首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The steady-state level and metabolic half-life of retinoblastoma tumor suppressor protein pRB are decreased in cells that express high-risk human papillomavirus (HPV) E7 proteins. Here we show that pRB degradation is a direct activity of E7 and does not reflect a property of cell lines acquired during the selection process for E7 expression. An amino-terminal domain of E7 that does not directly contribute to pRB binding but is required for transformation is also necessary for E7-mediated pRB degradation. Treatment with inhibitors of the 26S proteasome not only blocks E7-mediated pRB degradation but also causes the stabilization of E7. Mutagenic analyses, however, reveal that the processes of proteasomal degradation of E7 and pRB are not linked processes. HPV type 16 E7 also targets the pRB-related proteins p107 and p130 for destabilization by a proteasome-dependent mechanism. Using the SAOS2 flat-cell assay as a biological indicator for pRB function, we demonstrate that pRB degradation, not solely binding, is important for the E7-induced inactivation of pRB.  相似文献   

4.
5.
The retinoblastoma tumor suppressor protein (pRb) is a key negative regulator of cell proliferation that is frequently disregulated in human cancer. Many viral oncoproteins (for example, HPV E7 and E1A) are known to bind to the pRb pocket domain via a LXCXE binding motif. There are also some 20 cellular proteins that contain a LXCXE motif and have been reported to associate with the pocket domain of pRb. Using NMR spectroscopy and isothermal calorimetry titration, we show that LXCXE peptides of viral oncoproteins bind strongly to the pocket domain of pRb. Additionally, we show that LXCXE-like peptides of HDAC1 bind to the same site on pRb with a weak (micromolar) and transient association. Systematic substitution of residues other than conserved Leu, Cys, and Glu show that the residues flanking the LXCXE are important for the binding, whereas positively charged amino acids in the XLXCXEXXX sequence significantly weaken the interaction.  相似文献   

6.
Complex formation between the human papilloma virus type-16 E7 protein (HPV-16 E7) and the retinoblastoma suppressor protein (pRB) is believed to be important in the process of cellular transformation that leads to cervical carcinoma. Utilizing an in vitro solution assay as well as a plate binding assay that measures the association between HPV-16 E7 and pRB proteins, we have examined a series of synthetic HPV-16 E7 peptides. HPV-16 E7 peptides which lie between amino acid residues 14 and 32 were found to be potent inhibitors of E7/pRB binding. The minimal peptide structure that possessed full antagonist activity was N-acetyl-E7-(21-29)-peptide amide. This peptide inhibited 100% of E7/pRB binding and exhibited an IC50 of 40 nM in the plate binding assay. A purified beta-galactosidase-E7 fusion protein exhibited an IC50 of 2 nM in the same assay. These results suggest that other regions of the E7 molecule in addition to amino acids 21-29 may contributed to E7/pRB interaction. Analysis of E7-(20-29)-peptides containing single amino acid substitutions suggests that Cys24, Tyr23, Tyr25, Asp21, and Glu26 are important residues for maintaining maximal antagonist activity. This series of peptides should prove useful in analyzing the biological consequences of E7/pRB binding in HPV-infected cells.  相似文献   

7.
The retinoblastoma gene product (pRB) participates in regulating mammalian cell replication. The mechanism responsible for pRB's growth regulatory activity is uncertain. However, pRB is known to bind viral transforming proteins including the papilloma virus E7 protein, cellular proteins, and DNA. pRB contains a critical domain termed the "binding pocket" which is required for binding activities. This binding pocket contains 8 cysteine residues. A naturally occurring mutation affecting one of these cysteines is known to eliminate pRB's protein and DNA binding activities. To investigate the cysteine residues in pRB's binding pocket, each residue was mutated to alanine, phenylalanine, or serine. These mutant genes were used to prepare pRBs harboring specific amino acid substitutions. Individual mutations at positions 407, 553, 666, and 706 depressed pRB binding to E7 protein, DNA, and a conformation-specific anti-pRB antibody, XZ133. Combinations of these inhibitory mutations exhibited additive inhibitory effects on pRB's binding properties. Mutations at positions 438, 489, 590, 712, and 853 did not affect pRB binding to E7 protein, DNA, or the XZ133 antibody. Combination of these five neutral mutations yielded a pRB species with full E7 protein, DNA, and XZ133 binding activities. These studies indicate that the cysteine residues at positions 407, 553, 666, and 706 contribute to the E7 protein and DNA binding properties of pRB and appear to do so by maintaining pRB's normal conformation.  相似文献   

8.
9.
N Dyson  P Guida  C McCall    E Harlow 《Journal of virology》1992,66(7):4606-4611
Two regions near the amino terminus of the adenovirus E1A protein, which were first identified by sequence conservation among various adenovirus serotypes, have been shown by genetic studies to be essential for E1A-mediated transformation. These same regions are also required for interaction with a number of cellular proteins, including the retinoblastoma protein (pRB). Using synthetic peptides corresponding to portions of these conserved regions, we show that each region can bind independently to pRB. These interactions were observed in both competition and binding assays. In both types of assay, region 2 peptides (E1A amino acids 115 to 132) bound pRB with higher affinity than did region 1 peptides (E1A amino acids 37 to 54), while a peptide combining region 1 and 2 sequences consistently provided the highest-affinity interaction. Cross-blocking experiments using region 1 peptides and region 2 peptides suggested that these two regions of E1A make distinct contacts with pRB. These data support the notion that the pRB-binding domain of E1A contains at least two functional elements.  相似文献   

10.
11.
E2F-1 is the major cellular target of pRB and is regulated by pRB during cell proliferation. Interaction between pRB and E2F-1 is dependent on the phosphorylation status of pRB. Despite the fact that E2F-1 and pRB have antagonistic activities when they are overexpressed, the role of the E2F-1-pRB interaction in cell growth largely remains unknown. Ideally, it would be better to study the properties of a pRB mutant that fails to bind to E2F, but retains all other activities. To date, no pRB mutation has been characterized in sufficient detail to show that it specifically eliminates E2F binding but leaves other interactions intact. An alternative approach to this issue is to ask whether mutations that change E2F proteins binding affinity to pRB are sufficient to change cell growth in aspect of cell cycle and tumor formation. Therefore, we used the E2F-1 mutants including E2F-1/S332-7A, E2F-1/S375A, E2F-1/S403A, E2F-1/Y411A and E2F-1/L132Q that have different binding affinities for pRB to better understand the roles of the E2F-1 phosphorylation and E2F-1-pRB interaction in the cell cycle, as well as in transformation and gene expression. Data presented in this study suggests that in vivo phosphorylation at amino acids 332-337, 375 and 403 is important for the E2F-1 and pRB interaction in vivo. However, although E2F-1 mutants 332-7, 375 and 403 showed similar binding affinity to pRB, they showed different characteristics in transformation efficiency, G0 accumulation, and target gene experiments.  相似文献   

12.
The activity of the retinoblastoma protein pRB is regulated by phosphorylation that is mediated by G(1) cyclin-associated cyclin-dependent kinases (CDKs). Since the pRB-related pocket proteins p107 and p130 share general structures and biological functions with pRB, their activity is also considered to be regulated by phosphorylation. In this work, we generated phosphorylation-resistant p107 and p130 molecules by replacing potential cyclin-CDK phosphorylation sites with non-phosphorylatable alanine residues. These phosphorylation-resistant mutants retained the ability to bind E2F and cyclin. Upon introduction into p16(INK4a)-deficient U2-OS osteosarcoma cells, in which cyclin D-CDK4/6 is dysregulated, the phosphorylation-resistant mutants, but not wild-type p107 or p130, were capable of inhibiting cell proliferation. Furthermore, when ectopically expressed in pRB-deficient SAOS-2 osteosarcoma cells, the wild-type as well as the phosphorylation-resistant pRB family proteins were capable of inducing large flat cells. The flat cell-inducing activity of the wild-type proteins, but not that of the phosphorylation-resistant mutants, was abolished by coexpressing cyclin E. Our results indicate that the elevated cyclin D- or cyclin E-associated kinase leads to systemic inactivation of the pRB family proteins and suggest that dysregulation of the pRB kinase provokes an aberrant cell cycle in a broader range of cell types than those induced by genetic inactivation of the RB gene.  相似文献   

13.
The human papillomavirus (HPV) E7 oncoprotein exists as a dimer and acts by binding to many cellular factors, preventing or retargeting their function and thereby making the infected cell conducive for viral replication. Dimerization of E7 is attributed primarily to the C-terminal domain, referred to as conserved region 3 (CR3). CR3 is highly structured and is necessary for E7's transformation ability. It is also required for binding of numerous E7 cellular targets. To systematically analyze the molecular mechanisms by which HPV16 E7 CR3 contributes to carcinogenesis, we created a comprehensive panel of mutations in residues predicted to be exposed on the surface of CR3. We analyzed our novel collection of mutants, as well as mutants targeting predicted hydrophobic core residues of the dimer, for the ability to dimerize. The same set of mutants was also assessed functionally for transformation capability in a baby rat kidney cell assay in conjugation with activated ras. We show that some mutants of HPV16 E7 CR3 failed to dimerize yet were still able to transform baby rat kidney cells. Our results identify several novel E7 mutants that abrogate transformation and also indicate that E7 does not need to exist as a stable dimer in order to transform cells.  相似文献   

14.
The human papillomavirus E7 gene can transform murine fibroblasts and cooperate with other viral oncogenes in transforming primary cell cultures. One biochemical property associated with the E7 protein is binding to the retinoblastoma tumor suppressor gene product (pRB). Biochemical properties associated with pRB include binding to viral transforming proteins (E1A, large T, and E7), binding to cellular proteins (E2F and Myc), and binding to DNA. The mechanism by which E7 stimulates cell growth is uncertain. However, E7 binding to pRB inhibits binding of cellular proteins to pRB and appears to block the growth-suppressive activity of pRB. We have found that E7 also inhibits binding of pRB to DNA. A 60-kDa version of pRB (pRB60) produced in reticulocyte translation reactions or in bacteria bound quantitatively to DNA-cellulose. Recombinant E7 protein used at a 1:1 or 10:1 molar ratio with pRB60 blocked 50 or greater than 95% of pRB60 DNA-binding activity, respectively. A mutant E7 protein (E7-Ala-24) with reduced pRB60-binding activity exhibited a parallel reduction in its blocking of pRB60 binding to DNA. An E7(20-29) peptide that blocks binding of E7 protein to pRB60 restored the DNA-binding activity of pRB60 in the presence of E7. Peptide E7(2-32) did not block pRB60 binding to DNA, while peptide E7(20-57) and an E7 fragment containing residues 1 to 60 partially blocked DNA binding. E7 species containing residues 3 to 75 were fully effective at blocking pRB60 binding to DNA. These studies indicate that E7 protein specifically blocks pRB60 binding to DNA and suggest that the E7 region responsible for this property lies between residues 32 and 75. The functional significance of these observations is unclear. However, we have found that a point mutation in pRB60 that impairs DNA-binding activity also blocks the ability of pRB60 to inhibit cell growth. This correlation suggests that the DNA-binding activity of retinoblastoma proteins contributes to their biological properties.  相似文献   

15.
Phosphotyrosine-binding domains, typified by the SH2 (Src homology 2) and PTB domains, are critical upstream components of signal transduction pathways. The E3 ubiquitin ligase Hakai targets tyrosine-phosphorylated E-cadherin via an uncharacterized domain. In this study, the crystal structure of Hakai (amino acids 106-206) revealed that it forms an atypical, zinc-coordinated homodimer by utilizing residues from the phosphotyrosine-binding domain of two Hakai monomers. Hakai dimerization allows the formation of a phosphotyrosine-binding pocket that recognizes specific phosphorylated tyrosines and flanking acidic amino acids of Src substrates, such as E-cadherin, cortactin and DOK1. NMR and mutational analysis identified the Hakai residues required for target binding within the binding pocket, now named the HYB domain. ZNF645 also possesses a HYB domain but demonstrates different target specificities. The HYB domain is structurally different from other phosphotyrosine-binding domains and is a potential drug target due to its novel structural features.  相似文献   

16.
The 44-amino-acid E5 protein of bovine papillomavirus type 1 is the shortest known protein with transforming activity. To identify the specific amino acids required for in vitro focus formation in mouse C127 cells, we used oligonucleotide-directed saturation mutagenesis to construct an extensive collection of mutants with missense mutations in the E5 gene. Characterization of mutants with amino acid substitutions in the hydrophobic middle third of the E5 protein indicated that efficient transformation requires a stretch of hydrophobic amino acids but not a specific amino acid sequence in this portion of the protein. Many amino acids in the carboxyl-terminal third of the protein can also undergo substitution without impairment of focus-forming activity, but the amino acids at seven positions, including two cysteine residues that mediate dimer formation, appear essential for efficient transforming activity. These essential amino acids are the most well conserved among related fibropapillomaviruses. The small size of the E5 protein, its lack of similarity to other transforming proteins, and its ability to tolerate many amino acid substitutions implies that it transforms cells via a novel mechanism.  相似文献   

17.
The fibroblast growth factor receptor 1 (flg) contains eight acidic amino acids between the first and second immunoglobulin domain. This report examines the role of the acidic domain in the interaction of the flg receptor with its ligands. We observed a marked inhibition of binding of bFGF to the receptor when the acidic domain was completely deleted, but mutants with two and four amino acids deleted (flgΔ2 and flgΔ4, respectively) still bound the ligand. After addition of a bifunctional cross-linking reagent, cross-linked complexes (between bFGF and receptor) with the expected size were observed in cells expressing mutants lacking two or four acidic residues, but not in cells expressing mutants lacking six or eight acidic residues. Immunoprecipitation with anti-flg antibody followed by electrophoresis produced a band of 90 Kd in tunicamycin-treated cells expressing the mutant as well as the wild-type receptors, indicating that the inhibition of binding was not due to defective expression of the protein. The ability of flgΔ8 to mediate a mitogenic response to FGFs was also greatly reduced when this mutated receptor was expressed in receptor-negative cells. The effect of replacing the acidic amino acids with lysine residues was also studied. Binding of bFGF to cells transfected with a plasmid encoding a mutated protein with four amino acid substitutions was totally inhibited, but an eight amino acid substitution did not alter ligand binding to the receptor. In this case the mutation with four amino acids substitution caused a drastic impairment of protein expression. Thus the acidic domain of the FGFR-1 plays an essential role in receptor function, either because it is important for a stable protein configuration or for ligand-receptor interaction. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Herpesviral capsids are assembled in the host cell nucleus and are subsequently translocated to the cytoplasm. During this process it has been demonstrated that the human cytomegalovirus proteins pUL50 and pUL53 interact and form, together with other viral and cellular proteins, the nuclear egress complex at the nuclear envelope. In this study we provide evidence that specific residues of a conserved N-terminal region of pUL50 determine its intranuclear interaction with pUL53. In silico evaluation and biophysical analyses suggested that the conserved region forms a regular secondary structure adopting a globular fold. Importantly, site-directed replacement of individual amino acids by alanine indicated a strong functional influence of specific residues inside this globular domain. In particular, mutation of the widely conserved residues Glu-56 or Tyr-57 led to a loss of interaction with pUL53. Consistent with the loss of binding properties, mutants E56A and Y57A showed a defective function in the recruitment of pUL53 to the nuclear envelope in expression plasmid-transfected and human cytomegalovirus-infected cells. In addition, in silico analysis suggested that residues 3-20 form an amphipathic α-helix that appears to be conserved among Herpesviridae. Point mutants revealed a structural role of this N-terminal α-helix for pUL50 stability rather than a direct role in the binding of pUL53. In contrast, the central part of the globular domain including Glu-56 and Tyr-57 is directly responsible for the functional interaction with pUL53 and thus determines formation of the basic nuclear egress complex.  相似文献   

19.
The E1 protein of bovine papillomavirus (BPV) is a site-specific DNA binding protein that recognizes an 18-bp inverted repeat element in the viral origin of replication. Sequence-specific DNA binding function maps to the region from approximately amino acids 140 to 300, and isolated polypeptides containing this region have been shown to retain origin binding in vitro. To investigate the sequence and structural characteristics which contribute to sequence-specific binding, the primary sequence of this region was examined for conserved features. The BPV E1 DNA binding domain (E1DBD) contains three major hydrophilic domains (HR1, amino acids 179-191; HR2, amino acids 218 to 230; and HR3, amino acids 241 to 252), of which only HR1 and HR3 are conserved among papillomavirus E1 proteins. E1DBD proteins with lysine-to-alanine mutations in HR1 and HR3 were severely impaired for DNA binding function in vitro, while a lysine-to-alanine mutation in HR2 had a minimal effect on DNA binding. Mutation of adjacent threonine residues in HR1 (T187 and T188) revealed that these two amino acids made drastically different contributions to DNA binding, with the T187 mutant being severely defective for origin binding whereas the T188 mutant was only mildly affected. Helical wheel projections of HR1 predict that T187 is on the same helical face as the critical lysine residues whereas T188 is on the opposing face, which is consistent with their respective contributions to DNA binding activity. To examine E1 binding in vivo, a yeast one-hybrid system was developed. Both full-length E1 and the E1DBD polypeptide were capable of specifically interacting with the E1 binding site in the context of the yeast genome, and HR1 was also critical for this in vivo interaction. Overall, our results indicate that HR1 is essential for origin binding by E1, and the features and properties of HR1 suggest that it may be part of a recognition sequence that mediates specific E1-nucleotide contacts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号