首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been broad acceptance among evolutionary biologists of the Ecdysozoa hypothesis that, based principally on molecular phylogenetic studies of small and large subunit ribosomal RNA sequences, postulates a close relationship between molting taxa such as arthropods and nematodes. On the other hand, recent studies of as many as 100 additional genes do not support the Ecdysozoa hypothesis and instead favor the older Coelomata hypothesis that groups the coelomate arthropods with the coelomate vertebrates to the exclusion of the nematodes. Here, exploiting completely sequenced genomes, we examined this question using cladistic analyses of the phylogenetic distribution of 1712 orthologous genes and 2906 protein domain combinations; we found stronger support for the Coelomata hypothesis than for the Ecdysozoa hypothesis. However, although arrived at by considering very large data sets, we show that this conclusion is unreliable, biased toward grouping arthropods with chordates by systematic high rate of character loss in the nematode. When we addressed this problem, we found slightly more support for Ecdysozoa than for Coelomata. Our identification of this systematic bias even when using entire genomes has important implications for future phylogenetic studies. We conclude that the results from the intensively sampled ribosomal RNA genes supporting the Ecdysozoa hypothesis provide the most credible current estimates of metazoan phylogeny.  相似文献   

2.
Long-branch attraction is a well-known source of systematic error that can mislead phylogenetic methods; it is frequently invoked post hoc, upon recovering a different tree from the one expected based on prior evidence. We demonstrate that methods that do not force the data onto a single tree, such as spectral analysis, Neighbor-Net, and consensus networks, can be used to detect conflicting signals within the data, including those caused by long-branch attraction. We illustrate this approach using a set of taxa from three unambiguously monophyletic families within the Pelecaniformes: the darters, the cormorants and shags, and the gannets and boobies. These three families are universally acknowledged as forming a monophyletic group, but the relationship between the families remains contentious. Using sequence data from three mitochondrial genes (12S, ATPase 6, and ATPase 8) we demonstrate that the relationship between these three families is difficult to resolve because they are separated by a short internal branch and there are conflicting signals due to long-branch attraction, which are confounded with nonhomogeneous sequence evolution across the different genes. Spectral analysis, Neighbor-Net, and consensus networks reveal conflicting signals regarding the placement of one of the darters, with support found for darter monophyly, but also support for a conflicting grouping with the outgroup, pelicans. Furthermore, parsimony and maximum-likelihood analyses produced different trees, with one of the two most parsimonious trees not supporting the monophyly of the darters. Monte Carlo simulations, however, were not sensitive enough to reveal long-branch attraction unless the branches are longer than those actually observed. These results indicate that spectral analysis, Neighbor-Net, and consensus networks offer a powerful approach to detecting and understanding the source of conflicting signals within phylogenetic data.  相似文献   

3.
Recent phylogenetic analyses of a large dataset for mammalian families (169 taxa, 26 loci) portray contrasting results. Supermatrix (concatenation) methods support a generally robust tree with only a few inconsistently resolved polytomies, whereas MP‐EST coalescence analysis of the same dataset yields a weakly supported tree that conflicts with many traditionally recognized clades. Here, we evaluate this discrepancy via improved coalescence analyses with reference to the rich history of phylogenetic studies on mammals. This integration clearly demonstrates that both supermatrix and coalescence analyses of just 26 loci yield a congruent, well‐supported phylogenetic hypothesis for Mammalia. Discrepancies between published studies are explained by implementation of overly simple DNA substitution models, inadequate tree‐search routines and limitations of the MP‐EST method. We develop a simple measure, partitioned coalescence support (PCS), which summarizes the distribution of support and conflict among gene trees for a given clade. Extremely high PCS scores for outlier gene trees at two nodes in the mammalian tree indicate a troubling bias in the MP‐EST method. We conclude that in this age of phylogenomics, a solid understanding of systematics fundamentals, choice of valid methodology and a broad knowledge of a clade's taxonomic history are still required to yield coherent phylogenetic inferences.  相似文献   

4.
Over 3000 microbial (bacterial and archaeal) genomes have been made publically available to date, providing an unprecedented opportunity to examine evolutionary genomic trends and offering valuable reference data for a variety of other studies such as metagenomics. The utility of these genome sequences is greatly enhanced when we have an understanding of how they are phylogenetically related to each other. Therefore, we here describe our efforts to reconstruct the phylogeny of all available bacterial and archaeal genomes. We identified 24, single-copy, ubiquitous genes suitable for this phylogenetic analysis. We used two approaches to combine the data for the 24 genes. First, we concatenated alignments of all genes into a single alignment from which a Maximum Likelihood (ML) tree was inferred using RAxML. Second, we used a relatively new approach to combining gene data, Bayesian Concordance Analysis (BCA), as implemented in the BUCKy software, in which the results of 24 single-gene phylogenetic analyses are used to generate a “primary concordance” tree. A comparison of the concatenated ML tree and the primary concordance (BUCKy) tree reveals that the two approaches give similar results, relative to a phylogenetic tree inferred from the 16S rRNA gene. After comparing the results and the methods used, we conclude that the current best approach for generating a single phylogenetic tree, suitable for use as a reference phylogeny for comparative analyses, is to perform a maximum likelihood analysis of a concatenated alignment of conserved, single-copy genes.  相似文献   

5.
6.
Many authors have claimed that short branches in the Tree of Life will be very difficult to resolve with strong support, even with the large multilocus data sets now made possible by genomic resources. Short branches may be especially problematic because the underlying gene trees are expected to have discordant phylogenetic histories when the time between branching events is very short. Although there are many examples of short branches that are difficult to resolve, surprisingly, no empirical studies have systematically examined the relationships between branch lengths, branch support, and congruence among genes. Here, we examine these fundamental relationships quantitatively using a data set of 20 nuclear loci for 50 species of snakes (representing most traditionally recognized families). A combined maximum likelihood analysis of the 20 loci gives strong support for 69% of the nodes, but many remain weakly supported, with bootstrap values for 20% ranging from 21% to 66%. For the combined-data tree, we find significant correlations between the length of a branch, levels of bootstrap support, and the proportion of genes that are congruent with that branch in the separate analyses of each gene. We also find that strongly supported conflicts between gene trees over the resolution of individual branches are common (roughly 35% of clades), especially for shorter branches. Overall, our results support the hypothesis that short branches may be very difficult to confidently resolve, even with large, multilocus data sets. Nevertheless, our study provides strong support for many clades, including several that were controversial or poorly resolved in previous studies of snake phylogeny.  相似文献   

7.
We present the first genomic-scale analysis addressing the phylogenetic position of turtles, using over 1000 loci from representatives of all major reptile lineages including tuatara. Previously, studies of morphological traits positioned turtles either at the base of the reptile tree or with lizards, snakes and tuatara (lepidosaurs), whereas molecular analyses typically allied turtles with crocodiles and birds (archosaurs). A recent analysis of shared microRNA families found that turtles are more closely related to lepidosaurs. To test this hypothesis with data from many single-copy nuclear loci dispersed throughout the genome, we used sequence capture, high-throughput sequencing and published genomes to obtain sequences from 1145 ultraconserved elements (UCEs) and their variable flanking DNA. The resulting phylogeny provides overwhelming support for the hypothesis that turtles evolved from a common ancestor of birds and crocodilians, rejecting the hypothesized relationship between turtles and lepidosaurs.  相似文献   

8.
In decay analyses the support for a particular split in most-parsimonious trees is its decay index, that is, the extra steps required of the shortest trees that do not include the split. By focusing solely on the support for splits, traditional decay analysis may provide an incomplete and potentially misleading summary of the support for phylogenetic relationships common to the most-parsimonious tree or trees. Here, we introduce double decay analysis, a new approach to assessing support for phylogenetic relationships. Double decay analysis is the determination of the decay indices of all n-taxon statements/partitions common to the most-parsimonious tree. The results of double decay analyses are presented in a partition table, but various approaches to graphical representation of the results, including the use of reduced consensus support trees, are also discussed. Double decay analysis provides a more comprehensive summary and facilitates a better understanding of the strengths and weaknesses of complex phylogenetic hypotheses than does traditional decay analysis. The limitations of traditional decay analyses and the utility of double decay analyses are illustrated with both contrived data and real data for sauropod dinosaurs.  相似文献   

9.
The Cracidae is one of the most endangered and distinctive bird families in the Neotropics, yet the higher relationships among taxa remain uncertain. The molecular phylogeny of its 11 genera was inferred using 10,678 analyzable sites (5,412 from seven different mitochondrial segments and 5,266 sites from four nuclear genes). We performed combinability tests to check conflicts in phylogenetic signals of separate genes and genomes. Phylogenetic analysis showed that the unrooted tree of ((curassows, horned guan) (guans, chachalacas)) was favored by most data partitions and that different data partitions provided support for different parts of the tree. In particular, the concatenated mitochondrial DNA (mtDNA) genes resolved shallower nodes, whereas the combined nuclear sequences resolved the basal connections among the major clades of curassows, horned guan, chachalacas, and guans. Therefore, we decided that for the Cracidae all data should be combined for phylogenetic analysis. Maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses of this large data set produced similar trees. The MP tree indicated that guans are the sister group to (horned guan, (curassows, chachalacas)), whereas the ML and Bayesian analysis recovered a tree where the horned guan is a sister clade to curassows, and these two clades had the chachalacas as a sister group. Parametric bootstrapping showed that alternative trees previously proposed for the cracid genera are significantly less likely than our estimate of their relationships. A likelihood ratio test of the hypothesis of a molecular clock for cracid mtDNA sequences using the optimal ML topology did not reject rate constancy of substitutions through time. We estimated cracids to have originated between 64 and 90 million years ago (MYA), with a mean estimate of 76 MYA. Diversification of the genera occurred approximately 41-3 MYA, corresponding with periods of global climate change and other Earth history events that likely promoted divergences of higher level taxa.  相似文献   

10.
11.
The application of phylogenetic inference methods, to data for a set of independent genes sampled randomly throughout the genome, often results in substantial incongruence in the single-gene phylogenetic estimates. Among the processes known to produce discord between single-gene phylogenies, two of the best studied in a phylogenetic context are hybridization and incomplete lineage sorting. Much recent attention has focused on the development of methods for estimating species phylogenies in the presence of incomplete lineage sorting, but phylogenetic models that allow for hybridization have been more limited. Here we propose a model that allows incongruence in single-gene phylogenies to be due to both hybridization and incomplete lineage sorting, with the goal of determining the contribution of hybridization to observed gene tree incongruence in the presence of incomplete lineage sorting. Using our model, we propose methods for estimating the extent of the role of hybridization in both a likelihood and a Bayesian framework. The performance of our methods is examined using both simulated and empirical data.  相似文献   

12.
Animals produce a wide array of sounds with highly variable acoustic structures. It is possible to understand the causes and consequences of this variation across taxa with phylogenetic comparative analyses. Acoustic and evolutionary analyses are rapidly increasing in sophistication such that choosing appropriate acoustic and evolutionary approaches is increasingly difficult. However, the correct choice of analysis can have profound effects on output and evolutionary inferences. Here, we identify and address some of the challenges for this growing field by providing a roadmap for quantifying and comparing sound in a phylogenetic context for researchers with a broad range of scientific backgrounds. Sound, as a continuous, multidimensional trait can be particularly challenging to measure because it can be hard to identify variables that can be compared across taxa and it is also no small feat to process and analyse the resulting high-dimensional acoustic data using approaches that are appropriate for subsequent evolutionary analysis. Additionally, terminological inconsistencies and the role of learning in the development of acoustic traits need to be considered. Phylogenetic comparative analyses also have their own sets of caveats to consider. We provide a set of recommendations for delimiting acoustic signals into discrete, comparable acoustic units. We also present a three-stage workflow for extracting relevant acoustic data, including options for multivariate analyses and dimensionality reduction that is compatible with phylogenetic comparative analysis. We then summarize available phylogenetic comparative approaches and how they have been used in comparative bioacoustics, and address the limitations of comparative analyses with behavioural data. Lastly, we recommend how to apply these methods to acoustic data across a range of study systems. In this way, we provide an integrated framework to aid in quantitative analysis of cross-taxa variation in animal sounds for comparative phylogenetic analysis. In addition, we advocate the standardization of acoustic terminology across disciplines and taxa, adoption of automated methods for acoustic feature extraction, and establishment of strong data archival practices for acoustic recordings and data analyses. Combining such practices with our proposed workflow will greatly advance the reproducibility, biological interpretation, and longevity of comparative bioacoustic studies.  相似文献   

13.
The Channichthyidae is a lineage of 16 species in the Notothenioidei, a clade of fishes that dominate Antarctic near-shore marine ecosystems with respect to both diversity and biomass. Among four published studies investigating channichthyid phylogeny, no two have produced the same tree topology, and no published study has investigated the degree of phylogenetic incongruence between existing molecular and morphological datasets. In this investigation we present an analysis of channichthyid phylogeny using complete gene sequences from two mitochondrial genes (ND2 and 16S) sampled from all recognized species in the clade. In addition, we have scored all 58 unique morphological characters used in three previous analyses of channichthyid phylogenetic relationships. Data partitions were analyzed separately to assess the amount of phylogenetic resolution provided by each dataset, and phylogenetic incongruence among data partitions was investigated using incongruence length difference (ILD) tests. We utilized a parsimony-based version of the Shimodaira-Hasegawa test to determine if alternative tree topologies are significantly different from trees resulting from maximum parsimony analysis of the combined partition dataset. Our results demonstrate that the greatest phylogenetic resolution is achieved when all molecular and morphological data partitions are combined into a single maximum parsimony analysis. Also, marginal to insignificant incongruence was detected among data partitions using the ILD. Maximum parsimony analysis of all data partitions combined results in a single tree, and is a unique hypothesis of phylogenetic relationships in the Channichthyidae. In particular, this hypothesis resolves the phylogenetic relationships of at least two species (Channichthys rhinoceratus and Chaenocephalus aceratus), for which there was no consensus among the previous phylogenetic hypotheses. The combined data partition dataset provides substantial statistical power to discriminate among alternative hypotheses of channichthyid relationships. These findings suggest the optimal strategy for investigating the phylogenetic relationships of channichthyids is one that uses all available phylogenetic data in analyses of combined data partitions.  相似文献   

14.
Recent advances in resolving the tree of eukaryotes are converging on a model composed of a few large hypothetical 'supergroups', each comprising a diversity of primarily microbial eukaryotes (protists, or protozoa and algae). The process of resolving the tree involves the synthesis of many kinds of data, including single-gene trees, multigene analyses, and other kinds of molecular and structural characters. Here, we review the recent progress in assembling the tree of eukaryotes, describing the major evidence for each supergroup, and where gaps in our knowledge remain. We also consider other factors emerging from phylogenetic analyses and comparative genomics, in particular lateral gene transfer, and whether such factors confound our understanding of the eukaryotic tree.  相似文献   

15.
Two leucine tRNAs from the cyanophyte Anacystis nidulans have been isolated, and their complete nucleotide sequences have been determined by combining data from oligonucleotide fingerprints and sequencing gels. The two sequences are 87 nucleotides long, have the anticodons CAA and CAG, and differ from each other at a total of 28 positions. They have been compared to other known tRNA Leu sequences and incorporated into a phylogenetic tree comprising prokaryotic and chloroplastic tRNA Leu sequences. Mutations inferred from the tree show that some parts of the tRNA molecule are highly variable (the extra arm and the acceptor stem) while others are much more conserved (the D and T arms). The topology of the tree supports the idea that blue-green algae and chloroplasts share a common prokaryotic ancestor and show a basic divergence between XAA and XAG anticodon-containing tRNAs, suggesting that these two subfamilies result from an ancient gene duplication. Finally, comparison of this phylogenetic tree with those of other multi-isoacceptor tRNA families shows no common scheme, which may be due to independent refinement of codon-reading patterns in different tRNA families.  相似文献   

16.
Insertion and deletion events (indels) provide a suite of markers with enormous potential for molecular phylogenetics. Using many more indel characters than those in previous studies, we here for the first time address the impact of indel inclusion on the phylogenetic inferences of Arctoidea (Mammalia: Carnivora). Based on 6843 indel characters from 22 nuclear intron loci of 16 species of Arctoidea, our analyses demonstrate that when the indels were not taken into consideration, the monophyly of Ursidae and Pinnipedia tree and the monophyly of Pinnipedia and Musteloidea tree were both recovered, whereas inclusion of indels by using three different indel coding schemes give identical phylogenetic tree topologies supporting the monophyly of Ursidae and Pinnipedia. Our work brings new perspectives on the previously controversial placements among Arctoidea families, and provides another example demonstrating the importance of identifying and incorporating indels in the phylogenetic analyses of introns. In addition, comparison of indel incorporation methods revealed that the three indel coding methods are all advantageous over treating indels as missing data, given that incorporating indels produces consistent results across methods. This is the first report of the impact of different indel coding schemes on phylogenetic reconstruction at the family level in Carnivora, which indicates that indels should be taken into account in the future phylogenetic analyses.  相似文献   

17.
The molecular relationship of placental mammals has attracted great interest in recent years. However, 2 crucial and conflicting hypotheses remain, one with respect to the position of the root of the eutherian tree and the other the relationship between the orders Rodentia, Lagomorpha (rabbits, hares), and Primates. Although most mitochondrial (mt) analyses have suggested that rodents have a basal position in the eutherian tree, some nuclear data in combination with mt-rRNA genes have placed the root on the so-called African clade or on a branch that includes this clade and the Xenarthra (e.g., anteater and armadillo). In order to generate a new and independent set of molecular data for phylogenetic analysis, we have established cDNA sequences from different tissues of various mammalian species. With this in mind, we have identified and sequenced 8 housekeeping genes with moderately fast rate of evolution from 22 placental mammals, representing 11 orders. In order to determine the root of the eutherian tree, the same genes were also sequenced for 3 marsupial species, which were used as outgroup. Inconsistent with the analyses of nuclear + mt-rRNA gene data, the current data set did not favor a basal position of the African clade or Xenarthra in the eutherian tree. Similarly, by joining rodents and lagomorphs on the same basal branch (Glires hypothesis), the data set is also inconsistent with the tree commonly favored in mtDNA analyses. The analyses of the currently established sequences have helped examination of problematic parts in the eutherian tree at the same time as they caution against suggestions that have claimed that basal eutherian relationships have been conclusively settled.  相似文献   

18.
The evolution of the Ecdysozoa   总被引:2,自引:0,他引:2  
Ecdysozoa is a clade composed of eight phyla: the arthropods, tardigrades and onychophorans that share segmentation and appendages and the nematodes, nematomorphs, priapulids, kinorhynchs and loriciferans, which are worms with an anterior proboscis or introvert. Ecdysozoa contains the vast majority of animal species and there is a great diversity of body plans among both living and fossil members. The monophyly of the clade has been called into question by some workers based on analyses of whole genome datasets. We review the evidence that now conclusively supports the unique origin of these phyla. Relationships within Ecdysozoa are also controversial and we discuss the molecular and morphological evidence for a number of monophyletic groups within this superphylum.  相似文献   

19.
Placement of the mitochondrial branch on the tree of life has been problematic. Sparse sampling, the uncertainty of how lateral gene transfer might overwrite phylogenetic signals, and the uncertainty of phylogenetic inference have all contributed to the issue. Here we address this issue using a supertree approach and completed genomic sequences. We first determine that a sensible alpha-proteobacterial phylogenetic tree exists and that it can confidently be inferred using orthologous genes. We show that congruence across these orthologous gene trees is significantly better than might be expected by random chance. There is some evidence of horizontal gene transfer within the alpha-proteobacteria, but it appears to be restricted to a minority of genes ( approximately 23%) most of whom ( approximately 74%) can be categorized as operational. This means that placement of the mitochondrion should not be excessively hampered by interspecies gene transfer. We then show that there is a consistently strong signal for placement of the mitochondrion on this tree and that this placement is relatively insensitive to methodological approach or data set. A concatenated alignment was created consisting of 15 mitochondrion-encoded proteins that are unlikely to have undergone any lateral gene transfer in the timeline under consideration. This alignment infers that the sister group of the mitochondria, for the taxa that have been sampled, is the order Rickettsiales.  相似文献   

20.
Kozak et al. (2015, Syst. Biol., 64: 505) portrayed the inference of evolutionary history among Heliconius and allied butterfly genera as a particularly difficult problem for systematics due to prevalent gene conflict caused by interspecific reticulation. To control for this, Kozak et al. conducted a series of multispecies coalescent phylogenetic analyses that they claimed revealed pervasive conflict among markers, but ultimately chose as their preferred hypothesis a phylogenetic tree generated by the traditional supermatrix approach. Intrigued by this seemingly contradictory set of conclusions, we conducted further analyses focusing on two prevalent aspects of the data set: missing data and the uneven contribution of phylogenetic signal among markers. Here, we demonstrate that Kozak et al. overstated their findings of reticulation and that evidence of gene‐tree conflict is largely lacking. The distribution of intrinsic homoplasy and incongruence homoplasy in their data set does not follow the pattern expected if phylogenetic history had been obscured by pervasive horizontal gene flow; in fact, noise within individual gene partitions is ten times higher than the incongruence among gene partitions. We show that the patterns explained by Kozak et al. as a result of reticulation can be accounted for by missing data and homoplasy. We also find that although the preferred topology is resilient to missing data, measures of support are sensitive to, and strongly eroded by too many empty cells in the data matrix. Perhaps more importantly, we show that when some taxa are missing almost all characters, adding more genes to the data set provides little or no increase in support for the tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号