首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MOTIVATION: Affymetrix GeneChip arrays are currently the most widely used microarray technology. Many summarization methods have been developed to provide gene expression levels from Affymetrix probe-level data. Most of the currently popular methods do not provide a measure of uncertainty for the expression level of each gene. The use of probabilistic models can overcome this limitation. A full hierarchical Bayesian approach requires the use of computationally intensive MCMC methods that are impractical for large datasets. An alternative computationally efficient probabilistic model, mgMOS, uses Gamma distributions to model specific and non-specific binding with a latent variable to capture variations in probe affinity. Although promising, the main limitations of this model are that it does not use information from multiple chips and does not account for specific binding to the mismatch (MM) probes. RESULTS: We extend mgMOS to model the binding affinity of probe-pairs across multiple chips and to capture the effect of specific binding to MM probes. The new model, multi-mgMOS, provides improved accuracy, as demonstrated on some bench-mark datasets and a real time-course dataset, and is much more computationally efficient than a competing hierarchical Bayesian approach that requires MCMC sampling. We demonstrate how the probabilistic model can be used to estimate credibility intervals for expression levels and their log-ratios between conditions. AVAILABILITY: Both mgMOS and the new model multi-mgMOS have been implemented in an R package, which is available at http://www.bioinf.man.ac.uk/resources/puma.  相似文献   

2.
3.
We consider a new frequentist gene expression index for Affymetrix oligonucleotide DNA arrays, using a similar probe intensity model as suggested by Hein and others (2005), called the Bayesian gene expression index (BGX). According to this model, the perfect match and mismatch values are assumed to be correlated as a result of sharing a common gene expression signal. Rather than a Bayesian approach, we develop a maximum likelihood algorithm for estimating the underlying common signal. In this way, estimation is explicit and much faster than the BGX implementation. The observed Fisher information matrix, rather than a posterior credibility interval, gives an idea of the accuracy of the estimators. We evaluate our method using benchmark spike-in data sets from Affymetrix and GeneLogic by analyzing the relationship between estimated signal and concentration, i.e. true signal, and compare our results with other commonly used methods.  相似文献   

4.
5.
The development of microarray technology offers the unprecedented possibility of studying the expression of thousands of genes in one experiment. Its exploitation in the glycobiology field will eventually allow the parallel investigation of the expression of many glycosyltransferases, which will ultimately lead to an understanding of the regulation of glycoconjugate synthesis. While numerous gene arrays are available on the market, e.g. the Affymetrix GeneChip arrays, glycosyltransferases are not adequately represented, which makes comprehensive surveys of their gene expression difficult. This chapter describes the main issues related to the establishment of a custom glycogenes array.  相似文献   

6.
Summaries of Affymetrix GeneChip probe level data   总被引:9,自引:0,他引:9  
High density oligonucleotide array technology is widely used in many areas of biomedical research for quantitative and highly parallel measurements of gene expression. Affymetrix GeneChip arrays are the most popular. In this technology each gene is typically represented by a set of 11–20 pairs of probes. In order to obtain expression measures it is necessary to summarize the probe level data. Using two extensive spike-in studies and a dilution study, we developed a set of tools for assessing the effectiveness of expression measures. We found that the performance of the current version of the default expression measure provided by Affymetrix Microarray Suite can be significantly improved by the use of probe level summaries derived from empirically motivated statistical models. In particular, improvements in the ability to detect differentially expressed genes are demonstrated.  相似文献   

7.
SUMMARY: The Affymetrix GeneChip Arabidopsis genome array has proved to be a very powerful tool for the analysis of gene expression in Arabidopsis thaliana, the most commonly studied plant model organism. VIZARD is a Java program created at the University of California, Berkeley, to facilitate analysis of Arabidopsis GeneChip data. It includes several integrated tools for filtering, sorting, clustering and visualization of gene expression data as well as tools for the discovery of regulatory motifs in upstream sequences. VIZARD also includes annotation and upstream sequence databases for the majority of genes represented on the Affymetrix Arabidopsis GeneChip array. AVAILABILITY: VIZARD is available free of charge for educational, research, and not-for-profit purposes, and can be downloaded at http://www.anm.f2s.com/research/vizard/ CONTACT: moseyko@uclink4.berkeley.edu  相似文献   

8.
MOTIVATION: Affymetrix GeneChips are common 3' profiling platforms for quantifying gene expression. Using publicly available datasets of expression profiles from human and mouse experiments, we sought to characterize features of GeneChip data to better compare and evaluate analyses for differential expression, regulation and clustering. We uncovered an unexpected order dependence in expression data that holds across a variety of chips in both human and mouse data. RESULTS: Order dependence among GeneChips affected relative expression measures pre-processed and normalized with the Affymetrix MAS5.0 algorithm and the robust multi-array average summarization method. The effect strongly influenced detection calls and tests for differential expression and can potentially significantly bias experimental results based on GeneChip profiling.  相似文献   

9.
MOTIVATION: Experimental limitations have resulted in the popularity of parametric statistical tests as a method for identifying differentially regulated genes in microarray data sets. However, these tests assume that the data follow a normal distribution. To date, the assumption that replicate expression values for any gene are normally distributed, has not been critically addressed for Affymetrix GeneChip data. RESULTS: The normality of the expression values calculated using four different commercial and academic software packages was investigated using a data set consisting of the same target RNA applied to 59 human Affymetrix U95A GeneChips using a combination of statistical tests and visualization techniques. For the majority of probe sets obtained from each analysis suite, the expression data showed a good correlation with normality. The exception was a large number of low-expressed genes in the data set produced using Affymetrix Microarray Suite 5.0, which showed a striking non-normal distribution. In summary, our data provide strong support for the application of parametric tests to GeneChip data sets without the need for data transformation.  相似文献   

10.
The successful use of gene expression microarrays in basic research studies has spawned interest in the use of this technology for clinical trial and population-based studies, but cost, complexity of sample processing and tracking, and limitations of sample throughput have restricted their use for these very large-scale investigations. The Affymetrix GeneChip Plate Array System addresses these concerns and could facilitate larger studies if the data prove to be comparable to industry-standard cartridge arrays. Here we present a comparative evaluation of performance between Affymetrix GeneChip Human 133A cartridge and plate arrays with an emphasis on the assessment of systematic variation and its impact on log ratio data. This study utilized two standardized control RNAs on four independent lots of plate and cartridge arrays. We found that HT plate arrays showed improved specificity and were more reproducible over a wide intensity range, but cartridge arrays exhibit better sensitivity. Not surprisingly, artifactual changes due to positional effects were detectable on plate arrays, but were generally small in number and magnitude and in practice may be removed using standard fold-change and p-value thresholds. Overall, log ratio data between cartridges and plate arrays were remarkably concordant. We conclude that HT arrays offer significant improvements over cartridge arrays for large-scale studies.  相似文献   

11.
12.
13.
Novak JP  Sladek R  Hudson TJ 《Genomics》2002,79(1):104-113
Large-scale gene expression measurement techniques provide a unique opportunity to gain insight into biological processes under normal and pathological conditions. To interpret the changes in expression profiles for thousands of genes, we face the nontrivial problem of understanding the significance of these changes. In practice, the sources of background variability in expression data can be divided into three categories: technical, physiological, and sampling. To assess the relative importance of these sources of background variation, we generated replicate gene expression profiles on high-density Affymetrix GeneChip oligonucleotide arrays, using either identical RNA samples or RNA samples obtained under similar biological states. We derived a novel measure of dispersion in two-way comparisons, using a linear characteristic function. When comparing expression profiles from replicate tests using the same RNA sample (a test for technical variability), we observed a level of dispersion similar to the pattern obtained with RNA samples from replicate cultures of the same cell line (a test for physiological variability). On the other hand, a higher level of dispersion was observed when tissue samples of different animals were compared (an example of sampling variability). This implies that, in experiments in which samples from different subjects are used, the variation induced by the stimulus may be masked by non-stimuli-related differences in the subjects' biological state. These analyses underscore the need for replica experiments to reliably interpret large-scale expression data sets, even with simple microarray experiments.  相似文献   

14.
15.
MOTIVATION: The introduction of oligonucleotide DNA arrays has resulted in much debate concerning appropriate models for the measurement of gene expression. By contrast, little account has been taken of the possibility of identifying the physical imperfections in the raw data. RESULTS: This paper demonstrates that, with the use of replicates and an awareness of the spatial structure, deficiencies in the data can be identified, the possibility of their correction can be ascertained and correction can be effected (by use of local scaling) where possible. The procedures were motivated by data from replicates of Arabidopsis thaliana using the GeneChip ATH1-121501 microarray. Similar problems are illustrated for GeneChip Human Genome U133 arrays and for the newer and larger GeneChip Wheat Genome microarray. AVAILABILITY: R code is freely available on request.  相似文献   

16.
17.
We present a framework for detecting probes in oligonucleotide microarrays that may add significant error to measurements in hybridization experiments. Four types of so-called degenerate probe behavior are considered: secondary structure formation, self-dimerization, cross-hybridization, and dimerization. The framework uses a well-established model for computing the free energy of nucleic acid sequence hybridization and a novel method for the detection of patterns in hybridization experiment data. Our primary result is the identification of unique patterns in hybridization experiment data that are shown to correlate with each type of degenerate probe behavior. A support function for identifying degenerate probes from a large set of hybridization experiments is given and some preliminary experimental results are given for the Affymetrix HuGeneFL GeneChip. Finally, we show a strong relationship between the Affymetrix discrimination measure for a probe and the free-energy estimate from theoretical models of hybridization. In particular, probes on the HuGeneFL GeneChip with high free-energy estimates (weak hybridization) have almost always approximately zero discrimination. The framework can be applied to any Affymetrix oligonucleotide array, and the software is made freely available to the community.  相似文献   

18.
Careful analysis of microarray probe design should be an obligatory component of MicroArray Quality Control (MACQ) project [Patterson et al., 2006; Shi et al., 2006] initiated by the FDA (USA) in order to provide quality control tools to researchers of gene expression profiles and to translate the microarray technology from bench to bedside. The identification and filtering of unreliable probesets are important preprocessing steps before analysis of microarray data. These steps may result in an essential improvement in the selection of differentially expressed genes, gene clustering and construction of co-regulatory expression networks. We revised genome localization of the Affymetrix U133A&B GeneChip initial (target) probe sequences, and evaluated the impact of erroneous and poorly annotated target sequences on the quality of gene expression data. We found about 25% of Affymetrix target sequences overlapping with interspersed repeats that could cause cross-hybridization effects. In total, discrepancies in target sequence annotation account for up to approximately 30% of 44692 Affymetrix probesets. We introduce a novel quality control algorithm based on target sequence mapping onto genome and GeneChip expression data analysis. To validate the quality of probesets we used expression data from large, clinically and genetically distinct groups of breast cancers (249 samples). For the first time, we quantitatively evaluated the effect of repeats and other sources of inadequate probe design on the specificity, reliability and discrimination ability of Affymetrix probesets. We propose that only functionally reliable Affymetrix probesets that passed our quality control algorithm (approximately 86%) for gene expression analysis should be utilized. The target sequence annotation and filtering is available upon request.  相似文献   

19.

Background  

The Affymetrix GeneChip technology uses multiple probes per gene to measure its expression level. Individual probe signals can vary widely, which hampers proper interpretation. This variation can be caused by probes that do not properly match their target gene or that match multiple genes. To determine the accuracy of Affymetrix arrays, we developed an extensive verification protocol, for mouse arrays incorporating the NCBI RefSeq, NCBI UniGene Unique, NIA Mouse Gene Index, and UCSC mouse genome databases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号