首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Similar to other eukaryotes, yeasts have parallel pathways of one-carbon metabolism in the cytoplasm and mitochondria and have folylpolyglutamate synthetase activity in both compartments. The gene encoding folylpolyglutamate synthetase is MET7 (also referred to as MET23) on chromosome XV and appears to encode both the cytoplasmic and mitochondrial forms of the enzyme. In order to determine the metabolic roles of both forms of folylpolyglutamate synthetase, we disrupted the met7 gene and determined that the strain is a methionine auxotroph and an adenine and thymidine auxotroph when grown in the presence of sulfanilamide. The met7 mutant becomes petite under normal growth conditions but can be maintained with a grande phenotype if the strain is tup and all media are supplemented with dTMP. A met7 gly1 strain is auxotrophic for glycine when grown on glucose but prototrophic when grown on glycerol. A met7 ser1 strain cannot use glycine to suppress the serine auxotrophy of the ser1 phenotype. A met7 shm2 strain is nonviable. In order to disrupt just the mitochondrial folylpolyglutamate synthetase activity, we constructed mutants with an inactivated chromosomal MET7 gene complemented by genes that express only cytoplasmic folylpolyglutamate synthetase, including the Lactobacillus casei folC gene and the yeast MET7 gene with its mitochondrial leader sequence deleted (MET7Deltam). All the genes providing cytoplasmic folylpolyglutamate synthetase complemented the methionine auxotrophy as well as the synthetic lethality of the shm2 strain and the synthetic glycine auxotrophy of the gly1 strain. The strains lacking the mitochondrial folylpolyglutamate synthetase had longer doubling times than the isogenic wild-type strains but retained the function of the mitochondrial folate-dependent enzymes to produce formate, serine, and glycine. Mutants complemented by the bacterial folC gene or by the MET7Deltam gene on a 2mu plasmid remained grande without the tup mutation and supplementation and dTMP. Mutants complemented by the MET7Deltam gene integrated in single copy became petites under those conditions, indicating a deficiency in dTMP production but this is likely due to lower expression of cytoplasmic folylpolyglutamate synthetase by the MET7Deltam gene.  相似文献   

2.
Most mammalian cells receive exogenous folate from the bloodstream in the form of 5-methyltetrahydropteroylmonoglutamate (CH3-H4PteGlu1). Because this folate derivative is a very poor substrate for folylpolyglutamate synthetase, the enzyme that adds glutamyl residues to intracellular folates, CH3-H4PteGlu1 must first be converted to tetrahydropteroylmonoglutamate (H4PteGlu1), 10-formyltetrahydropteroylmonoglutamate (CHO-H4PteGlu1), or dihydrofolate (H2folate), which are excellent substrates for folylpolyglutamate synthetase. Polyglutamylation is required both for retention of intracellular folates and for efficacy of folates as substrates for most folate-dependent enzymes. Two enzymes are known that will react with CH3-H4PteGlu1 in vitro, methylenetetrahydrofolate reductase and methyltetrahydrofolate-homocysteine methyltransferase (cobalamin-dependent methionine synthase). These studies were performed to assess the possibility that methylenetetrahydrofolate reductase might catalyze the conversion of CH3-H4PteGlu1 to CH2-H4PteGlu1. CH2-H4PteGlu1 is readily converted to CHO-H4PteGlu1 by the action of methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase, and these enzyme activities show very little preference for folypolyglutamate substrates as compared with folylmonoglutamates. We conclude from in vitro studies of the enzyme that methylenetetrahydrofolate reductase cannot convert CH3-H4PteGlu1 to CH2-H4PteGlu1 under physiological conditions and that uptake and retention of folate will be dependent on methionine synthase activity.  相似文献   

3.
The folylpolyglutamate synthetase-dihydrofolate synthetase gene (folC) in Escherichia coli was deleted from the bacterial chromosome and replaced by a selectable Kmr marker. The deletion strain required a complementing gene expressing folylpolyglutamate synthetase encoded on a plasmid for viability, indicating that folC is an essential gene in E. coli. The complementing folC gene was cloned into the vector pPM103 (pSC101, temperature sensitive for replication), which segregated spontaneously at 42 degrees C in the absence of selection. This complementing plasmid was replaced in the folC deletion strain by compatible pUC plasmids containing folC genes with mutations generated in vitro, producing strains which express only mutant folylpolyglutamate synthetase. Mutant folC genes expressing insufficient enzyme activity could not complement the chromosomal deletion, resulting in retention of the pPM103 plasmid. Some mutant genes expressing low levels of enzyme activity replaced the complementing plasmid, but the strains produced were auxotrophic for products of folate-dependent pathways. The folylpolyglutamate synthetase gene from Lactobacillus casei, which may lack dihydrofolate synthetase activity, replaced the complementing plasmid, but the strain was auxotrophic for all folate end products.  相似文献   

4.
5.
The regulation of folate and folate analogue metabolism was studied in vitro by using purified hog liver folylpolyglutamate synthetase as a model system and in vivo in cultured mammalian cells. The types of folylpolyglutamates that accumulate in vivo in hog liver, and changes in cellular folate levels and folylpolyglutamate distributions caused by physiological and nutritional factors such as changes in growth rates and methionine, folate, and vitamin B12 status, can be mimicked in vitro by using purified enzyme. Folylpolyglutamate distributions can be explained solely in terms of the substrate specificity of folylpolyglutamate synthetase and can be modeled by using kinetic parameters obtained with purified enzyme. Low levels of folylpolyglutamate synthetase activity are normally required for the cellular metabolism of folates to retainable polyglutamate forms, and consequently folate retention and concentration, while higher levels of activity are required for the synthesis of the long chain length derivatives that are found in mammalian tissues. The synthesis of very long chain derivatives, which requires tetrahydrofolate polyglutamates as substrates, is a very slow process in vivo. The slow metabolism of 5-methyltetrahydrofolate to retainable polyglutamate forms causes the decreased tissue retention of folate in B12 deficiency. Although cellular folylpolyglutamate distributions change in response to nutritional and physiological modulations, it is unlikely that these changes play a regulatory role in one-carbon metabolism as folate distributions respond only slowly. 4-Aminofolates are metabolized to retainable forms at a slow rate compared to folates. Although folate accumulation by cells is not very responsive to changes in folylpolyglutamate synthetase levels and cellular glutamate concentrations, cellular accumulation of anti-folate agents would be highly responsive to any factor that changes the expression of folylpolyglutamate synthetase activity.  相似文献   

6.
An assay for folylpolyglutamate synthetase activity in extracts of uninfected and bacteriophage T4D-infected Escherichia coli B has been developed. T4D infection induced the formation of a new synthetase raising the total synthetase activity three-fold. Extracts obtained after infection with T4 gene 51, 27 or 28 amber mutants showed increased synthetase activities while extracts obtained from cells infected with a T4D gene 29 amber mutant did not show any increase in synthetase activity. The phage-induced synthetase was found to copurify with the gene 29 product and a 100-fold purified synthetase of molecular size of 74,000 daltons has been obtained. The purified synthetase has a folate substrate specificity different from the host synthetase since it added glutamate residues to dihydrofolate as well as to the usual tetrahydrofolate substrate.  相似文献   

7.
8.
Sheng Y  Khanam N  Tsaksis Y  Shi XM  Lu QS  Bognar AL 《Biochemistry》2008,47(8):2388-2396
The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E. coli FPGS was found to bind tetrahydrofolate and dihydropteroate with the same affinity as the intact enzyme. The domain-swap chimera proteins between the E. coli and the L. casei enzymes possess both folate or pteroate binding properties and enzymatic activities of their amino terminal portion, suggesting that the N-terminal domain determines the folate substrate specificity. Recent structural studies have identified two unique folate binding sites, the omega loop in L. casei FPGS and the dihydropteroate binding loop in the E. coli enzyme. Mutants with swapped omega loops retained the activities and folate or pteroate binding properties of the rest of the enzyme. Mutating L. casei FPGS to contain an E. coli FPGS dihydropteroate binding loop did not alter its substrate specificity to using dihydropteroate as a substrate. The mutant D154A, a residue specific for the dihydropteroate binding site in E. coli FPGS, and D151A, the corresponding mutant in the L. casei enzyme, were both defective in using tetrahydrofolate as their substrate, suggesting that the binding site corresponding to the E. coli pteroate binding site is also the tetrahydrofolate binding site for both enzymes. Tetrahydrofolate diglutamate was a slightly less effective substrate than the monoglutamate with the wild-type enzyme but was a 40-fold more effective substrate with the D151A mutant. This suggests that the 5,10-methylenetetrahydrofolate binding site identified in the L. casei ternary structure may bind diglutamate and polyglutamate folate derivatives.  相似文献   

9.
The formation of folylpolyglutamate derivatives by germinatingpea seeds (Pisum sativum L. cv Homesteader) was examined invivo and in vitro. Differential microbiological assay of cotyledonextracts showed that total folate concentrations increased from163 ng folate equivalents per g fresh weight at day 1 to 680ng per g fresh weight at day 3 of germination. Over a 7 daygermination period, folylpolyglutamate derivatives accountedfor 46–73% of the total cotyledonary folate pool. Theconcentration of these polyglutamate forms of folate increased6.5 fold during the first four days of germination and thenremained relatively constant. Dialyzed extracts of 1–4 day old cotyledons had abilityto incorporate [3H]glutamate and [14C]tetrahydrofolate intofolylpolyglutamates. This activity was mainly associated withprotein precipitating at 35–45% of saturation with ammoniumsulphate. The folylpolyglutamate synthetase of pea cotyledonshad requirements for ATP and the monoglutamate of tetrahydrofolate.The latter folate was a more effective substrate than 5,10-methylenetetrahydrofolatebut the diglutamate of unsubstituted tetrahydrofolate was notutilized. Ion exchange chromatography of the reaction productssuggested that [3H]glutamate and [14C]tetrahydrofolate wereincorporated into di-, and tetraglutamates of tetrahydrofolate.Folates of longer glutamyl chain lengths were only detectedwhen the synthetase reaction proceeded for 12 h or longer. (Received August 23, 1985; Accepted January 22, 1986)  相似文献   

10.
The Escherichia coli gene for folylpolyglutamate synthetase-dihydrofolate synthetase was localized to plasmids pLC22-45, 24-31, and 28-44 of the Clarke-Carbon E. coli colony bank (Clarke, L., and Carbon, J. (1976) Cell 9, 91-99) by screening the bank by replica mating with an E. coli folC mutant. The folC gene was subcloned from pLC22-45 and inserted into a high copy number plasmid containing the lambda replication control region under the control of the temperature-sensitive cI857 repressor and into a high expression plasmid containing the lambda PL promoter and the cI857 repressor. The folC structural gene was located on a 1.52-kilobase PvuI fragment, sufficient to code for a protein of maximum Mr 55,000. E. coli transformants containing the recombinant plasmids, when induced by culturing at 42 degrees C, had folylpolyglutamate synthetase and dihydrofolate synthetase levels that were 100- to 400-fold higher than in wild type strains and which represented up to 4% of the soluble cell protein. The E. coli folylpolyglutamate synthetase-dihydrofolate synthetase has been purified to homogeneity from the transformants. Both activities are catalyzed by a single protein of Mr 47,000. Some kinetic properties of the enzymes and a new spectrophotometric method for assaying dihydrofolate synthetase activity are described.  相似文献   

11.
The met(S2706) mutant (FGSC 4248) of Neurospora crassa was culturedin Vogel's minimal medium with and without L-methionine supplementation.Methionine Stimulated growth but significant mycelial productionalso occurred in minimal medium. The mutant had ability to generatefree and protein methionine from [35S]-cysteine in vivo butthe rate of this synthesis was below that shown by a wild typestrain (Lindegren A, FGSC 853). Cytosolic and mitochondrialfractions of met(S2706) also generated methionine from [3-14C]-serine.Following dialysis, this reaction was stimulated by additionsof tetrahydrofolate and its diglutamate derivative. Folate analysesshowed that the mutant had a folylpolyglutamate concentrationthat was only 10% of that detected in the wild type. Despitethis, mitochondria of met(S2706) contained folates that werelargely polyglutamates and the total mitochondrial folate concentration(ng/mg protein) was comparable to that of the wild type. Assays of folylpolyglutamate synthetase showed that met(S2706)had a lesion affecting a cytosolic, tetrahydrofolate diglutamate-formingactivity. Cytosolic protein had ability to catalyze a diglutamate hexaglutamate reaction. Mitochondria of the mutant catalyzedthe formation of methylenetetrahydrofolate triglutamate fromthe corresponding methylene monoglutamate. It is suggested thatthe limited folylpolyglutamate synthesis of met(S2706) may involvecytosolic and mitochondrial folylpolyglutamate synthetase activities. (Received September 10, 1984; Accepted December 17, 1984)  相似文献   

12.
We have cloned the Pseudomonas aeruginosa folC gene coding for folylpolyglutamate synthetase-dihydrofolate synthetase, which was located between the trpF and purF loci, and determined the nucleotide sequence of the folC gene and its flanking region. The deduced amino acid sequence of P. aeruginosa FolC was highly homologous to that of Escherichia coli FolC. The cloned gene complemented E. coli folC mutations and was found to encode both folylpolyglutamate synthetase and dihydrofolate synthetase activities. The gene organization around the folC gene in P. aeruginosa was completely conserved with that in E. coli; the accD gene was located upstream of the folC gene, and dedD, cvpA and purF genes followed the folC gene in this order. The gene arrangement and the result of the promoter activity assay suggested that the P. aeruginosa accD and folC genes were co-transcribed.  相似文献   

13.
In some bacteria, such as Escherichia coli, the addition of L-glutamate to dihydropteroate (dihydrofolate synthetase activity) and the subsequent additions of L-glutamate to tetrahydrofolate (folylpolyglutamate synthetase (FPGS) activity) are catalyzed by the same enzyme, FolC. The crystal structure of E. coli FolC is described in this paper. It showed strong similarities to that of the FPGS enzyme of Lactobacillus casei within the ATP binding site and the catalytic site, as do all other members of the Mur synthethase superfamily. FolC structure revealed an unexpected dihydropteroate binding site very different from the folate site identified previously in the FPGS structure. The relevance of this site is exemplified by the presence of phosphorylated dihydropteroate, a reaction intermediate in the DHFS reaction. L. casei FPGS is considered a relevant model for human FPGS. As such, the presence of a folate binding site in E. coli FolC, which is different from the one seen in FPGS enzymes, provides avenues for the design of specific inhibitors of this enzyme in antimicrobial therapy.  相似文献   

14.
Folate coenzymes function as one-carbon group carriers in intracellular metabolic pathways. Folate-dependent reactions are compartmentalized within the cell and are catalyzed by two distinct groups of enzymes, cytosolic and mitochondrial. Some folate enzymes are present in both compartments and are likely the products of gene duplications. A well-characterized cytosolic folate enzyme, FDH (10-formyltetrahydro-folate dehydrogenase, ALDH1L1), contains a domain with significant sequence similarity to aldehyde dehydrogenases. This domain enables FDH to catalyze the NADP(+)-dependent conversion of short-chain aldehydes to corresponding acids in vitro. The aldehyde dehydrogenase-like reaction is the final step in the overall FDH mechanism, by which a tetrahydrofolate-bound formyl group is oxidized to CO(2) in an NADP(+)-dependent fashion. We have recently cloned and characterized another folate enzyme containing an ALDH domain, a mitochondrial FDH. Here the biological roles of the two enzymes, a comparison of the respective genes, and some potential evolutionary implications are discussed. The phylogenic analysis suggests that the vertebrate ALDH1L2 gene arose from a duplication event of the ALDH1L1 gene prior to the emergence of osseous fish >500 millions years ago.  相似文献   

15.
Extracts of Escherichia coli contained an enzymatic activity which catalyzed the addition of L-glutamate to the alpha-carboxyl of various polyglutamate substrates, including folylpolyglutamates. Much of the enzyme activity was separated by DE52 chromatography and gel filtration from the enzyme which adds the first three glutamates in the biosynthesis of folylpolyglutamates, dihydrofolate synthetase-folylpolyglutamate synthetase. The two enzyme activities differed in many properties. Whereas dihydrofolate synthetase-folylpolyglutamate synthetase preferred pteroate or pteroylmonoglutamate substrates, the folylpoly-alpha-glutamate synthetase preparations effectively utilized tetrahydropteroylpolyglutamates, pteroylpolyglutamates, p-aminobenzoylpolyglutamates (pAB(Glu)n), and even a polyglutamate tripeptide. Several di- and triglutamyl peptides were inhibitory to folylpoly-alpha-glutamate synthetase activity, but not to dihydrofolate synthetase-folylpolyglutamate synthetase. Conversely, dihydropteroate noncompetitively inhibits the folylpolyglutamate synthetase reaction of the dihydrofolate synthetase-folylpolyglutamate synthetase protein, but did not inhibit the folylpoly-alpha-glutamate synthetase reaction. Potassium chloride was inhibitory to folylpoly-alpha-glutamate synthetase activity (as were other salts and several polyanions), in contrast to the absolute requirement of dihydrofolate synthetase-folylpolyglutamate synthetase activity for a monovalent cation such as K+. Incubation of a folylpoly-alpha-glutamate synthetase preparation with (6S)-tetrahydropteroyltri(gamma)glutamate generated products which after chemical cleavage to pAB(Glu)n were identical to those from growing E. coli, in high performance liquid chromatography retention times and in pattern of digestion by alpha-COOH bond-specific carboxypeptidase Y. High performance liquid chromatography and mass spectral analysis of the products of the in vitro reactions of folylpoly-alpha-glutamate synthetase with several substrates also demonstrated the addition of glutamate residues via alpha-COOH linkages. Thus, there appear to be two folylpolyglutamate synthetase activities in E. coli, dihydrofolate synthetase-folylpolyglutamate synthetase which adds the first three glutamate residues by gamma-COOH linkages and the folylpoly-alpha-glutamate synthetase activity which extends the folylpolyglutamate chain via gamma-COOH peptide bonds.  相似文献   

16.
The transfer of 17O and/or 18O from (COOH-17O or -18O) enriched substrates to inorganic phosphate (Pi) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-18O-labeled folate, methotrexate, and dihydropteroate, in addition to [17O]-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. Pi was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for 17O and 18O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate 18O-enriched carboxyl group to Pi occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of Pi obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that 18O transfer had occurred.  相似文献   

17.
The effects of nitrous oxide inactivation of the vitamin B12-dependent enzyme, methionine synthetase (EC 2.1.1.13), on the subcellular distribution of hepatic folate coenzymes was determined. In controls, cytosolic folates were 5-methyltetrahydrofolate (45%), 5- and 10-formyltetrahydrofolate (9 and 19%, respectively), and tetrahydrofolate (27%). Exposure of rats to an atmosphere containing 80% nitrous oxide for 18 h resulted in a marked shift in this distribution pattern to 5-methyltetrahydrofolate, 84%; 5- and 10-formyltetrahydrofolate, 2.1 and 9.1%, respectively; and tetrahydrofolate, 4.7%. Activity of the cytosolic enzyme, methionine synthetase, was reduced by about 84% as compared to that of air breathing controls. In controls, mitochondrial folates were 5-methyltetrahydrofolate (7.3%), 5- and 10-formyltetrahydrofolate (11.5 and 33.1%, respectively), and tetrahydrofolate (48.1%). This distribution did not change after exposure to nitrous oxide. These results show that the effects of nitrous oxide inactivation of vitamin B12 are confined to the cytosol, at least in the short term, and suggest that there is little, if any, transport of free folates between the cytosolic and mitochondrial compartments.  相似文献   

18.
The effect of methyl donors on the metabolism of methotrexate has been investigated in rat hepatocytes in monolayer culture. Pulse exposure to low concentrations of methotrexate (1 microM, 3h) in the absence of methionine results in the facile formation of the di- to pentaglutamates with the di- and triglutamate predominating. Further incubation after the removal of methotrexate (MTX) results in a shift to the tetra- and pentaglutamate at the expense of the shorter chain length derivatives. The same measurement in the presence of 1 mM methionine causes approx. an 80% inhibition in the formation of polyglutamates. This effect can be partially achieved when methionine is replaced by choline or betaine. No alteration in the formation of 7-hydroxymethotrexate could be detected by similar changes in methionine concentrations in the medium. The activity of the enzymes which synthesize and degrade methotrexate polyglutamates, folylpolyglutamate synthetase and gamma-glutamyl hydrolase, respectively, were the same in extracts of cells grown in the absence and in the presence of 1 mM methionine. Incubation of the hepatocytes with methionine causes a significant increase in 5,6,7,8-tetrahydrofolate (H4folate), 5,10-methylenehydrofolate and 10-formyltetrahydrofolate and a decrease in 5-methyltetrahydrofolate. These results suggest that the inhibition of glutamylation of methotrexate could be due in part to an elevation in reduced folates which can more effectively compete with methotrexate as a substrate for folylpolyglutamate synthetase. Inhibition in methotrexate glutamylation by methionine, betaine and choline in hepatocytes may contribute to the alleviation of hepatic toxicity by methyl donors.  相似文献   

19.
The Saccharomyces cerevisiae tmp3 mutant is deficient in the mitochondrial enzyme complex that participates in the formation of one-carbon-group-tetrahydrofolate coenzymes, serine transhydroxymethylase, dihydrofolate reductase, and thymidylate synthetase, thus leading to multiple nutritional requirements of dTMP, adenine, histidine, and methionine. The tmp3 mutant quickly loses its mitochondrial genome even when grown on fully supplemented medium or on a high concentration of 5-formyl tetrahydrofolate, which replaces all the four requirements. A study of the loss of the mitochondrial genome by following several mitochondrial genetic markers showed that there was a preferential specific loss of a large region of the mitochondrial genome, covering mit ts983, Er, Cr, and mit ts982 up to OrI, and retention of the region of Pr and mit tscs1297. A kinetic study showed that there was a preferentially rapid loss of the region covering the mit+ alleles ts983 to tscs902 at the rate of 10% per generation.  相似文献   

20.
The effects of nitrous oxide inactivation of the vitamin B12-dependent enzyme, methionine synthetase (EC 2.1.1.13), and of methionine on folate coenzyme metabolism were determined in rat liver, kidney, brain, small intestine and bone marrow cells. Nitrous oxide exposure led to an increase in the proportion of 5-methyltetrahydrofolate at the expense of other reduced folates in all tissues examined. Administration of methionine at levels up to 400 mg/kg resulted in the normalization of folate coenzyme patterns in liver as a result of the increased levels of S-adenosylmethionine. In other tissues examined, methionine had no effect on the levels of S-adenosylmethionine or S-adenosylhomocysteine, or on the distribution of folate coenzymes. These results are consistent with the methyl trap hypothesis as the explanation of the relationship between vitamin B12 and folate metabolism, and provide direct evidence that the sparing effect of methionine on folate metabolism is a phenomenon restricted to the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号