首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of temperature and aging on the frequency of nondisjunction inDrosophila melanogaster eggs were investigated. At 25°C offspring arising from 3–5 day old control females had a nondisjunction frequency (0.943/1000 offspring) very similar to that for females who were 24–26 or 27 days old when eggs were collected (1.044/1000 offspring). When females were aged for the same length of time at 10°C the frequency of nondisjunctional exceptions increased to 3.368 per 1000 offspring. These results indicate that aging the females at 25°C does not increase the nondisjunction rate over that obtained from non-aged females raised at 25°. The increase in nondisjunction frequencies when the females were aged at 10°C reflects an influence of temperature on the meiotic process inDrosophila melanogaster. At the low temperature eggs were also aged since few or no eggs were laid during the aging process. Thus in addition to a temperature effect on nondisjunction rates at 10°C there may also be an age effect.  相似文献   

2.
After feeding FUdR (5-fluorodeoxyuridine) to female Drosophila melanogaster, highly significant increases in the frequencies of both XO and XXY exceptions were observed in their offspring. The XXY exceptions and part of the XO exceptions result from maternal nondisjunction of the X-chromosomes. Part of the XO exceptions can be assumed to be produced by X-chromosome breakage followed by bridge formation. The analysis of the brood pattern observed suggests that interphase cells (premeiotic oocytes, oogonia) are especially sensitive in the induction of both XO and XXY exceptions by FUdR. In addition, and contrary to the results obtained with other objects, FUdR seems to induce chromosomal damage (presumably chromatid and/or isochromatid breaks) not only in interphase but also in prophase cells. The mechanisms of the induction of X-chromosomal aneuploids by FUdR are discussed.  相似文献   

3.
The effect of ethanol on chromosomal segregation was investigated in Drosophila melanogaster females homozygous for a structurally normal X chromosome marked with the recessive mutation yellow (y/y). For chronic treatments the females were kept from eclosion in food supplemented with 10% or 15% (v/v) ethanol, mated 24 or 48 h later to wild-type males and brooded in freshly prepared ethanol food. For the acute treatments 24- or 48-h-old females were exposed for 60 min to a 75% (v/v) ethanol solution by means of soaked tissue paper placed at the bottom of regular culture vials and brooded daily after mating. The results obtained show that: (1) both treatments significantly increased the frequency of X-chromosome nondisjunction; (2) after acute treatment this effect declined in later broods; (3) the yield of malformed flies in the progeny of acutely treated females was significantly higher than control values and also declined in later broods; (4) ovary analysis showed that chronic ethanol treatments caused a cessation of egg production. The induction pattern of nondisjunction and malformed flies is interpreted as giving support to the assumption that these effects may result from a direct action of ethanol. Ethanol toxicity was assessed by exposing females of different ages to a 50% or a 75% (v/v) solution for 60 min and counting the surviving flies 24 h later. The surviving fraction decreased steeply from 1-day-old (100%) to 5-day-old females (1.8%). It is suggested that toxicity may have been due to the action of a metabolite of ethanol, probably acetaldehyde.  相似文献   

4.
Apomictic plants often produce pollen that can function in crosses with related sexuals. Moreover, facultative apomicts can produce some sexual offspring. In dandelions, Taraxacum, a sexual-asexual cycle between diploid sexuals and triploid apomicts, has been described, based on experimental crosses and population genetic studies. Little is known about the actual hybridization processes in nature. We therefore studied the sexual-asexual cycle in a mixed dandelion population in the Netherlands. In this population, the frequencies of sexual diploids and triploids were 0.31 and 0.68, respectively. In addition, less than 1% tetraploids were detected. Diploids were strict sexuals, triploids were obligate apomicts, but tetraploids were most often only partly apomictic, lacking certain elements of apomixis. Tetraploid seed fertility in the field was significantly lower than that of apomictic triploids. Field-pollinated sexual diploids produced on average less than 2% polyploid offspring, implying that the effect of hybridization in the 2x-3x cycle in Taraxacum will be low. Until now, 2x-3x crosses were assumed to be the main pathway of new formation of triploid apomicts in the sexual-asexual cycle in Taraxacum. However, tetraploid pollen donors produced 28 times more triploid offspring in experimental crosses with diploid sexuals than triploid pollen donors. Rare tetraploids may therefore act as an important bridge in the formation of new triploid apomicts.  相似文献   

5.
Fuyama Y 《Genetics》1986,114(2):495-509
A strain of Drosophila melanogaster, named gyn-F9, can reproduce by gynogenesis. On mating with a male sterile mutant, ms( 3)K81, gyn-F9 females produced impaternate progeny at a rate of about 15 flies per female, which was almost 2000 times as frequent as that of the control. When the females were mated with normally fertile males, the number of offspring varied extremely from parent to parent, with average fertility being much lower than that of normal females. Nearly one-third of these bisexual progeny were either triploid females or intersexes. Among the rest of the progeny, some were diploid impaternates having developed without syngamy. The gynogenetic property of gyn-F9 is primarily governed by a few genes, most likely two recessive genes, one each located on the second and third chromosomes. The impaternates were found to restore their diploidy by the fusion of two nonsister nuclei out of the four egg pronuclei which result from the second meiotic division (central fusion). Although nondisjunction occurs frequently in the meiosis of gyn-F9, this is unlikely to bring about an appreciable number of diploid gametes developing into impaternates. Possible mechanisms of the evolutionary origin of parthenogenesis are discussed in relation to these findings.  相似文献   

6.
Eggs and larvae produced by diploid, triploid, and tetraploid females collected from breeding ponds on Pelee Island in Lake Erie were studied to examine the reproductive mechanism. No instance of parthenogenesis was found as all examined females required sperm to produce viable progeny. Diploid females produced diploid and triploid larvae, triploid females produced triploid and tetraploid larvae, and tetraploid females produced triploid and tetraploid larvae. The majority of the eggs produced by hybrid females do not develop or do not complete embryogenesis. Electrophoretic examination of females and their offspring demonstrate that the male genome is being incorporated in reduced as well as unreduced eggs produced by all three ploidy classes of females. The elevation of ploidy among Pelee Island Ambystoma is attributed to sperm incorporation in unreduced eggs. Triploid as well as tetraploid individuals are constantly being produced. A critical examination of the literature on parthenogenetic or gynogenetic modes of reproduction in North America Ambystoma hybrids shows no conclusive evidence supporting these modes and it is suggested that the reproductive mechanism found among Pelee Island female hybrids may be more generally applied to other hybrid Ambystoma populations.  相似文献   

7.
Summary In hymenopteran species, males are usually haploid and females diploid. However, in species that have complementary sex determination (CSD), diploid males arise when a female produces offspring that are homozygous at the sex-determining locus. Although diploid males are often sterile, in some species they have been shown to produce diploid sperm, thus producing triploid daughters if they mate successfully. Diploid males have been observed in very few species of social wasps, and we know of no published reports of triploid females. In this paper, we review the existing literature on diploid males and triploid females in the Hymenoptera, and report the observation of triploid females in three species of Polistes paper wasps. Although polyploid offspring may be produced parthenogenetically, the more likely scenario is that Polistes wasps have CSD and produce diploid males via homozygosity at the sex-determining locus. Therefore, female triploidy indicates that diploid males do exist in Polistes species where they are presumed to be absent, and are likely to be even more frequent among species that have experienced a genetic bottleneck. We conclude by cautioning against the assumption of a selective advantage to the production of early males, and by discussing the implications of male diploidy and female triploidy for measurement of sex ratio investment and assumptions of reproductive skew theory.Received 5 December 2003; revised 20 March 2004; accepted 19 April 2004.  相似文献   

8.
Colcemid, a chemical closely related to colchicine, was fed to Drosophila melanogaster females (0.0001 and 0.0005%, respectively). In the F1 the frequency of aneuploid males (XO karyotype) and aneuploid females (either of the XXY or of the XXXY karyotype, with 2 and 3 sets of autosomes, respectively) was significantly higher than in the controls as shown by genetical methods supplemented by cytological tests. A consistent brood pattern effect was observed, possibly but not necessarily reflecting differential stage sensitivity to the action of colcemid. It seems plausible to assume that most of the aneuploid exceptions were produced via colcemid-induced spindle defects leading to lagging of the X-chromosome. Exclusion of the lagging X from the pronucleus (or its precursors) would yield XO males, its inclusion would yield XXY females. Definitely more XO than XXY exceptions were observed.  相似文献   

9.
The classical balance concept of sex determination in Drosophila states that the X-chromosome carries dispersed female-determining factors. Besides, a number of autosomal genes are known that, when mutant, transform chromosomal females (XX) into pseudomales (tra), or intersexes (ix, dsx, dsx). To test whether large duplications of the X-chromosome have a feminizing effect on the sexual phenotype of these mutants, we constructed flies that were mutant for ix, dsx, dsx or tra and had two X-chromosomes plus either a distal or a proximal half of an X-chromosome. These or even smaller X-chromosomal fragments had a strong feminizing effect when added to triploid intersexes (XX; AAA). In the mutants, however, no shift towards femaleness was apparent. We conclude that enhancing the female determining signal is ineffective in flies that are mutant for an autosomal sex determining gene, and therefore, that these genes are under hierarchical control of the signal given by the X:A ratio. Parallels between sex-determining and homeotic genes are drawn.  相似文献   

10.
The dynamics of polar body release are important for creating polyploid shellfish. For producing triploids, these dynamics concern meiosis in diploid eggs and are well understood. For creating tetraploids, eggs from triploids are employed and the dynamics, variation, and environmental influences upon polar body release are less studied. We investigated the effects of several agents on the timing of 50% first polar body (PB1) release in eggs of triploids. PB1 release is generally slower in triploid eggs than diploid ones at 26 degrees C. Lowering the temperature (from 26 to 19 degrees C) had a marked effect on timing of 50% PB1 in both diploid and triploid eggs. While lower temperature merely slowed development in diploid eggs, it nearly halted it in triploid eggs. At any temperature, the variability in 50% PB1 release was much higher in triploid eggs than diploid ones; this variation occurred both within eggs from individual females and among eggs from different females. The amount of time eggs remain in seawater between the time they are stripped and fertilized (or time of hydration) also affected rate of meiosis. In triploid eggs, the average time necessary for the expulsion of 50% PB1 was 23 min post-fertilization (PF) for 75 min of hydration versus 29 min PF for 35 min. However, increasing the time of hydration had no effect on the variability in the timing among females. Serotonin also had no effect on the dynamics of polar body release in triploids. Variability among triploid females in timing of meiosis cannot be improved with any treatments we tried. Consequently we recommend that treatments of triploid eggs to produce tetraploids incorporate a single female at a time.  相似文献   

11.
12.
In hymenopterans, males are normally haploid (1n) and females diploid (2n), but individuals with divergent ploidy levels are frequently found. In species with ‘complementary sex determination’ (CSD), increasing numbers of diploid males that are often infertile or unviable arise from inbreeding, presenting a major impediment to biocontrol breeding. Non‐CSD species, which are common in some parasitoid wasp taxa, do not produce polyploids through inbreeding. Nevertheless, polyploidy also occurs in non‐CSD Hymenoptera. As a first survey on the impacts of inbreeding and polyploidy of non‐CSD species, we investigate life‐history traits of a long‐term laboratory line of the parasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) (‘Whiting polyploid line’) in which polyploids of both sexes (diploid males, triploid females) are viable and fertile. Diploid males produce diploid sperm and virgin triploid females produce haploid and diploid eggs. We found that diploid males did not differ from haploid males with respect to body size, progeny size, mate competition, or lifespan. When diploid males were mated to many females (without accounting for mating order), the females produced a relatively high proportion of male offspring, possibly indicating that these males produce less sperm and/or have reduced sperm functionality. In triploid females, parasitization rate and fecundity were reduced and body size was slightly increased, but there was no effect on lifespan. After one generation of outbreeding, lifespan as well as parasitization rate were increased, and a body size difference was no longer apparent. This suggests that outbreeding has an effect on traits observed in an inbred polyploidy background. Overall, these results indicate some phenotypic detriments of non‐CSD polyploids that must be taken into account in breeding.  相似文献   

13.
Autopolyploidization is considered to play an important role in plant evolution. In polyploidization, the polyploid evolves from the original diploid cytotype, in which the triploid state is considered to mediate the process (triploid bridge). Nevertheless, the fitness of triploid individuals seems to be too low to facilitate the polyploidization process (triploid block). The evolutionary condition of autopolyploidy was analyzed using a mathematical model focusing on the role of parthenogenesis in triploid and tetraploid individuals. In addition, offspring were assumed to arise by sexual reproduction by conjugations between haploid, diploid, and triploid gametes produced by diploid, tetraploid, and triploid individuals. According to the analysis, even if triploid block suppresses the fitness of sexually produced triploids, the polyploidization process can proceed when parthenogenesis occurs frequently. If only triploids frequently reproduce parthenogenetically, the evolutionary consequences tend to depend on the fitness of the tetraploid individuals. On the basis of a predetermined parameter set, if tetraploid fitness is relatively low, all three ploidies can coexist. Otherwise, tetraploidization occurs. In this case, triploid parthenogenesis promotes not only triploidization but also tetraploidization. However, if both triploids and tetraploids frequently reproduce parthenogenetically, the ploidy levels with the highest fitness are likely to dominate in the population through direct competition among cytotypes.  相似文献   

14.
Although the hymenopteran sex-determining mechanism generally results in haploid males and diploid females, diploid males can be produced via homozygosity at the sex-determining locus. Diploid males have low fitness because they are effectively sterile or produce presumably sterile triploid offspring. Previously, triploid females were observed in three species of North American Polistes paper wasps, and this was interpreted as indirect evidence of diploid males. Here we report what is, to our knowledge, the first direct evidence: four of five early male-producing Polistes dominulus nests from three populations contained diploid males. Because haploid males were also found, however, the adaptive value of early males cannot be ignored. Using genetic and morphological data from triploid females, we also present evidence that both diploid males and triploid females remain undetected throughout the colony cycle. Consequently, diploid male production may result in a delayed fitness cost for two generations. This phenomenon is particularly relevant for introduced populations with few alleles at the sex-determining locus, but cannot be ignored in native populations without supporting genetic data. Future research using paper wasp populations to test theories of social evolution should explicitly consider the potential impacts of diploid males.  相似文献   

15.
Quantitative cytogenetical analysis has been used to study the synapsis of D. melanogaster neuroblast mitotic chromosomes from normal females, flies with heterozygous deletions, duplications or inversions in the heterochromatic regions of chromosome 2 and in triploid females. In all these genotypes chromocentric fusion of heterochromatic regions of heterologous chromosomes is observed. Eu- and heterochromatic regions of homologous chromosomes are intimately paired at the same time during the cell cycle. The structural rearrangements lead to reduced frequencies of chromocentric association as well as of homologous synapsis compared with the frequencies in the wild-type. The results obtained are discussed with respect to the general problem of the homologous interaction of chromosomes and the significance of heterochromatin for these processes.  相似文献   

16.
Loaches (Misgurnus anguillicaudatus) were collected from 35 localities in Japan and assayed by flow cytometry to determine ploidy status. No tetraploids were found, with samples from 33 localities having no or few (1.2–3.2%) triploids. Samples collected from Ichinomiya Town, Aichi Prefecture, showed a relatively high rate of triploidy (7.7%). Samples collected from a fish farm in Hirokami Village, Niigata Prefecture, also showed high proportions of triploids (2.0–15.8%), these triploid males being sterile, but the females producing both large-sized triploid and small-sized haploid eggs. Such eggs developed bisexually rather than gynogenetically, giving rise to viable tetraploid and diploid offspring after normal fertilization. Of eight diploid females obtained from the same locality, one produced a high incidence of viable diploid gynogens (55%) after gynogenetic induction by fertilization with UV-irradiated spermatozoa. These observations indicated the presence of diploid fish which produced both diploid and haploid eggs. Thus, triploid and diploid individuals were also produced after fertilization with haploid spermatozoa. These results suggested that the occurrence of such unreduced eggs may be a cause of natural polyploidization in this species.  相似文献   

17.
Liu S  Qin Q  Xiao J  Lu W  Shen J  Li W  Liu J  Duan W  Zhang C  Tao M  Zhao R  Yan J  Liu Y 《Genetics》2007,176(2):1023-1034
This study provides genetic evidences at the chromosome, DNA content, DNA fragment and sequence, and morphological levels to support the successful establishment of the polyploid hybrids of red crucian carp x blunt snout bream, which belonged to a different subfamily of fish (Cyprininae subfamily and Cultrinae subfamily) in the catalog. We successfully obtained the sterile triploid hybrids and bisexual fertile tetraploid hybrids of red crucian carp (RCC) (female symbol) x blunt snout bream (BSB) (male symbol) as well as their pentaploid hybrids. The triploid hybrids possessed 124 chromosomes with two sets from RCC and one set from BSB; the tetraploid hybrids had 148 chromosomes with two sets from RCC and two sets from BSB. The females of tetraploid hybrids produced unreduced tetraploid eggs that were fertilized with the haploid sperm of BSB to generate pentaploid hybrids with 172 chromosomes with three sets from BSB and two sets from RCC. The ploidy levels of triploid, tetraploid, and pentaploid hybrids were confirmed by counting chromosomal number, forming chromosomal karyotype, and measuring DNA content and erythrocyte nuclear volume. The similar and different DNA fragments were PCR amplified and sequenced in triploid, tetraploid hybrids, and their parents, indicating their molecular genetic relationship and genetic markers. In addition, this study also presents results about the phenotypes and feeding habits of polyploid hybrids and discusses the formation mechanism of the polyploid hybrids. It is the first report on the formation of the triploid, tetraploid, and pentaploid hybrids by crossing parents with a different chromosome number in vertebrates. The formation of the polyploid hybrids is potentially interesting in both evolution and fish genetic breeding.  相似文献   

18.
One of the weak singed (snw) mutations, induced by the 31.1 MRF in the X-chromosome of a laboratory strain, is highly unstable, often changing to either a strong expression (snst) or reverting to wild type (sn+). The present study shows that the X-chromosome carrying the (snw) mutation and the X-chromosome carrying one of the snst alleles derived from the snw mutation generate different frequencies of deletions associated with the w locus. Moreover, they produce different frequencies of mutations associated with the w locus in males after the reintroduction of the 31.1 MRF second chromosome. The occurrence of the deletions and the induction of the mutations are positively correlated and increase when flies are raised at a higher temperature. These data indicate that the induction of the w mutations follows the generation of chromosome breaks in the w locus. The break-points of the recovered deletions occurred in specific sites in the 3C subdivision. Furthermore both snw and snst X-chromosomes induce different frequencies of non-disjunction in females depending on the culture temperature and the genetic background. The present data also show that the 23.5 MRF second chromosome which exhibits specific differences in its activities from the 31.1 MRF is unable to induce w mutations. This fact supports our previous indications that the 31.1 MRF and the 23.5 MRF are not identical.  相似文献   

19.
Based on studies of the influence of X-chromosomes on the viability of Drosophila melanogaster exposed to cadmium, and on the role of X-linked genes on copper homeostasis, we examined the effect of copper sulfate (CuSO4) on offspring viability using three independent, inbred D. melanogaster crosses (ensuring identical autosomes for males and females within each cross). Each cross was performed with attached X-chromosome females and males with a single X-chromosome. As female D. melanogaster have less metallothionein RNA expression than males, we predicted fewer female offspring than male offspring in crosses exposed to CuSO4, even though females have two copies of X-chromosome genes, possibly resulting in overdominant heterozygosity. In two of three crosses, CuSO4 caused significantly higher numbers of male offspring compared to female offspring. We hypothesized that these gender-based viability differences to copper exposure are caused by X-chromosome ploidy and X-linked genetic variation affecting metallothionein expression. Observed differential offspring viability responses among crosses to copper exposure also showed that different genetic backgrounds (autosomal and/or X-chromosome) can result in significant differences in heavy metal and metallothionein regulation. These results suggest that the effect of copper on offspring viability depends on both genetic background and gender, as both factors can affect the regulation of metallothionein proteins as well as homeostasis of biologically necessary heavy metals.  相似文献   

20.
The hybrid minnow Squalius alburnoides comprises diploid and polyploid forms with altered modes of reproduction. In the present paper, we report a cross where a triploid female generated both large, triploid and small, haploid eggs simultaneously, which were fertilized with S. pyrenaicus sperm. Although the large eggs were rarer (15%), they originated offspring with higher survivorship, so that tetraploids were dominant among the surviving siblings. The cross yielded apparently all female progeny. Inheritance patterns were inferred using four microsatellite markers and NORs (Nucleolus Organizer Regions) phenotypes, and suggested that haploid eggs were probably produced by an atypical hybridogenesis, in which the elimination of the unmatched genome permitted random segregation and recombination between the homospecific genomes, while the triploid eggs were clonal. The present results suggest that the occurrence of triploid unreduced eggs may be a new route for the natural tetraploidization in the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号