首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are molecules which regulate the development and maintenance of specific functions in different populations of peripheral and central neurons, amongst them sensory neurons of neural crest and placode origin. Under physiological conditions NGF is synthesized by peripheral target tissues, whereas BDNF synthesis is highest in the CNS. This situation changes dramatically after lesion of peripheral nerves. As previously shown, there is a marked rapid increase in NGF mRNA in the nonneuronal cells of the damaged nerve. The prolonged elevation of NGF mRNA levels is related to the immigration of activated macrophages, interleukin-1 being the most essential mediator of this effect. Here we show that transsection of the rat sciatic nerve also leads to a very marked increase in BDNF mRNA, the final levels being even ten times higher than those of NGF mRNA. However, the time-course and spatial pattern of BDNF mRNA expression are distinctly different. There is a continuous slow increase of BDNF mRNA starting after day 3 post-lesion and reaching maximal levels 3-4 wk later. These distinct differences suggest different mechanisms of regulation of NGF and BDNF synthesis in non-neuronal cells of the nerve. This was substantiated by the demonstration of differential regulation of these mRNAs in organ culture of rat sciatic nerve and Schwann cell culture. Furthermore, using bioassays and specific antibodies we showed that cultured Schwann cells are a rich source of BDNF- and ciliary neurotrophic factor (CNTF)-like neurotrophic activity in addition to NGF. Antisera raised against a BDNF-peptide demonstrated BDNF-immunoreactivity in pure cultured Schwann cells, but not in fibroblasts derived from sciatic nerve.  相似文献   

2.
3.
Differential Regulation of Hippocampal Neurotrophins During Aging in Rats   总被引:10,自引:1,他引:9  
Abstract: Neurotrophins are a family of neurotrophic factors with considerable structural homology. We used sensitive and specific two-site enzyme immunoassays to assess age-associated changes in levels of three neurotrophins—nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3)—in the hippocampus of Fischer 344 rats. Expressions of these proteins and their mRNAs were compared in the same animals. More than 200 ng of BDNF per gram of tissue was detected in the hippocampus of 2-month-old rats. This amount was two and 100 times greater than that of NT-3 and NGF, respectively. The levels of BDNF and NT-3 increased further 2–6 months after birth, whereas NGF content declined during this period, and the altered protein levels of all three neurotrophins were maintained 6–18 months postnatally. In contrast to the patterns of protein expression, BDNF mRNA levels increased during both of these periods, and the NT-3 mRNA levels appeared to decline. Changes in the expression of BDNF mRNA and NGF protein were opposite to those reported to occur in Alzheimer's disease. These results suggest that, during normal aging in rats, neurotrophin expression is regulated independently at both the mRNA and posttranslational levels. Any deficiency in their regulation might contribute to neurodegenerative disorders.  相似文献   

4.
5.
The mRNAs of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) exhibit a similar, though not identical, regional and cellular distribution in the rodent brain. In situ hybridization experiments have shown that BDNF, like NGF, is predominantly expressed by neurons. The neuronal localization of the mRNAs of these two neurotrophic molecules raised the question as to whether neuronal activity might be involved in the regulation of their synthesis. After we had demonstrated that depolarization with high potassium (50 mM) resulted in an increase in the levels of both BDNF and NGF mRNAs in cultures of hippocampal neurons, we investigated the effect of a large number of transmitter substances. Kainic acid, a glutamate receptor agonist, was by far the most effective in increasing BDNF and NGF mRNA levels in the neurons, but neither N-methyl-D-aspartic acid (NMDA) nor inhibitors of the NMDA glutamate receptors had any effect. However, the kainic acid mediated increase was blocked by antagonists of non-NMDA receptors. Kainic acid also elevated levels of BDNF and NGF mRNAs in rat hippocampus and cortex in vivo. These results suggest that the synthesis of these two neurotrophic factors in the brain is regulated by neuronal activity via non-NMDA glutamate receptors.  相似文献   

6.
Expression of brain-derived neurotrophic factor (BDNF) mRNA is increased in the dorsal root ganglion (DRG) in response to peripheral inflammation. Nerve growth factor (NGF) from inflammatory tissue is thought to induce expression of BDNF. Recently, it was reported that the BDNF gene has eight non-coding exons that are transcribed independently into several splice variants. Expression of these splice variants in DRG neurons stimulated with NGF has not been studied. We examined changes in expression of BDNF splice variants in a rat model of peripheral inflammation and in cultured DRG neurons exposed to NGF. Total BDNF mRNA was increased by inflammation in vivo and by NGF in vitro. Among all splice variants, exon 1-9 showed the greatest increase in expression in both experiments. Our results indicate that exon 1-9 contributes to changes in total BDNF levels and may play an important role in the acute response of DRG to NGF.  相似文献   

7.
Both nerve growth factor (NGF) and pituitary adenylate cyclase activating polypeptide (PACAP) have neurotrophic effects on basal forebrain cholinergic neurons. They promote differentiation, maturation, and survival of these cholinergic neurons in vivo and in vitro. Here we report on the cooperative effects of NGF and PACAP on postnatal, but not embryonic, cholinergic neurons cultured from rat basal forebrain. Combined treatment with NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4), and PACAP induced an additive increase in choline acetyltransferase (ChAT) activity. There were no cooperative effects on the number of cholinergic neurons, suggesting that ChAT mRNA expression had been induced in each cholinergic neuron. Further analysis revealed that NGF and PACAP led to complementary induction of different ChAT mRNA species, thus enhancing total ChAT mRNA expression. These results explain the cooperative neurotrophic action of NGF and PACAP on postnatal cholinergic neurons.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) mRNA expression was studied in the hippocampus at various developmental stages in normal rats and following kainic acid (KA)-induced seizure activity. Systemic administration of KA strongly elevated BDNF mRNA levels in all hippocampal subregions after postnatal day 21. In contrast, even though KA induced intense behavioral seizure activity at postnatal day 8, the seizures were not associated with elevations of BDNF mRNA levels, indicating a clear dissociation between behavioral seizures and increases in BDNF mRNA levels and contradicting the view that BDNF mRNA expression is principally regulated by neuronal activity. In the dentate gyrus at postnatal day 13, intense BDNF mRNA expression was limited to a defined area at the border between granule cell and molecular layers, suggesting the possibility that segregation of BDNF mRNA into defined subcellular compartments may play a role in establishing the well-delineated patterns of innervation in the hippocampus.  相似文献   

9.
The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on beta-galactosidase (beta-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNF(lacZneo) mice). We find that beta-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of beta-gal in gamma-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB.  相似文献   

10.
The role of brain-derived neurotrophic factor (BDNF) in sensory hypersensitivity has been suggested; however the molecular mechanisms and signal transduction that regulate BDNF expression in primary afferent neurons during visceral inflammation are not clear. Here we used a rat model of cystitis and found that the mRNA and protein levels of BDNF were increased in the L6 dorsal root ganglia (DRG) in response to bladder inflammation. BDNF up-regulation in the L6 DRG was triggered by endogenous nerve growth factor (NGF) because neutralization of NGF with a specific NGF antibody reduced BDNF levels during cystitis. The neutralizing NGF antibody also subsequently reduced cystitis-induced up-regulation of the serine/threonine kinase Akt activity in L6 DRG. To examine whether the NGF-induced Akt activation led to BDNF up-regulation in DRG in cystitis, we found that in cystitis the phospho-Akt immunoreactivity was co-localized with BDNF in L6 DRG, and prevention of the endogenous Akt activity in the L6 DRG by inhibition of phosphoinositide 3-kinase (PI3K) with a potent inhibitor LY294002 reversed cystitis-induced BDNF up-regulation. Further study showed that application of NGF to the nerve terminals of the ganglion-nerve two-compartmented preparation enhanced BDNF expression in the DRG neuronal soma; which was reduced by pre-treatment of the ganglia with the PI3K inhibitor LY294002 and wortmannin. These in vivo and in vitro experiments indicated that NGF played an important role in the activation of Akt and subsequent up-regulation of BDNF in the sensory neurons in visceral inflammation such as cystitis.  相似文献   

11.
Brain-derived neurotrophic factor (BDNF) is a protein that allows the survival of specific neuronal populations. This study reports on the distribution of the BDNF mRNA in the adult mouse brain, where the BDNF gene is strongly expressed, using quantitative Northern blot analysis and in situ hybridization. All brain regions examined were found to contain substantial amounts of BDNF mRNA, the highest levels being found in the hippocampus followed by the cerebral cortex. In the hippocampus, which is also the site of highest nerve growth factor (NGF) gene expression in the central nervous system (CNS), there is approximately 50-fold more BDNF mRNA than NGF mRNA. In other brain regions, such as the granule cell layer of the cerebellum, the differences between the levels of BDNF and NGF mRNAs are even more pronounced. The BDNF mRNA was localized by in situ hybridization in hippocampal neurons (pyramidal and granule cells). These data suggest that BDNF may play an important role in the CNS for a wide variety of adult neurons.  相似文献   

12.
13.
Airway hyperreactivity is one of the hallmarks of hyperoxic lung injury in early life. As neurotrophins such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are potent mediators of neuronal plasticity, we hypothesized that neurotrophin levels in the pulmonary system may be disturbed by hyperoxic exposure. We therefore evaluated the effects of hyperoxia on the expression of BDNF, NGF, and their corresponding high-affinity receptors, TrkB and TrkA, respectively, in the lung of rat pups. Five-day-old Sprague-Dawley rat pups were randomized to hyperoxic or control groups and then continuously exposed to hyperoxia (>95% oxygen) or normoxia over 7 days. At both mRNA and protein levels, BDNF was detected in lung but not in trachea; its level was substantially enhanced in lungs from the hyperoxia-exposed rat pups. Distribution of BDNF mRNA by in situ hybridization indicates that peribronchial smooth muscle was the major source of increased BDNF production in response to hyperoxic exposure. Interestingly, hyperoxia-induced elevation of BDNF was not accompanied by any changes of NGF levels in lung. Furthermore, hyperoxic exposure increased the expression of TrkB in peribronchial smooth muscle but had no effect on the distribution of the specific NGF receptor TrkA. These findings indicate that hyperoxic stress not only upregulates BDNF at mRNA and protein levels but also enhances TrkB within peribronchial smooth muscle. However, there was no corresponding effect on NGF and TrkA receptors. We speculate that the increased level of BDNF may contribute to hyperoxia-induced airway hyperresponsiveness in early postnatal life.  相似文献   

14.
It has been shown that panaxydol (PND) can mimic the neurotrophic effect of nerve growth factor (NGF) normally secreted by Schwann cells (SC) and protect neurons against injury. To evaluate the effect of PND on hypoxia-induced SC death and expression and secretion of neurotrophic factors (NGF and brain derived neurotrophic factor (BDNF)), hypoxic SCs were cultured in vitro and then treated with PND (0-20 microM). The MTT (3(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, immunocytochemistry, ELISA and RT-PCR were employed to examine the effects. We found that hypoxia resulted in a significant decrease in SCs viability (MTT: 64+/-4.7% of control group) and nearly a 3.3-fold increase of intracellular level of active caspase-3. PND (5-20 microM) treatment significantly rescued the SCs from hypoxia-induced injury (85+/-8.2%; 92+/-8.6%; 87+/-7.3%) and reduced caspase-3 activity with the maximal effect occurred at 10 microM (P<0.01), reducing to about 1.6-fold of control level. Furthermore, PND treatment also enhanced NGF and BDNF mRNA levels in hypoxic SCs and promoted protein expression and secretion. BDNF mRNA in hypoxic SCs was restored to about 90% of normal level and NGF mRNA was elevated to 1.4-fold of control after 10 microM PND treatment. These observations showed that PND protects primary cultured SCs against hypoxia-induced injury and enhances NTF-associated activities.  相似文献   

15.
Triptolide (T10), an extract from the traditional Chinese herb, Tripterygium wilfordii Hook F (TWHF), has been shown to attenuate the rotational behavior induced by d-amphetamine and prevent the loss of dopaminergic neurons in the substantia nigra in rat models of Parkinson’s disease. To examine if the neuroprotective effect is mediated by its stimulation of production of neurotrophic factors from astrocytes, we investigated the effect of T10 on synthesis and release of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in rat astrocyte cultures. T10 did not affect the synthesis and release of either BDNF or GDNF. However, it significantly increased NGF mRNA expression. It also increased both intracellular NGF and NGF level in culture medium. These results indicate that the neuroprotective effect of T10 might be mediated, at least in part, via a stimulation of the production and release of NGF in astrocytes. Authors Bing Xue and Jian Jiao contributed equally to this work.  相似文献   

16.
Expression patterns of neurotrophic factor mRNAs in developing human teeth   总被引:5,自引:0,他引:5  
Neurotrophic factors regulate survival, differentiation, growth and plasticity in the nervous system. In addition, based on their specific and shifting temporospatial expression patterns, neurotrophic factors have been implicated in morphogenetic events during tooth development in rodents. To determine whether these findings in rodents could be related to humans, we have now studied nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), glial cell-line derived neurotrophic factor (GDNF), and neurturin (NTN) mRNA expression patterns in developing human teeth during gestational weeks 6.5-11. Using in situ hybridization histochemistry, we found distinct and specific patterns of neurotrophin and GDNF mRNA expression in the developing human teeth. NGF mRNA labeling was weak and confined predominantly to the dental papilla. BDNF mRNA labeling was stronger than NGF mRNA and was seen in the mesenchyme located lateral to the dental organ, as well as in epithelial structures (inner dental epithelium and enamel knot). NT-3 mRNA was observed in the dental papilla and in the area of the cervical loop. NT-4 mRNA was expressed in both oral and dental epithelia in all stages studied. GDNF mRNA was found in the dental follicle and at different sites in the inner dental epithelium. Weak NTN mRNA labeling was also found in the developing teeth. Based on these findings, we suggest that neurotrophins, GDNF and NTN might be involved in morphogenetic events during early stages of tooth development in humans. Protein gene product (PGP) 9.5-immunoreactive nerve fibers were observed in the dental follicle by 11 weeks coinciding with the labeling for neurotrophic factor mRNAs in this structure. This suggests that these neurotrophic factors might be involved in the innervation of dental structures. The rich expression of neurotrophic factors in developing dental tissues suggests that developing, or possibly adult, dental tissue might be used as an allograft source of trophic support for diseases of the nervous system.  相似文献   

17.
We have analyzed the regulation of brain-derived neurotrophic factor (BDNF) mRNA expression in the nigrostriatal system following neurotoxin ablation of striatal targets by means of kainate (KA) or quinolinic acid (QA) injections. Loss of nigral target cells in the striatum was accompanied by significant induction of BDNF mRNA levels in the ipsilateral substantia nigra (SN) at 12 and 24 h post lesion. Dual tyrosine hydroxylase (TH) and BDNF mRNA in situ hybridization (ISH) confirmed the dopaminergic nature of the BDNF mRNA expressing cells. Analysis of neuronal activity in terms of cFos mRNA expression demonstrated intense induction of this marker in the ipsilateral SN pars reticulata (SNPR), but not in SN pars compacta. Dual glutamic acid decarboxylase (GAD) and cFos mRNA ISH confirmed this view. Colchicine injections into the medial forebrain bundle to specifically disrupt neuronal trafficking between SN and striatum induced BDNF mRNA levels in the ipsilateral SNPC, thus demonstrating that nigral expression of BDNF mRNA is dependent of striatal target tissue. In addition, we found significant elevations of BDNF in the subthalamic nucleus following striatal excitotoxic lesion, which may bring novel roles of BDNF in the basal ganglia complex.  相似文献   

18.

Introduction

The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been identified in the human intervertebral disc (IVD) and have been implicated in the mechanisms associated with nerve ingrowth and nociception in degeneration of the IVD. The aim of the current study was to investigate an association between neurotrophin expression in the IVD and the severity of disc degeneration, including the effect of disc-related proinflammatory cytokines on neurotrophin and neuropeptide expression in cells derived from the human IVD.

Methods

Immunohistochemical analysis was performed to examine the expression of NGF, BDNF and their high-affinity receptors Trk-A and Trk-B in human IVD samples, divided into three categories: non-degenerate, moderate degeneration and severe degeneration. In order to study the effect of disc-related cytokines on neurotrophin/neuropeptide gene expression, nucleus pulposus cells derived from non-degenerate and degenerate IVD samples were seeded in alginate and were stimulated with either IL-1β or TNFα for 48 hours. RNA was extracted, cDNA was synthesised and quantitative real-time PCR was performed to examine the expression of NGF, BDNF and substance P.

Results

Immunohistochemistry showed expression of NGF and BDNF in the native chondrocyte-like cells in all regions of the IVD and in all grades of degeneration. Interestingly only BDNF significantly increased with the severity of degeneration (P < 0.05). Similar expression was observed for Trk-A and Trk-B, although no association with disease severity was demonstrated. In cultured human nucleus pulposus cells, stimulation with IL-1β led to significant increases in NGF and BDNF gene expression (P < 0.05). Treatment with TNFα was associated with an upregulation of substance P expression only.

Conclusion

Our findings show that both the annulus fibrosus and nucleus pulposus cells of the IVD express the neurotrophins NGF and BDNF, factors that may influence and enhance innervation and pain in the degenerate IVD. Expression of Trk-A and Trk-B by cells of the nondegenerate and degenerate IVD suggests an autocrine role for neurotrophins in regulation of disc cell biology. Furthermore, modulation of neurotrophin expression by IL-1β and modulation of substance P expression by TNFα, coupled with their increased expression in the degenerate IVD, highlights novel roles for these cytokines in regulating nerve ingrowth in the degenerate IVD and associated back pain.  相似文献   

19.
mRNA coding for brain-derived neurotrophic factor (BDNF) has been detected in cultured L929 fibroblasts, rat dermal fibroblasts, and sciatic nerve Schwann cells, as well as in rat skin. Medium conditioned by cultured fibroblasts and Schwann cells also stimulates neurite growth from retinal explants and promotes the survival in culture of BDNF-responsive sensory neurons; biological activity is abolished by antibodies raised against NGF. These results suggest that molecules with BDNF-like activity may be produced by cells in the peripheral nervous system and that the BDNF-like activity in fibroblasts and Schwann cells is derived from molecules immunologically related to NGF. In support of this concept, antibodies against NGF have been found to reduce the biological activity of recombinant BDNF in culture and to cross-react with BDNF on Western blots.  相似文献   

20.
C F Ibez  T Ebendal    H Persson 《The EMBO journal》1991,10(8):2105-2110
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are two members of a family of neurotrophic factors which show both overlapping and distinct neurotrophic activities. Using site-directed mutagenesis, chimeric molecules were constructed where different combinations of sequences from BDNF replaced the corresponding sequences in NGF. The resulting molecules were transiently expressed in COS cells and conditioned media containing the chimeric proteins were assayed for biological activity in explanted chick sympathetic, spinal and nodose ganglia. Our results show that the biological specificities of the two proteins are obtained by specific combinations of a set of sequences that differ between the two molecules. Some of these combinations allowed us to engineer molecules which display multiple neurotrophic activities recruited from both the NGF and BDNF proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号