首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers U03104 and L22338.  相似文献   

2.
We studied population polymorphism at a major histocompatibility complex (MHC) class II beta gene in the deer mouse (Peromyscus maniculatus). We found that: (i) a single population of P. maniculatus has significantly higher levels of DNA and protein sequence diversity than worldwide samples from homologous genes in other taxa, including humans and mice; and (ii) the genealogy of allelic sequences in P. maniculatus deviates significantly from theoretical expectation under a model of symmetric balancing selection, in that alleles are relatively more divergent than expected. We suggest that the observation of high levels of pairwise allelic sequence divergence and deviation of the genealogy from theoretical expectation in P. maniculatus together provide support for a divergent allele advantage model for the maintenance of MHC polymorphism.  相似文献   

3.
MHC-dependent CD8(+) T cell responses have been associated with control of viral replication and slower disease progression during lentiviral infections. Pig-tailed macaques (Macaca nemestrina) and rhesus monkeys (Macaca mulatta), two nonhuman primate species commonly used to model HIV infection, can exhibit distinct clinical courses after infection with different primate lentiviruses. As an initial step in assessing the role of MHC class I restricted immune responses to these infections, we have cloned and characterized classical MHC class I genes of pig-tailed macaques and have identified 19 MHC class I alleles (Mane) orthologous to rhesus macaque MHC-A, -B, and -I genes. Both Mane-A and Mane-B loci were found to be duplicated, and no MHC-C locus was detected. Pig-tailed and rhesus macaque MHC-A alleles form two groups, as defined by 14 polymorphisms affecting mainly their B peptide-binding pockets. Furthermore, an analysis of multiple pig-tailed monkeys revealed the existence of three MHC-A haplotypes. The distribution of these haplotypes in various Old World monkeys provides new insights about MHC-A evolution in nonhuman primates. An examination of B and F peptide-binding pockets in rhesus and pig-tailed macaques suggests that their MHC-B molecules present few common peptides to their respective CTLs.  相似文献   

4.
To evaluate the polymorphism and conservation of the major histocompatibility complex class Ib molecule Qa1 in wild mouse populations, we determined the nucleotide sequence of exons 1–3 of Qa1 of eight mouse haplotypes derived from wild mice, including Mus musculus domesticus, M. m. castaneus, M. m. bactrianus, and M. spretus, as well as two t haplotypes. Our data identify eight new alleles of Qa1. Taken together with previously published data on Qa1 among the common laboratory inbred strains, and in agreement with cytotoxic T-lymphocyte, serological, and biochemical data, these results further confirm the existence of two families of Qa1 molecules, Qa1a-like and Qa1b-like, and illuminate the extreme conservation of the peptide-binding region of these molecules, even across species.The wild mouse Qa1 nucleotide sequences are available from GenBank at accession numbers AF100695–703  相似文献   

5.
6.
The high-affinity receptor for IgG (CD64 or FcgammaRI) is constitutively expressed exclusively on professional APCs (monocytes, macrophages, and dendritic cells). When Ag is targeted specifically to FcgammaRI, Ag presentation is markedly enhanced, although the mechanism of this enhancement is unknown. In an effort to elucidate the pathways involved in FcgammaRI targeting, we developed a model targeted Ag using enhanced green fluorescent protein (eGFP). This molecule, wH22xeGFP, consists of the entire humanized anti-FcgammaRI mAb H22 with eGFP genetically fused to the C-terminal end of each CH3 domain. wH22xeGFP binds within the ligand-binding region by its Fc end, as well as outside the ligand-binding region by its Fab ends, thereby cross-linking FcgammaRI. Confocal microscopy studies revealed that wH22xeGFP was rapidly internalized by the high-FcgammaRI-expressing cell line U937 10.6, but did not associate with intracellular proteins Rab4, Rab5a, or Lamp-1, suggesting that the targeted fusion protein was not localized in early endosomes, recycling vesicles, or lysosomes. Interestingly, wH22xeGFP was found colocalized with intracellular MHC class I, suggesting that FcgammaRI-targeted Ags may converge upon a class I processing pathway. These data are in agreement with studies in the mouse showing that FcgammaRI targeting can lead to Ag-specific activation of cytotoxic T cells. Data obtained from these studies should lead to a better understanding of how Ags targeted to FcgammaRI are processed and under what conditions they lead to presentation of antigenic peptides in MHC class I, as a foundation for the use of FcgammaRI-targeted Ags as vaccines.  相似文献   

7.
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.  相似文献   

8.
9.
We have determined the structure and organization of the entire Qa family of class I genes from the major histocompatibility complex of the C3H mouse. Restriction maps of overlapping lambda and cosmid clones reveal that there are only five Qak genes: Q1k, Q2k, Q4k, Q10k and a Q5/9 hybrid, presumably generated by unequal homologous recombination. The resulting deletion of Q6-Q9 is consistent with the Qa-2null phenotype of this mouse strain. We have sequenced the Qak genes, and predict that each may encode a class I molecule with a structure comparable with that proposed for the transplantation antigens. Furthermore, these Qa products should be able to bind peptides and interact with appropriate T-cell receptors. Interestingly, in comparing Qak and H-2k sequences, we find limited evidence of interlocus gene conversion between Qa and H-2 loci, suggesting that the Qa genes are not likely to serve as a reservoir of genetic information for the generation of H-2 diversity within this haplotype.  相似文献   

10.
The HLA-CW3 gene contained in a cosmid clone identified by transfection expression experiments has been completely sequenced. This provides, for the first time, data on the structure of HLA-C locus products and constitutes, together with that of the gene coding for HLA-A3, the first complete nucleotide sequences of genes coding for serologically defined class I HLA molecules. In contrast to the organisation of the two class I HLA pseudogenes whose sequences have previously been determined, the sequence of the HLA-CW3 gene reveals an additional cytoplasmic encoding domain, making the organisation of this gene very similar to that of known H-2 class I genes and also the HLA-A3 gene. The deduced amino acid sequences of HLA-CW3 and HLA-A3 now allow a systematic comparison of such sequences of HLA class I molecules from the three classical transplantation antigen loci A, B, C. The compared sequences include the previously determined partial amino acid sequences of HLA-B7, HLA-B40, HLA-A2 and HLA-A28. The comparisons confirm the extreme polymorphism of HLA classical class I molecules, and permit a study of the level of diversity and the location of sequence differences. The distribution of differences is not uniform, most of them being located in the first and second extracellular domains, the third extracellular domain is extremely conserved, and the cytoplasmic domain is also a variable region. Although it is difficult to determine locus-specific regions, we have identified several candidate positions which may be C locus-specific.  相似文献   

11.
Major histocompatibility complex (MHC) genes code for key proteins of the adaptive immune system, which present antigens from intra-cellular (MHC class I) and extra-cellular (MHC class II) pathogens. Because of their unprecedented diversity, MHC genes have long been an object of scientific interest, but due to methodological difficulties in genotyping of duplicated loci, our knowledge on the evolution of the MHC across different vertebrate lineages is still limited. Here, we compared the evolution of MHC class I and class II genes in three sister clades of common passerine birds, finches (Fringillinae and Carduelinae) and buntings (Emberizidae) using a uniform methodological (genotyping and data processing) approach and uniform sample sizes. Our analyses revealed contrasting evolutionary trajectories of the two MHC classes. We found a stronger signature of pervasive positive selection and higher allele diversity (allele numbers) at the MHC class I than class II. In contrast, MHC class II genes showed greater allele divergence (in terms of nucleotide diversity) and a much stronger recombination (gene conversion) signal. Gene copy numbers at both MHC class I and class II evolved via fluctuating selection and drift (Brownian Motion evolution), but the evolutionary rate was higher at class I. Our study constitutes one of few existing examples, where evolution of MHC class I and class II genes was directly compared using a multi-species approach. We recommend that re-focusing MHC research from single-species and single-class approaches towards multi-species analyses of both MHC classes can substantially increase our understanding MHC evolution in a broad phylogenetic context.Subject terms: Molecular evolution, Immunogenetics  相似文献   

12.
We investigated a major geographic break in mitochondrial DNA (mtDNA) haplotypes in deer mice, Peromyscus maniculatus, by analysing spatial variation in a 491‐bp fragment of the mtDNA control region from 455 samples distributed across a north–south transect of 2000 km in Western North America. To determine whether the mtDNA break was reflected in the nuclear genome, we then compared spatial variation in 13 nuclear microsatellites of 95 individuals surrounding the mtDNA break. Using a canonical correlation analysis we found that nuclear genomic variation was not correlated with mtDNA differentiation. The contrasting patterns of variation in mtDNA and nuclear DNA are consistent with a hypothesis of historic genetic drift that occurred in isolated refugia combined with recent gene flow between the formerly isolated refugial populations. A Mantel test of genetic vs. geographic distance revealed that recent gene flow between deer mouse populations has been high. We conclude that past vicariant events associated with Pleistocene climate changes together with recent gene flow have created the observed intra‐specific cytonuclear discordance in Western North America.  相似文献   

13.
14.
The nucleotide sequence data reported in this paper have been submitted to the DDBJ, EMBL, and GenBank nucleotide sequence databases and have been assigned the accession number D50454  相似文献   

15.
The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian MHC class I genes tend to cluster by species. Concerted evolution has the potential to homogenize different loci, whereas birth-and-death evolution can lead to the loss of orthologs; both processes result in monophyletic groups within species. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. We present the first study of MHC class I genes in a species from the superfamily Musteloidea. The European badger (Meles meles) exhibits moderate variation in MHC class I sequences when compared to other carnivores. We identified seven putatively functional sequences and nine pseudogenes from genomic (gDNA) and complementary (cDNA) DNA, signifying at least two functional class I loci. We found evidence for separate evolutionary histories of the α1 and α2/α3 domains. In the α1 domain, several sequences from different species were more closely related to each other than to sequences from the same species, resembling orthology or trans-species polymorphism. Balancing selection and probable recombination maintain genetic diversity in the α1 domain, evidenced by the detection of positive selection and a recombination event. By comparison, two recombination breakpoints indicate that the α2/α3 domains have most likely undergone concerted evolution, where recombination has homogenized the α2/α3 domains between genes, leading to species-specific clusters of sequences. Our findings highlight the importance of analyzing MHC domains separately.  相似文献   

16.
Proteasomes are multisubunit enzyme complexes that reside in the cytoplasm and nucleus of eukaryotic cells. By selective protein degradation, proteasomes regulate many cellular processes including MHC class I antigen processing. Three constitutively expressed catalytic subunits are responsible for proteasome mediated proteolysis. These subunits are exchanged for three homologous subunits, the immunosubunits, in IFNgamma-exposed cells and in cells with specialized antigen presenting function. Both constitutive and immunoproteasomes degrade endogenous proteins into small peptide fragments that can bind to MHC class I molecules for presentation on the cell surface to cytotoxic T lymphocytes. However, immunoproteasomes seem to fulfill this function more efficiently. IFNgamma further induces the expression of a proteasome activator, PA28, which can also enhance antigenic peptide production by proteasomes. In this review, we will introduce the ubiquitin-proteasome system and summarize recent findings regarding the role of the IFNgamma-inducible proteasome subunits and proteasome regulators in antigen processing. We review the different ways by which tumors and viruses have been found to target the proteasome system to avoid MHC class I presentation of their antigens, and discuss recent progressions in the development of computer assisted approaches to predict CTL epitopes within larger protein sequences, based on proteasome cleavage specificity. The availability of such programs as well as a general insight into the proteasome mediated steps in MHC class I antigen processing provides us with a rational basis for the design of new antiviral and anticancer T cell vaccines.  相似文献   

17.
18.
As a first step in clarifying the involvement of class I knotted1-like homeobox (KNOXI) genes in the storage root development of sweetpotato (Ipomoea batatas), we isolated three KNOXI genes, named Ibkn1, Ibkn2 and Ibkn3, expressed in the storage roots. Phylogenetic analysis showed that Ibkn1 was homologous to the SHOOT MERISTEMLESS (STM) gene of Arabidopsis, while Ibkn2 and Ibkn3 were homologous to the BREVIPEDICELLUS (BP) gene. Of these, expression of Ibkn1 and Ibkn2 were upregulated in developing and mature storage roots compared with fibrous roots. Ibkn1 and Ibkn2 showed different expression patterns in the storage roots. Ibkn1 was preferentially expressed at the proximal end and around the primary vascular cambium, while Ibkn2 expression was highest in the thickest part and lower in both the proximal and distal ends. In contrast to Ibkn1 and Ibkn2, expression of Ibkn3 in roots was not consistent among sweetpotato cultivars. The distribution of endogenous trans-zeatin riboside (t-ZR) in sweetpotato roots showed a similarity to the expression pattern of KNOXI genes, supporting the idea that KNOXI genes control cytokinin levels in the storage roots. The physiological functions of these KNOXI genes in storage root development are discussed.  相似文献   

19.
Structure and expression of a chicken MHC class I gene   总被引:7,自引:0,他引:7  
  相似文献   

20.
 The human major histocompatibility complex (MHC) is located within a 4 megabase segment on chromosome 6p21.3. Recently, a highly divergent MHC class I chain-related gene family, MIC was identified within the class I region. The MICA and MICB genes in this family have unique patterns of tissue expression. The MICA gene is highly polymorphic, with more than 20 alleles identified to date. To elucidate the extent of MICB allelic variations, we sequenced exons 2 (α1), 3 (α2), 4 (α3), and 5 (transmembrane) as well as introns 2 and 4 of this gene in 46 HLA homozygous B-cell lines. We report the identification of eleven alleles based on seven non-synonymous, two synonymous, and four intronic nucleotide variations. Interestingly, one allele has a nonsense mutation resulting in a premature termination codon in the α2 domain. Thus, MICB appears to have fewer alleles than MICA, not unlike the allelic ratio between the HLA-C and -B loci. A preliminary linkage analysis of the MICB alleles with those of the closely located MICA and HLA-B genes revealed no conspicuous linkage disequilibrium between them, implying the presence of a potential recombination hotspot between the MICB and MICA genes. Received: 16 April 1997 / Revised: 19 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号