. At this concentration Al obviously had a positive effect on H2PO4 uptake. The presence of FA decreased 32P-phosphate uptake by more than 60% during 24 h, and the addition of 0.15 or 0.3 mM AlCl3 to these solutions did not alter the uptake of 32P-phosphate.  相似文献   

3.
Forest die-back and impaired tree vitality have frequently been ascribed to Al-toxicity and Al-induced nutritional disorders due to increased acidification of forest soils. Therefore, in this experiment effects of Al were studied on growth and nutrient uptake with seedlings of five different forest tree species. During growth in culture solutions with and without Al all five species proved to be very Al-tolerant, despite high accumulation of Al in roots. In the coniferous evergreens Douglas-fir and Scots pine shoot as well as root Al concentrations were significantly higher than in the deciduous broad-leaved species oak and birch. Larch showed intermediate Al levels. In none of the five species did Al reduce nutrient concentrations or the Ca/Al ratio to values below the critical level. Besides differences in Al accumulation, coniferous and broad-leaved species also differed with respect to uptake and assimilation of nitrogen. Due to extra NH 4 + uptake, oak and birch showed a much higher N uptake and higher NH 4 + preference than the coniferous species. Especially with oak this high NH 4 + preference in combination with a low specific root surface area resulted in a high root proton efflux density. In comparison to both broad-leaved trees and Scots pine the NO 3 reduction capacity of larch and Douglas-fir was extremely low. This may have important consequences for both species if grown in NO 3 -rich soils.  相似文献   

4.
As competition for the limited water supply available for irrigation of horticultural crops increases, research into crop management practices that enhance drought resistance, plant water-use efficiency and plant growth when water supply is limited has become increasingly essential. This experiment was conducted to determine the effect of potassium (K) nutritional status on the drought resistance of Hibiscus rosa-sinensis L. cv. Leprechaun (Hibiscus). All the treatments were fertilized with Hoagland's nutrient solution, modified to supply K as K2SO4, at 0 mM K (K0), 2.5 mM K (K2.5), and 10 mM K (K10), under two irrigation regimes (drought stressed [DS] and non-drought stressed [non-DS]). Regular irrigation and fertigation were adopted for 54 days, and drought stress treatment (initiated on day 55) lasted for 21 days; while non-DS control plants continued to receive regular irrigation and fertigation. Following the 21-day drought stress period, plants were labeled with 86Rb+ to determine the percentage of post-drought stress live roots. Both K deficiency (K0) and drought stress reduced shoot growth, but drought stress increased root growth and thus the root:shoot ratio. At K0, plants were K-deficient and had the lowest leaf K, Fe, Mn, Zn, Cu, B, Mo and Al, and highest Ca concentrations. Although the percentage of live roots was decreased by drought stress, K2.5 and K10 plants (with similar percent live roots) had greater root survival ratio after drought treatment than the K-deficient plants. These observations indicate that adequate K nutrition can improve drought resistance and root longevity in Hibiscus rosa-sinensis.  相似文献   

5.
Summary In order to determine the effects of concentration on plant growth, aluminium (Al) was extracted (10–3 M CaCl2) from 4 acid brown hill soils which had been treated with superphosphate at rates equivalent to 0 to 300 kg P ha–1. The soils ranged in pH (CaCl2) from 3.5 to 4.9, and Al concentration from 0 to 0.6 mM. The effects of Al on ryegrass growth in the 4 soils in a glasshouse was compared with its effect on radicle elongation of seeds germinated in contact with CaCl2 extracts from the same soils.Ryegrass root growth in the glasshouse, and radicle elongation in the bioassay test were both unaffected by Al concentrations below 0.1 mM. Root growth was substantially reduced when Al concentration exceeded 0.1 mM and above 0.2 mM growth was almost completely inhibited. Radicle elongation rate was also reduced when the concentration of Al was greater than 0.2 mM agreeing well with the observation from the pot experiment.It is concluded that because of its speed and convenience the bioassay method offers a useful method of establishing critical levels of Al for crop plants.  相似文献   

6.
M. A. Topa 《Plant and Soil》1996,182(2):259-265
Short-term 32P uptake experiments were conducted with intact seedlings of loblolly pine (Pinus taeda L.) to examine possible seed source variation in net accumulation of 32P in roots and shoots, and in rates of unidirectional influx. Seed source had a highly significant effect on biomass and P concentrations of shoots and roots. Seedlings from two seed sources representing fast-growing populations (a broadly-adapted and wet-site seed source) accumulated over 60% more total seedling P than smaller seedlings from a drought-hardy seed source, reflecting higher biomass and root P concentrations. Rates of unidirectional 32P influx in seedlings from the drought-hardy seed source were more than twice the rates of the seedlings from the broadly-adapted seed source. However, after 24 h in labeled uptake solution, net accumulation of 32P was similar, suggesting that rates of unidirectional efflux from roots of the drought-hardy seed source were also high. Although there were no significant differences in biomass and tissue P concentrations between the two fast-growing seed sources, rates of unidirectional influx in seedlings from the broadly-adapted seed source were 42% lower than rates in seedlings from the wet-site source. Yet, after 24 h in labeled uptake solution, net accumulation of 32P in seedlings from the broadly-adapted seed source was 50% higher. Unidirectional efflux out of the root may regulate net uptake of P as much, if not more, than influx in loblolly pine seedlings-at least under high-P growth conditions. The results in this study do not support previous studies with herbaceous plants suggesting that fast-growing species typically exhibit higher rates of nutrient uptake than slow-growing species.  相似文献   

7.
Summary Absorption of nitrate and ammonium was studied in water culture experiments with 4 to 6 weeks old plants of barley (Hordeum vulgare L.), buckwheat (Fagopyrum esculentum L. Moench) and rape (Brassica napus L.). The plants were grown in a complete nutrient solution with nitrate (5.7±0.2 mM) or nitrate (5.6±0.2 mM) + ammonium (0.04±0.02 mM). The pH of the nutrient solution was kept at 5.0 using a pH-stat. It was found that phosphorus deficiency reduced the rate of nitrate uptake by 58±3% when nitrate was the sole N source and by 83±1% when both nitrate and ammonium were present. The reduction occurred even before growth was significantly impeded by P deficiency. The inhibition of the uptake of ammonium was less,i.e. ammonium constituted 10±1% of the total N uptake in the P sufficient plants and 30±5% in the P deficient plants. The reduction of nitrate absorption greatly decreased the difference between the uptake of anions and cations. It is suggested that P deficiency reduced the assimilation of NO 3 into the proteins, which might cause a negative feedback on NO 3 influx and/or stimulate NO 3 efflux.  相似文献   

8.
Summary The effects of aluminium (Al3+) at concentrations of 0, 25, 50 and 100 μM on the growth of white clover, dependent upon N supplied as NO 3 , were examined in flowing solution culture. Plants were established with a normal nutrient supply for 7 weeks and then grown with carefully controlled pH (at 4.5) and P concentrations, and with 0, 25, 50 or 100 μM Al3+ for a further three weeks. There were rapid visual effects (i.e. symptoms of P deficiency and reduction in root extension) and the dry weights of shoots and roots were reduced at 50 and 100 μM. Less than 10% of Al absorbed from solution was transported to the shoots. The uptake of P, and its transport between roots and shoots, were reduced in plants grown with Al. The uptake of NO 3 stopped immediately after the introduction of 50 or 100 μM Al, and was significantly reduced at 25 μM after three weeks. During a second phase of the experiment, plants previously grown at 0, 25, 50 and 100 μM Al, were grown for a further 2 weeks either with NO 3 (with and without 50 μM Al3+) or without NO 3 but with inoculation by Rhizobia (and with or without 50 μM Al3+). The effects of the previous treatments with Al on N uptake were small during the second phase, but uptake by all plants was restricted when Al was present. Inoculation did not result in nodulation in the second phase when Al3+ was present in the solution, but Al already in the plant from the first phase did not prevent nodulation in the absence of Al during the second phase.  相似文献   

9.
Chi Lin  Chuan  Huei Kao  Ching 《Plant and Soil》2001,237(1):165-171
The relative importance of endogenous abscisic acid (ABA), as well as Na+ and Cl in NaCl-induced responses related to growth in roots of rice seedlings were investigated. The increase in ammonium, proline and H2O2 levels, and cell wall peroxidase (POD) activity has been shown to be related to NaCl-inhibited root growth of rice seedlings. Increasing concentrations of NaCl from 50 to 150 mM progressively decreased root growth and increased both Na+ and Cl. Treatment with NaCl in the presence of 4,4-diisothiocyano-2,2-disulfonic acid (DIDS, a nonpermeating amino-reactive disulfonic acid known to inhibit the uptake of Cl) had less Cl level in roots than that in the absence of DIDS, but did not affect the levels of Na+, and responses related to growth in roots. Treatment with 50 mM Na-gluconate (the anion of which is not permeable to membrane) had similar Na+ level in roots as that with 100 mM NaCl. It was found that treatment with 50 mM Na-gluconate effected growth reduction and growth-related responses in roots in the same way as 100 mM NaCl. All these results suggest that Cl is not required for NaCl-induced responses in root of rice seedlings. Endogenous ABA level showed no increase in roots of rice seedlings exposed to 150 mM NaCl. It is unlikely that ABA is associated with NaCl-inhibited root growth of rice seedlings.  相似文献   

10.
Deprivation of nitrogen (N) increases assimilate partitioning towards roots at the expense of that to shoots. This study was done to determine the physiological basis of increased root growth of tea (sCammellia sinensis L.) under N shortage. Nine-month-old clonal tea (clone TRI2025) was grown in quartz sand under naturally lit glasshouse conditions. Three levels of N (0, 3.75 and 7.5 mM N) were incorporated in to the nutrient solution and applied daily. Plant growth, photosynthesis, root respiration and plant N contents were measured at 10-day intervals over a 45-day period. Root dry weight showed a sharp increase during the first 15 days after the plants were transferred to 0 mM N, whereas no such increase was shown in plants transferred to 7.5 mM N. In contrast, shoot dry weight increased at 7.5 mM N and was significantly greater than at 0 mM N, where no increase was observed. Due to the above changes, root weight ratio increased and leaf weight ratio decreased during the first 15 days of N deprivation. Leaf photosynthetic rates did not vary between N levels during the initial 15-day period. Thereafter, photosynthetic rates were greater at 7.5 mM and 3.75 mM N than at 0 mM N. Root respiration rate decreased at 0 mM N, whereas it increased at 3.75 and 7.5 mM N, probably because of the greater respiratory cost for nitrate uptake. Root respiratory costs associated with maintenance (R m) and nitrate uptake (R u) were calculated to investigate whether the sharp increase of root growth observed upon nitrogen deprivation was solely due to the reduced respiratory costs for nitrate uptake. The estimated values for R m and R u were 3.241 × 10–4 mol CO2 g–1 (root dry matter) s–1 and 0.64 mol CO2 (mol N)–1, respectively. Calculations showed that decreased respiratory costs for nitrate uptake could not solely account for the significant increase of root biomass upon N deprivation. Therefore, it is concluded that a significant shift in assimilate partitioning towards roots occurs immediately following N deprivation in tea.  相似文献   

11.
Kinetics of net phosphate (Pi) uptake was measured on intact ectomycorrhizal and non‐mycorrhizal Pinus sylvestris seedlings using a semihydroponic cultivation method. The depletion of Pi in a nutrient solution was assessed over a 160–0.2 μM Pi gradient. Growth of the pine seedlings was P limited and measurements were performed 7 and 9 weeks after inoculation. Three ectomycorrhizal fungi were studied: Paxillus involutus, Suillus bovinus and Thelephoraterrestris. Pi uptake was extremely fast in plants colonised by P. involutus. The Pi concentration dropped below 0.2 μM within 4–5 h. In plants colonised with S. bovinus this occurred in 5–6 h and in plants associated with T. terrestris 8 h were needed to run through the whole concentration range. Non‐mycorrhizal plants of similar size and nutrient status decreased Pi to a concentration between 1 and 2 μM in 18 h. Data were curve fitted to a two‐phase Michaelis‐Menten equation. The apparent kinetic constants, Km and Vmax, for the high affinity Pi uptake system of the pine roots could be estimated accurately. Vmax of this system was up to 7 times higher in pines associated with P. involutus than in non‐mycorrhizal seedlings. The intact extraradical mycelium greatly increased the absorption surface area of the roots (Vmax). Non‐mycorrhizal plants had a Km between 7.8 and 16.4 μM Pi. Plants mycorrhizal with P. involutus had Km values between 2.4 and 7.2, plants colonised with S. bovinus had a Km between 5.1 and 12.3, and seedlings associated with T. terrestris had a Km from 4.6 to 10.1 μM Pi. All 3 ectomycorrhizal fungi had a strong impact on the Pi absorption capacity of the pine seedlings. The results also demonstrated that there is substantial heterogeneity in kinetic parameters among the different mycorrhizal root systems.  相似文献   

12.
The effect of amino acids on nitrate transport was studied in Zea mays cell suspension cultures and in Zea mays excised roots. The inclusion of aspartic acid, arginine, glutamine and glycine (15mM total amino acids) in a complete cell-culture media containing 1.0 mM NO3 - strongly inhibited nitrate uptake and the induction of accelerated uptake rates. The nitrate uptake rate increased sharply once solution amino acid levels fell below detection limits. Glutamine alone inhibited induction in the cell suspension culture. Maize seedlings germinated and grown for 7 days in a 15 mM mixture of amino acids also had lower nitrate uptake rates than seedlings grown in 0.5 mM Ca(NO3)2 or 1 mM CaCl2. As amino acids are the end product of nitrate assimilation, the results suggest an end-product feed-back mechanism for the regulation of nitrate uptake.  相似文献   

13.
Summary Soybean (Glycine max L. Merr. cv. Amsoy 71) plants were grown in a greenhouse in a soil very low in plant-available P, and plants were harvested 5 times over a 21-week growth period. Soybeans were inoculated with one of two species of VAM fungi or received daily one of three nutrient solutions of different P concentrations (0.0, 0.2, or 1.0mMP). Until week 9, the dry weights, leaf areas and developmental stage of soybeans inoculated withG. fasciculatum orG. mosseae were similar to the 1.0 or 0.2mMP-treated plants, respectively. Phosphorus concentrations were significantly lower in VAM plants at weeks 6 and 9 as compared to non-VAM soybeans given 1.0mMP, suggesting P input in VAM plants was immediately used for new growth. Total P input for VAM plants was linear over 21 weeks, and the average rate of P uptake for these plants was 0.19mg P d−1. Estimated specific P uptake rates (SPUR) for the mycorrhizae (VAM roots) were twice that of the control (0.0mMP) roots. The calculated SPURs forG. fasciculatum andG. mosseae hyphae were 95 and 120μg P g−1 VAM d−1 respectively, a 4 to 5 fold increase over non-inoculated roots, indicating more attention must be paid to P assimilation by VAM fungi in P-fixing substrates. Contribution from the Western Regional Research Center, USDA-ARS (CRIS No. 5325-20580-003).  相似文献   

14.
Limited data are available on the effects of phosphorus (P) and aluminum (Al) interactions on Citrus spp. growth and photosynthesis. Sour pummelo (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 50, 100, 250 and 500 μM KH2PO4× 0 and 1.2 mM AlCl3· 6H2O. Thereafter, P and Al in roots, stems and leaves, and leaf chlorophyll (Chl), CO2 assimilation, ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) and Chl a fluorescence (OJIP) transients were measured. Under Al stress, P increased root Al, but decreased stem and leaf Al. Shoot growth is more sensitive to Al than root growth, CO2 assimilation and OJIP transients. Al decreased CO2 assimilation, Rubisco activity and Chl content, whereas it increased or did not affect intercellular CO2 concentration. Al affected CO2 assimilation more than Rubisco and Chl under 250 and 500 μM P. Al decreased root, stem and leaf P, leaf maximum quantum yield of primary photochemistry (Fv/Fm) and total performance index (PItot,abs), but increased leaf minimum fluorescence (Fo), relative variable fluorescence at K‐ and I‐steps. P could alleviate Al‐induced increase or decrease for all these parameters. We conclude that P alleviated Al‐induced inhibition of growth and impairment of the whole photosynthetic electron transport chain from photosystem II (PSII) donor side up to the reduction of end acceptors of photosystem I (PSI), thus preventing photosynthesis inhibition through increasing Al immobilization in roots and P level in roots and shoots. Al‐induced impairment of the whole photosynthetic electron transport chain may be associated with growth inhibition.  相似文献   

15.
Schjørring, J. K. and Jensén, P. 1984. Phosphorus nutrition of barley, buckwheat and rape seedlings. I. Influence of seed-borne P and external P levels on growth, P content and 32P/31P-fractionation in shoots and roots. Seedlings of barly (Hordeum vulgare L. cvs Salka and Zita), buckwheat (Fagopyrum esculentum Moench) and rape (Brassica napus L. ssp. napus ev. Line) were grown at 8 or 10 different external P levels in the range 0-2000 μM. Apart from P, the nutrient solutions were complete. In some experiments with barley and rape, 32P-labelled phosphate was used. Root fresh weights of buckwheat and rape decreased when the external P supply exceeded the level required for maximal root development. In all three species, the roots constituted a decreasing proportion of the total plant fresh weight as the external P level increased. The shoot/root fresh weight ratio increased linearly with the P concentration of the roots. The ratio between the P concentration in shoots and roots increased with the P status of the seedlings grown at low to intermediate external P levels, but decreased at higher P levels. The proportion of total seedling-P held in roots consequently reached a minimum value and thereafter increased as the P status of the seedlings increased. This indicates that some control mechanism counteracted the accumulation of harmful P levels in the shoots. 32P-Phosphate uptake by seedlings of barley and rape grown in solutions with 2 μM P overestimated the actual net phosphorus uptake by a factor of 6 to 7, indicating a marked fractionation of 32P and 31P. For seedlings grown in solutions with 25 μM P (barley) or 50 μM (rape) no fractionation occurred. The relative excess of 32P in high P seedlings accumulated in the roots. It is suggested that the fracionation was caused by efflux of low specific activity phosphorus and by diffusion of free phosphate ions across the plasmalemma of the root cells in response to a difference in the concentration gradient between the two P isotopes.  相似文献   

16.
Aluminum-mycorrhizal interactions in the physiology of pitch pine seedlings   总被引:7,自引:0,他引:7  
Aluminum (Al) in the rhizosphere adversely affects plant nutrition and growth. Although many conifer species, and pitch pine (Pinus rigida) in particular, have evolved on acidic soils where soluble Al is often high, controlled environment studies often indicate that Al interferes with seedling growth and nutrient relations. Under normal field conditions, conifer roots grow in a symbiotic relationship with ectomycorrhizal fungi, and this association may modulate the effects of Al on root physiology. To investigate the influence of mycorrhizal infection on Al toxicity, pitch pine seedlings were grown with or without the ectomycorrhizal symbiont Pisolithus tinctorius and were exposed to low levels of Al in sand culture. Aluminum at 50 μM reduced nonmycorrhizal seedling growth and increased foliar Al concentrations, but did not alter photosynthetic gas exchange or other aspects of seedling nutrition. Nonmycorrhizal seedlings exposed to 200 μM Al exhibited decreased growth, increased transpiration rates, decreased water use efficiency, increased foliar Al and Na levels, and reduced foliar P concentrations. Seedlings inoculated with P. tinctorius exhibited unaltered growth, physiological function, and ionic relations when exposed to Al. The fungal symbiont evidently modulated ionic relations in the rhizosphere, reducing Al-P precipitation reactions, Al uptake, and subsequent root and shoot tissue Al exposure.  相似文献   

17.
In the present study, we examined the effects of long- and short-term hypoxia on net uptake and transport of phosphorus to shoots of pond pine (Pinus serotina Michx.), a moderately flood-tolerant southern pine, and the influence aerenchyma formation might have in maintenance of P uptake and transport. Seedlings were grown under aerobic (250 μM O2) or hypoxic (≤50 μM O2) solution conditions for 5.3 weeks in continuously flowing solution culture containing 100 μM P. Intact seedlings were then labeled with 32P for up to 24 h to determine how short- and long-term hypoxic solution conditions affected rates of unidirectional influx and the accumulation of 32P in roots and shoots. Seedlings in the long-term hypoxic treatment were grown for 5.3 weeks in hypoxic solution and also labeled in hypoxic uptake solution. The short-term hypoxic treatments included a 24-h hypoxic pretreatment followed by time in labeled hypoxic uptake solution for seedlings grown under aerobic or hypoxic conditions; in the latter case, diffusion of atmospheric O2 entry into stem and root collar lenticels was blocked, thus removing any influence that aerenchyma formation might have had on enhancing O2 concentrations of root tissue. Although unidirectional influx rates of 32P in roots of seedlings grown under long-term hypoxic conditions were 1.4 times those of aerobically grown seedlings, accumulation of 32P in roots was similar after 24 h in labeled uptake solution. These results suggest that 32P efflux was also higher under hypoxic conditions. Higher shoot/root fresh weight ratios and lower shoot P concentrations in seedlings grown under hypoxic solution conditions suggest that the “shoot P demand” per unit root should be high. Yet accumulation of 32P in shoots was reduced by 50% after 24 h in hypoxic uptake solution. Both short-term hypoxic treatments decreased accumulation of 32P in roots by more than 50%. Short-term hypoxia decreased shoot accumulation in seedlings grown under aerobic and hypoxic conditions by 84 and 50%. respectively. Short- and long-term hypoxic conditions increased the percentage of root 32P in the nucleic acid and chelated-P pools, resulting in a significantly smaller percentage of 32P in the soluble inorganic phosphate (pi) pool, the pool available for transport to the shoot. However, a reduction in pool size or in labeling of the pool available for transport cannot fully account for the large reduction in accumulation of 32P in shoots, particularly in the short-term hypoxic treatment of aerobically grown seedlings. Our results suggest that both influx and transport of 32P to shoots of pond pine seedlings are O2-dependent processes, and that the transport of 32P to shoots may be more sensitive to hypoxic solution conditions than influx at the cortical and epidermal plasmalemma, with aerenchyma formation supporting a substantial amount of both 32P uptake and transport.  相似文献   

18.
Growth of carrot and radish seedlings in nutrient culture was inhibited by pretreatment with three calmodulin inhibitors. There was little selective effect on specific organs, shoots, tap root and fibrous roots over a range of concentrations. Although pretreatment with CaCl2 (0.5 mM) did not affect growth of untreated seedlings, it partially reduced the inhibitory effects of trifluoperazine over the concentration range 0.01–0.05 mM. Trifluoperazine reduced the growth of GA3-treated seedlings but did not overcome the modifying effect of GA3 in favouring shoot/root ratio; ABA exacerbated its inhibitory effect on overall seedling growth and particularly on tap root development.Abbreviations GA3 gibberellic acid - ABA abscisic acid - CaCl2 calcium chloride - GAs gibberellins - Tfp trifluoperazine  相似文献   

19.
Seedlings of barley (Hordeum vulgare L. cvs Salka and Zita), buckwheat (Fagopyrum esculentum Moench) and rape (Brassica napus L. ssp. napus cv. Line) were grown in complete nutrient solutions with 8 or 10 different P concentrations in the range of 0–2 mM. Phosphate export from roots to shoots was determined from the amount of 32P (or 33P) absorbed and exported to shoots in 1 h from a nutrient solution containing 0.1 mM radiolabelled phosphate. P export was also determined in the presence of a metabolic uncoupler (DNP, 2.4-dinitrophenol) and a protein synthesis inhibitor (CH, cycloheximide). Phosphorus export from roots to shoots reached a maximum at a certain optimum level of phosphorus in shoots and roots, and decreased at both higher and lower P levels. Maxinmm P export was 1.7 ± 0.2 and 4.5 ± 0.5 (mean ±se of the three species) times higher than the P export at the lowest and highest [P]root, respectively. Hill plots as well as plots of the untransformed decreasing P export vs root or shoot P concentrations above the optimum were linear and had high correlation coefficients. The Hill coefficient (nH) based on [P]root, was —7.7 for barley cv. Salka and varied between -3.8 and -4.5 for the other species. Based on [P]shootot nH was—16.1 for barley cv. Salka, -3.7 for barley cv. Zita and -6.4 for the two dicotyledonous species. Relative to the amount of P simultaneously absorbed by the root system, the import of P per unit shoot weight decreased linearly over the whole range of shoot P concentrations in the dicotyledonous species. In contrast, the relative import of P per unit shoot weight of the two barley cultivars increased at low levels of [P]shoot and decreased at higher levels. DNP and CH almost eliminated P export from roots to shoots of seedlings with low or high P status. In seedlings with medium P status only 60 to 75% of the P export was affected.  相似文献   

20.
Possible Involvement of Cytokinin in Nitrate-mediated Root Growth in Maize   总被引:1,自引:1,他引:0  
Response of root system architecture to nutrient availability in soils is an essential way for plants to adapt to soil environments. Nitrate can affect root development either as a result of changes in the external concentration, or through changes in the internal nutrient status of the plant. Nevertheless, less is known about the physiological mechanisms. In the present study, two maize (Zea mays L.) inbred lines (478 and Wu312) were used to study a possible role of cytokinin in nitrate-mediated root growth in nutrient solutions. Root elongation of 478 was more sensitive to high nitrate supply than that of Wu312. Medium high nitrate (5 mM) inhibited root elongation in 478, while, root elongation in Wu312 was only inhibited at high NO 3 supply (20 mM). Under high nitrate supply, the root elongation zone in 478 became swollen and the site of lateral root elongation was close towards the root tip. Both of the phenomena are typical of root growth induced by exogenous cytokinin treatments. Correspondingly, zeatin and zeatin nucleotide (Z + ZR) concentrations were increased at higher nitrate supply in 478, whereas they were constant in Wu312. Furthermore, exogenous cytokinin 6-benzylaminopurine (6-BA) completely reversed the stimulatory effect of low nitrate on root elongation. Therefore, it is supposed that the inhibitory effect of high concentration of nitrate on root elongation is, at least in part, mediated by increased cytokinin level in roots. High nitrate supply may have negative influences on root apex activity by affecting cytokinin metabolism so that root apical dominance is weakened and, therefore, root elongation is suppressed and lateral roots grow closer to the root apex. Nitrate suppressed lateral root elongation in Wu312 at concentration higher than 5 mM. In 478, however, this phenomenon was not significant even at 20 mM nitrate. Although exogenous 6-BA (20 nM) could suppress lateral root elongation as well, the inhibitory effect of high NO 3 concentration of nitrate on lateral root growth cannot be explained by changes in endogenous cytokinin alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号