首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of temperature on the salinity tolerance of Mozambique-Wami tilapia hybrids (Oreochromis mossambicus x O. urolepis hornorum) were investigated by transferring 35 g/l, 25 degrees C-acclimated fish to 35, 43, 51 or 60 g/l salinity at 15, 25 or 35 degrees C for 24 h, and by assaying gill tissue for branchial Na(+), K(+)-ATPase activity at the three temperatures after acclimating the fish to 15, 25 or 35 degrees C for 2 weeks. Tilapia survived all salinities at 25 and 35 degrees C; however, at 15 degrees C, mortality was 85.7% and 100% in the 51 g/l and 60 g/l groups, respectively. There was a significant interaction between temperature and salinity, as plasma osmolality, [Na(+)] and [Cl(-)] were significantly increased at 51 and 60 g/l salinity in 35 degrees C water (P<0.001). Additionally, muscle water content was significantly reduced at 43 g/l, 15 degrees C relative to pre-transfer values (P<0.001). Branchial Na(+), K(+)-ATPase activity was reduced at 15 degrees C regardless of acclimation temperature, and 25 degrees C-acclimated gill tissue did not show an increase in activity when assayed at 35 degrees C. Results indicate that the effects of a combined temperature-salinity transfer on plasma osmolality and ion concentrations, as well as muscle water content, are greater than when either challenge is given alone. Additionally, branchial Na(+), K(+)-ATPase activity is altered when assayed at varying temperatures; in the case of 15 degrees C, regardless of acclimation temperature. Our enzyme activity data may indicate the presence of a high temperature isoform of branchial Na(+), K(+)-ATPase enzyme.  相似文献   

2.
Rates of oxygen consumption were followed throughout the entire period of diapause in eggs of Bombyx mori. In non-diapause eggs at 25 degrees C, O(2) uptake was divisible into three phases, corresponding to morphogenetic processes. In diapause eggs at 25 degrees C, O(2) uptake showed a peak (100 &mgr;l/g eggs/h) at 1 day and then suddenly dropped to reach a level of 8-10 &mgr;l/g eggs/h at 10 days and thereafter. To break diapause, eggs were exposed to 5 degrees C for varying periods. When O(2) uptake was measured at 5 degrees C, it remained at 6 &mgr;l/g eggs/h. When eggs were chilled for increasing periods and O(2) uptake was measured immediately after warming to 25 degrees C, the rates increased after a lag phase. In HCl-treated eggs, O(2) uptake increased immediately after acid-treatment. In all cases, highly increasing O(2) uptake at 25 degrees C coincided with termination of diapause. These results were discussed in relation to sorbitol utilization at the termination of diapause.  相似文献   

3.
The production of biomass and ligninolytic enzymes by Pleurotus ostreatus was analysed in synthetic medium with yeast extract and different glucose concentrations (0.5 - 20 g/l), at different pH (3.5-6.5) and incubation temperatures (23-32 degrees C). The best culture condition were: initial glucose concentration of 5 g/l, initial pH between 5.5-6.5 and incubation temperature between 26-29 degrees C. The saturation constant for glucose (Ks) was 1.75 g/l. The biomass concentration reached 8.6 g/l with a glucose addition of 20.0 g/l to the culture medium. The control of pH allowed an increment of 0.5 g/l of biomass concentration. The birreactor produced pellets with a homogeneous distribution of diameter size of 3.4 -/+ 0.2 mm. Approximately, 307 U/l of laccase and 0.41 U/l of manganese peroxidase were obtained in extracellular liquid medium and 0.015 U/g of laccase and 0.809 U/g of manganese peroxidase were obtained in solid substrate. Lignin peroxidase activity was not detected at any condition.  相似文献   

4.
High strength slaughterhouse wastewater was treated in four 42 l anaerobic sequencing batch reactors (ASBRs) operated at 30 degrees C, 25 degrees C and 20 degrees C. The wastewater contained between 30% and 53% of its chemical oxygen demand (COD) as suspended solids (SS). The ASBRs could easily support volumetric organic loading rates (OLRs) of 4.93, 2.94 and 2.75 kg/m3/d (biomass OLRs of 0.44, 0.42 and 0.14 g/g volatile SS (VSS)/d) at 30 degrees C, 25 degrees C, and 20 degrees C, respectively. At all operating temperatures, the total COD (TCOD) and soluble COD (SCOD) were reduced by over 92%, while average SS removal varied between 80% and 96%. Over the experimental period, 90.8%, 88.7% and 84.2% of the COD removed was transformed into methane at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The decrease in the conversion of the COD removed into methane as operating temperature was lowered, may be partly explained by a lower degradation of influent SS as temperature was reduced. The reactors showed a high average methanogenic activity of 0.37, 0.34 and 0.12 g CH4-COD/gVSS/d (22.4, 12.7 and 11.8 l/d) at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The average methane content in the biogas increased from 74.7% to 78.2% as temperature was lowered from 30 degrees C to 20 degrees C.  相似文献   

5.
The effect of different natural zeolite concentrations on the anaerobic digestion of piggery waste was studied. Natural zeolite doses in the range 0.2-10 g/l of wastewater were used in batch experiments, which were carried out at temperatures between 27 degrees C and 30 degrees C. Total chemical oxygen demand (COD), total and volatile solids, ammonia and organic nitrogen, pH, total volatile fatty acids (TVFA), alkalinity (Alk) and accumulative methane production were determined during 30 days of digestion. The anaerobic digestion process was favored by the addition of natural zeolite at doses between 2 and 4 g/l and increasingly inhibited at doses beyond 6 g/l. A first-order kinetic model of COD removal was used to determine the apparent kinetic constants of the process. The kinetic constant values increased with the zeolite amount up to a concentration of 4 g/l. The values of the maximum accumulative methane production (Gm) increased until zeolite concentrations of 2-4 g/l. The addition of zeolite reduced the values of the TVFA/ Alk ratio while increasing the pH values, and these facts could contribute to the process failure at zeolite doses of 10 g/l.  相似文献   

6.
The copy number of a plasmid, pUC-based vector, was previously shown to be affected by culture temperature. In this study, intracellular hirudin variant 1 (f-HV1) fused to porcine adenylate kinase protein was produced using recombinant Escherichia coli by temperature shift cultivation coupled with a high cell density cultivation technique for E. coli JM109. The optimal temperature for cellular growth suppressing f-HV1 production was 33 degrees C, resulting in a final dried cell concentration of 45.7 g/l, with a specific growth rate of 0.54 1/h. Optimizing the temperature-shift conditions (temperature shifted to an OD660 nm of 15 from 33 degrees C to 37 degrees C) resulted in the production of f-HV1 up to 4763 mg/l as an inclusion body with dried cell concentration of 44 g/l in 18 h.  相似文献   

7.
The effects of the carbon and nitrogen sources, initial pH and incubation temperature on laccase production by Trametes modesta were evaluated using the one-factor-at-a-time method. The final optimisation was done using a central composite design resulting in a four-fold increase of the laccase activity to 178 nkat ml(-1). Response-surface analysis showed that 7.34 g l(-1) wheat bran, 0.87 g l(-1) glucose, 2.9 g l(-1) yeast extract, 0.25 g l(-1) ammonium chloride, an initial pH of 6.95 and an incubation temperature of 30.26 degrees C were the optimal conditions for laccase production. Laccase produced by T. modesta was fully active at pH 4 and at 50 degrees C. The laccase was very stable at pH 4.5 and at 40 degrees C but half-lives decreased to 120 and 125 min at higher temperature (60 degrees C) and lower pH (pH 3).  相似文献   

8.
After a previous mass screening and enrichment programme for the isolation of thermotolerant yeasts, VS1, VS2, VS3 and VS4 strains isolated from soil samples, collected within the hot regions of Kothagudem Thermal Power Plant, AP, India, had a better thermotolerance, osmotolerance and ethanol tolerance than the other isolates. Among these isolates VS1 and VS3 were best performers. Efforts were made to further improve their osmotolerance, thermotolerance and ethanol tolerance by treating them with UV radiation. Mutants of VS1 and VS3 produced more biomass and ethanol than the parent strains at high temperature and glucose concentrations. The amount of biomass produced by VS1 and VS3 mutants was 0.25 and 0.20 g l(-1) more than the parent strains at 42 degrees C using 2% glucose. At high glucose concentrations VS1 and VS3 mutants produced biomass which was 0.70 and 0.30 g l(-1) at 30 degrees C and 0.10 and 0.20 g l(-1) at 40 degrees C more than the parent strains. The amount of ethanol produced by the mutants (VS1 and VS3) was 8.20 and 1.20 g l(-1) more than the parent strains at 42 degrees C using 150 g l(-1) glucose. More ethanol was produced by mutants (VS1 and VS3) than the parents at high glucose concentrations of 5.0 and 6.0 g l(-1) at 30 degrees C and 13.0 and 3.0 g l(-1) at 42 degrees C, respectively. These results indicated that UV mutagenesis can be used for improving thermotolerance, ethanol tolerance and osmotolerance in VS1 and VS3 yeast strains.  相似文献   

9.
Pretreated sunflower stalks saccharified with a Trichoderma reesei Rut-C 30 cellulase showed 57.8% saccharification. Enzyme hydrolysate concentrated to 40 g/l reducing sugars was fermented under optimum conditions of fermentation time (24 h), pH (5.0), temperature (30 degrees C) and inoculum size (3% v/v) and, showed a maximum ethanol yield of 0.444 g/g ethanol. Ethanol production scaled up in a 1 l and a 15 l fermenter under optimum conditions revealed maximum ethanol yields of 0.439 and 0.437 g/g respectively.  相似文献   

10.
Nocardia globerula NHB-2 exhibited an intracellular acetonitrile hydrolysing activity (AHA) when cultivated in nutrient broth supplemented with glucose (10.0 g/l) and yeast extract (1.0 g/l), at pH 8.0, 30 degrees C for 21 hr. Maximum AHA was recorded in the culture containing 0.1 M of sodium phosphate buffer, (pH 8.8) at 45 degrees C for 15 min with 600 micromol of acetonitrile and resting cells of N. globerula NHB-2 equivalent to 1.0 ml culture broth. This activity was stable up to 40 degrees C and was completely inactivated at or above 60 degrees C. About five-fold increase in AHA was observed after optimization of culture and reaction conditions. Under the optimized conditions, this organism hydrolyzed various nitriles and amides such as propionitrile, benzonitrile. acetamide, and acrylamide to corresponding acids. This nitrile/amide hydrolysing activity of N. globerula NHB-2 has potential applications in enzymatic synthesis of organic acids and bioremediation of nitriles and amides contaminated soil and water system.  相似文献   

11.
Lavandula vera MM cell suspension, grown at 28 degrees C in a 3-l bioreactor, produced rosmarinic acid maximally at 3 g l(-1)) though most biomass (33.2 g dry wt l(-1)) was at 30 degrees C.  相似文献   

12.
The extent of binding of sodium dodecyl sulphate to bovine serum albumin at high binding ratios was investigated by gel filtration. The weight ratio of bound sodium dodecyl sulphate to bovine serum albumin increases with the NaCl concentration, and, except at low salt concentrations, with the concentration of sodium dodecyl sulphate. In the presence of 1.0g of sodium dodecyl sulphate/l, the binding ratio varied from 1.0 (at 0.04m-Na(+)) to 2.2 (at 0.44m-Na(+)). In the presence of 0.24m-Na(+), the binding ratio increased with sodium dodecyl sulphate concentration, from 0.9 (0.2g of sodium dodecyl sulphate/l) to 2.0 (5g of sodium dodecyl sulphate/l), at 26 degrees C, in a dilute sodium phosphate buffer. No significant dependence of the binding ratio upon temperature in the range 26-45 degrees C was observed. These results differ from those of Reynolds & Tanford (1970a) obtained by equilibrium dialysis.  相似文献   

13.
Microbial associations capable of converting cellulose-containing substrates to ethanol and organic acids were isolated from natural sources. The resulting mixed cultures utilized cellulose, cellobiose, glucose, maize residue, cotton, and flax boon producing ethanol (up to 0.9 g/l) and acetic acid (up to 0.8 g/l). The most complete conversion of cellulose-containing substrates occurred at 60 degrees C, pH 7.0. The selected association of thermophilic anaerobic bacteria produced 0.64 g ethanol per g substrate utilized at the ethanol/acetate ratio 4.7:1.  相似文献   

14.
Kluyveromyces marxianus DMKU 3-1042, isolated by an enrichment technique in a sugar cane juice medium supplemented with 4% (w/v) ethanol at 35 degrees C, produced high concentrations of ethanol at both 40 and 45 degrees C. Ethanol production by this strain in shaking flask cultivation in sugar cane juice media at 37 degrees C was highest in a medium containing 22% total sugars, 0.05% (NH(4))(2)SO(4), 0.05% KH(2)PO(4), and 0.15% MgSO(4).7H(2)O and having a pH of 5.0; the ethanol concentration reached 8.7% (w/v), productivity 1.45 g/l/h and yield 77.5% of theoretical yield. At 40 degrees C, a maximal ethanol concentration of 6.78% (w/v), a productivity of 1.13 and a yield 60.4% of theoretical yield were obtained from the same medium, except that the pH was adjusted to 5.5. In a study on ethanol production in a 5l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.2 vvm throughout the fermentation, K. marxianus DMKU 3-1042 yielded a final ethanol concentration of 6.43% (w/v), a productivity of 1.3g/l/h and a yield of 57.1% of theoretical yield.  相似文献   

15.
Acid-hydrolysis of cellulosic pyrolysate to glucose and its fermentation to ethanol were investigated. The maximum glucose yield (17.4%) was obtained by the hydrolysis with 0.2 mol/l sulfuric acid using autoclaving at 121 degrees C for 20 min. The fermentation by Saccharomyces cerevisiae of a hydrolysate medium containing 31.6 g/l glucose gave 14.2 g/l ethanol after 24 h, whereas the fermentation of the medium containing 31.6 g/l pure glucose gave 13.7 g/l ethanol after 18 h. The results showed that acid-hydrolyzed pyrolysate could be used for ethanol production. Different nitrogen sources were evaluated and the best ethanol concentration (15.1 g/l) was achieved by single urea. S. cerevisiae (R) was obtained by adaptation of S. cerevisiae to the hydrolysate medium for 12 times, and 40.2 g/l ethanol was produced by it in the fermentation with the hydrolysate medium containing 95.8 g/l glucose, which was about 47% increase in ethanol production compared to its parent strain.  相似文献   

16.
Three different strains of Aureobasidium pullulans were grown in batch cultures to compare their abilities for the production of fructo-oligosaccharides. Specific intracellular enzyme activity was the highest with strain KCCM 12017 and enzyme production was closely coupled to growth. Using A. pullulans cells, 166 g/l fructo-oligosaccharides was produced from 360 g/l molasses sugar as sucrose equivalent at 55 degrees C and pH 5.5 after 24 h incubation.  相似文献   

17.
Conformation of a nonhydrolyzable adenosine triphosphate (ATP) analogue, adenylyl-(,-methylene)-diphosphonate (AMPPCP) bound at the active site of yeast hexokinase-PII was determined by proton two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY) and molecular dynamics simulations. The effect of the glucose-induced domain closure on the conformation of the nucleotide was evaluated by making measurements on two different complexes: PIIAMPPCPMg(II) and PIIGlcAMPPCPMg(II). TRNOE measurements were made at 500 MHz, 10°C, as a function of several mixing times varying in the range of 40 to 200 ms. Interproton distances derived from the analysis of NOE buildup curves were used as restraints in molecular dynamics simulations to determine the conformation of the enzyme bound nucleotide. The adenosine moiety was found to bind in high anti conformation with a glycosidic torsion angle = 48 ± 5 degrees in both complexes. However, significant differences in the conformations of the ribose and triphosphoryl chain of the nucleotide are observed between the two complexes. The phase angles of pseudorotation P in PIIAMPPCPMg(II) and PIIGlcAMPPCPMg(II) are 87 degrees and 77 degrees, describing a OE and OT4 sugar pucker and the amplitudes of the sugar pucker () are 37 degrees and 61 degrees, respectively.  相似文献   

18.
Under northern climatic conditions, a temporary decrease in the temperature of anaerobic reactors treating swine manure is likely to happen at the farm. The objective of this study was to evaluate the impact of temperature fluctuations, between 10 and 20 degrees C, on the stability and performance of psychrophilic anaerobic sequencing batch reactors (ASBRs) treating swine manure. Methane yield decreased from 0.266+/-0.014 l/g of total chemical oxygen demand (TCOD) fed to the ASBRs at 20 degrees C to 0.218+/-0.022 and 0.080+/-0.002 l/g TCOD (fed) at 15 and 10 degrees C, respectively. Soluble chemical oxygen demand (SCOD) reduction decreased from 94.2+/-1.1% at 20 degrees C to 78.8+/-3.0% at 15 degrees C and 60.4+/-6.4% at 10 degrees C. Total COD removal also tended to decrease as temperature was lowered, but difference between operating temperatures was not as pronounced. A lower methanogenic activity in the ASBRs operated at 10 degrees C probably favoured quiescent conditions during the settling period, thereby increasing physical removal of the TCOD through sedimentation of the solids with the biomass. When the operating temperature was increased back to 15 and 20 degrees C, methane yield and SCOD reduction improved, but reactor performance remained significantly (P<0.05) lower than that achieved before the cycles at 10 degrees C. Results from this experiment nevertheless suggested that fluctuation in the operating temperature of psychrophilic ASBRs should only have temporary effects on the performance and stability of the process.  相似文献   

19.
An aboriginal bacterial community capable of degrading cyanide (10 mg/l) and thiocyanate (2 g/l) and eliminating ammonia (120 mg/l) had been isolated from recycled water samples after blast-furnace gas purification of a metallurgical plant wastewater. It was shown that the optimal conditions for this bacterial community were as follows: temperature, 34 degrees C; pH, 8.8-9.0; available organic matter concentration (glucose equivalent), 5 g/l; and dissolved O2 concentration, 8-10 mg/l. This aboriginal community was formed by the bacteria belonging to the genus Pseudomonas.  相似文献   

20.
The optimization of submerged culture conditions and nutritional requirements was studied for the production of exopolysaccharide (EPS) from Agrocybe cylindracea ASI-9002 using the statistically based experimental design in a shake flask culture. Both maximum mycelial biomass and EPS were observed at 25 degrees C. The optimal initial pH for the production of mycelial biomass and EPS were found to be pH 4.0 and pH 6.0, respectively. Subsequently, optimum concentration of each medium component was determined using the orthogonal matrix method. The optimal combination of the media constituents for mycelial growth was as follows: maltose 80 g/l, Martone A-1 6 g/l, MgSO4 x 7H2O 1.4 g/l, and CaCl2 1.1 g/l; for EPS production: maltose 60 g/l, Martone A-1 6 g/l, MgSO4 x 7H2O 0.9 g/l, and CaCl2 1.1 g/l. Under the optimal culture condition, the maximum EPS concentration achieved in a 5-l stirred-tank bioreactor indicated 3.0 g/l, which is about three times higher than that at the basal medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号