首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hfq protein mediates gene regulation by small RNAs (sRNAs) in about 50% of all bacteria. Depending on the species, phenotypic defects of an hfq mutant range from mild to severe. Here, we document that the purified Hfq protein of the plant pathogen and natural genetic engineer Agrobacterium tumefaciens binds to the previously described sRNA AbcR1 and its target mRNA atu2422, which codes for the substrate binding protein of an ABC transporter taking up proline and γ-aminobutyric acid (GABA). Several other ABC transporter components were overproduced in an hfq mutant compared to their levels in the parental strain, suggesting that Hfq plays a major role in controlling the uptake systems and metabolic versatility of A. tumefaciens. The hfq mutant showed delayed growth, altered cell morphology, and reduced motility. Although the DNA-transferring type IV secretion system was produced, tumor formation by the mutant strain was attenuated, demonstrating an important contribution of Hfq to plant transformation by A. tumefaciens.  相似文献   

2.
The pattern of proteins produced by bacteria represents the physiological state of the organism as well as the environmental conditions encountered. Environmental stress induces the expression of several regulons encoding stress proteins. Extensive information about the proteins which constitute these regulons (or stimulons) and their control is available for very few bacteria, such as the Gram-positive Bacillus subtilis and the Gram-negative Escherichia coli (gamma-proteobacteria) and is minimal for all other bacteria. Agrobacterium tumefaciens is a Gram-negative plant pathogen of the alpha-proteobacteria, which constitutes the main tool for plant recombinant genetics. Our previous studies on the control of chaperone-coding operons indicated that A. tumefaciens has unique features and combines regulatory elements from both B. subtilis and E. coli. Therefore, we examined the patterns of proteins induced in A. tumefaciens by environmental changes using two-dimensional gel electrophoresis and dual-channel image analysis. Shifts to high temperature, oxidative and mild acid stresses stimulated the expression of 97 proteins. The results indicate that most of these stress-induced proteins (80/97) were specific to one stress stimulon. Only 10 proteins appear to belong to a general stress regulon.  相似文献   

3.
4.
Most plant pathogenic bacteria adopt the type III secretion systems to secrete virulence factors and/or avirulence gene products, which trigger the plant hypersensitive response (HR) and the oxidative burst with hydrogen peroxide (H2O2) as the main component. However, the soil-borne plant pathogen Agrobacterium tumefaciens uses the type IV secretion pathway to deliver its oncogenic T-DNA that causes crown gall tumours on many plant species. A. tumefaciens does not elicit a typical HR on those plants. Here, we report that inactivation of one of A. tumefaciens catalases (which converts H2O2 to H2O and O2) by a transposon insertion highly attenuated the bacterial ability to cause tumours on plants and to tolerate H2O2 toxicity, but not the bacterial viability in the absence of exogenous H2O2. This provides the first genetic evidence that the Agrobacterium-plant interaction involves a plant defence response, such as H2O2 production, and that catalase is a virulence factor for a plant pathogen.  相似文献   

5.
6.
When Agrobacterium tumefaciens cells grown in the presence of tritiated thymidine to label specifically the bacterial deoxyribonucleic acid (DNA) are incubated with carrot root tissue for short periods of time, an appreciable fraction of the label becomes firmly associated with the root tissue. Such association is not observed in identical experiments when A. tumefaciens cell ribonucleic acid or protein are labeled. The extent of the retention of thymidine-derived label from bacterial cells by the root tissue in experiments with A. radiobacter and poorly tumorigenic strains of A. tumefaciens is significantly less than that afforded by tumorigenic strains of A. tumefaciens but greater than the level afforded by Escherichia coli. Transfer of DNA-specific label from A. tumefaciens to carrot root discs is not enhanced by treatments designed to provoke lysis of the bacterial cells, nor is it decreased by addition of deoxyribonuclease or excess unlabeled thymidine to the incubation medium. Bacterial cell-to-plant cell contact is necessary for transfer. Unlabeled A. radiobacter cells decrease in a competitive manner transfer of label when mixed with labeled A. tumefaciens cells. These findings suggest that transfer of DNA from A. tumefaciens to plant tissue after binding of the bacterial cells to specific plant tissue site(s) is a necessary feature of the mechanism by which A. tumefaciens provokes tumors in plants and provides an experimental technique of potentially great value in study of the early steps in the process of tumor induction by A. tumefaciens.  相似文献   

7.
We constructed a cosmid vector, pOCA18, designed for transferring plant genomic libraries from Agrobacterium tumefaciens to plants. Clones from a genomic library of Arabidopsis thaliana DNA in pOCA 18 were propagated stably in both Escherichia coli and A. tumefaciens. Clones from the pOCA18 A. thaliana library were used to construct transgenic Nicotiana tabacum plants; the DNA inserts were transferred intact in 10 out of 16 transgenic N. tabacum plants examined but were partially deleted in six others. Transgenic N. tabacum plants constructed with a mutant A. thaliana acetohydroxy acid synthase gene (from the pOCA18 library) that encodes an enzyme resistant to the herbicide chlorsulfuron were resistant to chlorsulfuron. A statistical analysis indicated that if the A. thaliana library contains 10(7) members and if 10(7) A. tumefaciens transconjugants containing the library were used to transform plant cells, then 2 x 10(4) transformed plant cells must be generated to have a 95% probability of constructing a transgenic plant carrying a specific DNA sequence from the A. thaliana library.  相似文献   

8.
In addition to the well-known roles of indoleacetic acid and cytokinin in crown gall formation, the plant hormone ethylene also plays an important role in this process. Many plant growth-promoting bacteria (PGPB) encode the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which can degrade ACC, the immediate precursor of ethylene in plants, to alpha-ketobutyrate and ammonia and thereby lower plant ethylene levels. To study the effect of ACC deaminase on crown gall development, an ACC deaminase gene from the PGPB Pseudomonas putida UW4 was introduced into Agrobacterium tumefaciens C58, so that the effect of ACC deaminase activity on tumour formation in tomato and castor bean plants could be assessed. Plants were also coinoculated with A. tumefaciens C58 and P. putida UW4 or P. putida UW4-acdS- (an ACC deaminase minus mutant strain). In both types of experiments, it was observed that the presence of ACC deaminase generally inhibited tumour development on both tomato and castor bean plants.  相似文献   

9.
A general, reliable conjugation system for Agrobacterium tumefaciens in the absence of plant tissue is described in which A. tumefaciens can serve either as the donor or recipient of plasmid deoxyribonucleic acid with reasonable efficiency. Plasmid RP4 was transferred from Escherichia coli to A. tumefaciens and from strain of A. tumefaciens. Both RP4 and the A. tumefaciens virulence-associated plasmids were detected by alkaline sucrose gradients in A. tumefaciens strains A6 and C58 after mating with E. coli J53(RP4). The pathogenicity (tumor foramtion) of strains A6 and C58 and the sensitivity of strain C58 to bacteriocin 84 were unaffected by the acquistion of RP4 by the Agrobacterium strains. Plasmid R1drd-19 was not transferred to A. tumefaciens. Transformation experiments with plasmid deoxyribonucleic acid were unsuccessful, even though, in the case of RP4, conjugation studies showed taht the deoxyribonucleic acid was compatible with that of the recipient strains.  相似文献   

10.
We tagged Agrobacterium tumefaciens cells with a mini-Tn5 transposon containing a promoterless gene encoding a green fluorescent protein (GFP). Some of the GFP-tagged individual bacterial cells exhibited strong green fluorescence, which reflected the expression levels of the GFP-tagged genes. Those cells could be readily detected with a confocal laser scanning microscope (CLSM). We observed that the fluorescence and morphology of A. tumefaciens cells grown in plant tissues resembled those grown in a minimal medium of low pH, which is required for expression of the virulence genes responsible for tumorigenesis. This suggests that GFP-aided CLSM can be used to determine which growth medium is more representative of the nutritional conditions that a pathogen encounters in plant tissues. We also observed that the fluorescence and morphology of A. tumefaciens cells changed dramatically during the course of infection. Our data suggested that A. tumefaciens cells were probably better fed upon successful colonization. We believe that GFP-aided CLSM can help study the fate of A. tumefaciens cells inside plant tissues by monitoring cell morphology and gene expression associated with the infection process in situ.  相似文献   

11.
Agrobacterium tumefaciens and Agrobacterium rhizogenes transfer plasmid-encoded genes and virulence (Vir) proteins into plant cells. The transferred DNA (T-DNA) is stably inherited and expressed in plant cells, causing crown gall or hairy root disease. DNA transfer from A. tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA) is exported from the bacteria via a type IV secretion system comprised of VirB1 through VirB11 and VirD4. Bacteria also secrete certain Vir proteins into plant cells via this pore. One of these, VirE2, is an ssDNA-binding protein crucial for efficient T-DNA transfer and integration. VirE2 binds incoming ssT-DNA and helps target it into the nucleus. Some strains of A. rhizogenes lack VirE2, but they still transfer T-DNA efficiently. We isolated a novel gene from A. rhizogenes that restored pathogenicity to virE2 mutant A. tumefaciens. The GALLS gene was essential for pathogenicity of A. rhizogenes. Unlike VirE2, GALLS contains a nucleoside triphosphate binding motif similar to one in TraA, a strand transferase conjugation protein. Despite their lack of similarity, GALLS substituted for VirE2.  相似文献   

12.
We used the transposon Mu dI1681 to identify genes on the Agrobacterium tumefaciens chromosome that are inducible by extracts from carrot roots. One such locus (picA, for plant inducible chromosomal), harbored by A. tumefaciens At156, was inducible 10- to 50-fold by these extracts. Mutation of picA had no detectable effect upon bacterial growth or virulence under laboratory assay conditions. However, A. tumefaciens cells harboring a mutated picA locus aggregated into long "ropes" when incubated with pea root tip cells. Such aggregation was not displayed by the parental strain A. tumefaciens A136. A preliminary characterization of the inducing compound in the carrot root extract suggests that the active substance is an acidic polysaccharide that is most likely derived from the pectic portion of the plant cell wall.  相似文献   

13.
Agrobacterium-mediated gene transfer, or agroinfiltration, can be a highly efficient method for transforming and inducing transient transgene expression in plant tissue. The technique uses the innate DNA secretion pathway of Agrobacterium tumefaciens to vector a particular plasmid-encoded segment of DNA from the bacteria to plant cells. Vacuum is often applied to plant tissue submerged in a suspension of A. tumefaciens to improve agroinfiltration. However, the effects of vacuum application on agroinfiltration and in planta transient transgene expression have not been well quantified. Here we show that vacuum application and release act to drive A. tumefaciens suspension into the interior of leaf tissue. Moreover, the amount of suspension that enters leaves can be predicted based on the vacuum intensity and duration. Furthermore, we show that transient expression levels of an agroinfiltrated reporter gene vary in response to the amount of A. tumefaciens vacuum infiltrated into leaf tissue, suggesting that vacuum infiltration conditions can be tailored to achieve optimal transient transgene expression levels after agroinfiltration.  相似文献   

14.
Agrobacterium tumefaciens and A. rhizogenes are the causative agents of the crown gall and hairy root diseases, respectively. The pathogenicity of both species is caused by an inter-kingdom transfer of DNA from the bacteria to wounded plant cells. This 'transfer-DNA' (T-DNA) contains oncogenes whose expression transforms the plant recipient cell into a rapidly dividing tumour cell. In the case of A. tumefaciens , three of these oncogenes have been shown to encode enzymes catalyzing the biosynthesis of the plant growth hormones auxin and cytokinin. Therefore, the unorganized cell division in the crown gall tumour can be largely explained by an unregulated overproduction of these plant growth regulators. In contrast, the hairy root disease is characterized by a massive growth of adventitious roots at the site of infection. Because of the similarities of the infection processes, and because A. rhizogenes and A. tumefaciens are very closely related, it has been suggested that the most important A. rhizogenes oncogenes, the so called rol genes, are also encoding proteins involved in the regulation of plant hormone metabolism. However, recent data indicate that this is not the case. Thus the rol genes have functions that most likely are different from producing mere alterations of plant hormone concentrations. This review summarizes recent results concerning the expression and function of the rol genes, and presents a model for the role of these genes, especially rolB and rolC , in the A. rhizogenes infection process.  相似文献   

15.
Infections of dicotyledonous plants by Agrobacterium tumefaciens result in the formation of crown gall tumors. Attachment of the bacteria to plant host cells is required for tumor formation. Human vitronectin and antivitronectin antibodies both inhibited the binding of A. tumefaciens to carrot cells. Wild-type bacteria are able to bind radioactive vitronectin; nonattaching mutants showed a reduction in the ability to bind vitronectin. The binding of biotype 1 A. tumefaciens to carrot cells or to radioactive vitronectin was not affected by high ionic strength. Detergent extraction of carrot cells removed the receptor to which the bacteria bind. The extract was found to contain a vitronectin-like protein. These results suggest that A. tumefaciens utilizes a vitronectin-like protein on the plant cell surface as the receptor for its initial attachment to host cells.  相似文献   

16.
Agrobacterium tumefaciens and Agrobacterium rhizogenes are closely related plant pathogens that cause different diseases, crown gall and hairy root. Both diseases result from transfer, integration, and expression of plasmid-encoded bacterial genes located on the transferred DNA (T-DNA) in the plant genome. Bacterial virulence (Vir) proteins necessary for infection are also translocated into plant cells. Transfer of single-stranded DNA (ssDNA) and Vir proteins requires a type IV secretion system, a protein complex spanning the bacterial envelope. A. tumefaciens translocates the ssDNA-binding protein VirE2 into plant cells, where it binds single-stranded T-DNA and helps target it to the nucleus. Although some strains of A. rhizogenes lack VirE2, they are pathogenic and transfer T-DNA efficiently. Instead, these bacteria express the GALLS protein, which is essential for their virulence. The GALLS protein can complement an A. tumefaciens virE2 mutant for tumor formation, indicating that GALLS can substitute for VirE2. Unlike VirE2, GALLS contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. Both GALLS and VirE2 contain nuclear localization sequences and a C-terminal type IV secretion signal. Here we show that mutations in any of these domains abolished the ability of GALLS to substitute for VirE2.  相似文献   

17.
Genetic transformation of plant cells by Agrobacterium tumefaciens represents a unique case of trans-kingdom sex requiring the involvement of both bacterial virulence proteins and plant-encoded proteins. We have developed in planta and leaf-disk assays in Nicotiana benthamiana for identifying plant genes involved in Agrobacterium-mediated plant transformation using virus-induced gene silencing (VIGS) as a genomics tool. VIGS was used to validate the role of several genes that are either known or speculated to be involved in Agrobacterium-mediated plant transformation. We showed the involvement of a nodulin-like protein and an alpha-expansin protein (alpha-Exp) during Agrobacterium infection. Our data suggest that alpha-Exp is involved during early events of Agrobacterium-mediated transformation but not required for attaching A. tumefaciens. By employing the combination of the VIGS-mediated forward genetics approach and an in planta tumorigenesis assay, we identified 21 ACG (altered crown gall) genes that, when silenced, produced altered crown gall phenotypes upon infection with a tumorigenic strain of A. tumefaciens. One of the plant genes identified from the screening, Histone H3 (H3), was further characterized for its biological role in Agrobacterium-mediated plant transformation. We provide evidence for the role of H3 in transfer DNA integration. The data presented here suggest that the VIGS-based approach to identify and characterize plant genes involved in genetic transformation of plant cells by A. tumefaciens is simple, rapid, and robust and complements other currently used approaches.  相似文献   

18.
Mutants of Rhizobium meliloti have been isolated which are deficient in exopolysaccharide (EPS) production and effective nodulation of alfalfa (J. A. Leigh, E. R. Signer, and G. C. Walker, Proc. Natl. Acad. Sci. USA 82:6231-6235, 1985). We isolated approximately 100 analogous EPS-deficient (Exo) mutants of the closely related plant pathogen Agrobacterium tumefaciens, including strains whose EPS deficiencies were specifically complemented by each of five cloned R. meliloti exo loci. We also cloned A. tumefaciens genes which complemented EPS defects in three of the R. meliloti Exo mutants. In two of these cases, symbiotic defects were also complemented. All of the A. tumefaciens Exo mutants formed normal crown gall tumors on four different plant hosts, except ExoC mutants, which were nontumorigenic and unable to attach to plant cells in vitro. Like their R. meliloti counterparts, A. tumefaciens Exo mutants were deficient in production of succinoglycan, the major acidic EPS species produced by both genera. A. tumefaciens ExoC mutants also produced extremely low levels of another major EPS, cyclic 1,2-beta-D-glucan. This deficiency has been noted previously in a different set of nontumorigenic, attachment-defective A. tumefaciens mutants.  相似文献   

19.
Physiological adaptive and cross-protection responses to oxidants were investigated in Agrobacterium tumefaciens. Exposure of A. tumefaciens to sublethal concentrations of H2O2 induced adaptive protection to lethal concentrations of H2O2. Similar treatments with organic peroxide and menadione did not produce adaptive protection to subsequent exposure to lethal concentrations of these oxidants. Pretreatment of A. tumefaciens with an inducing concentration of menadione conferred cross-protection against H2O2, but not to tert-butyl hydroperoxide (tBOOH), killing. The menadione induced cross-protection to H2O2 was due to the compound's ability to highly induce the peroxide scavenging enzyme, catalase. The levels of catalase directly correlated with the bacterium's ability to survive H2O2 treatment. Some aspects of the oxidative stress response of A. tumefaciens differ from other bacteria, and these differences may be important in plant/microbe interactions.  相似文献   

20.
In experiments with model plant tumors (Kalanchoe-ti plasmid Agrobact. tumefaciens C-58D) it was shown that exposure of the recipient plant to low-level gamma-radiation of 2 Gy induced changes in cells that were not repaired over two months promoting tumoral transformations in them. Those changes were shown to persist in the offspring of the exposed somatic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号