首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In tropical ecosystems with highly weathered soils, transformation of organic phosphorus (P) to bioavailable inorganic P plays a crucial role for the nutrition of organisms. In these ecosystems, P is suspected to be growth-limiting and might therefore be affected by atmospheric nutrient deposition occurring even in remote areas such as montane rainforests. We assessed effects of P and nitrogen (N) addition on net and gross P mineralization rates, and microbial P immobilization in the organic layer along an altitudinal gradient of a tropical montane rainforest in Ecuador. Net P mineralization rates amounted to 1.8 ± 0.9 (at 1000 m a.s.l.), 3.7 ± 0.6 (at 2000 m) and 2.0 ± 0.4 (at 3000 m) mg P kg?1 day?1. Altitudinal differences led to an increased microbial P immobilization at 1000 m compensating for a higher gross P mineralization. P addition increased net P mineralization rates at 2000 and 3000 m, suggesting a higher P demand at 1000 m. At higher altitudes, P likely was released as a by-product during organic matter decomposition. Gross P mineralization, determined by means of the isotopic dilution approach, could not be calculated for control and N treatments due to rapid microbial P immobilization. For P (+N) treatments, gross P mineralization rates were lowest at the 1000 m site towards the end of the long-term incubation period. Atmospheric P deposition in the tropics might lead to P fertilization effects through direct input as well as through acceleration of P release from organic matter, thereby increasing P availability for organisms.  相似文献   

2.
鱼池生态系统中影响浮游细菌生长制约因素的研究   总被引:8,自引:2,他引:8  
从溶解有机质及营养盐对细菌生长、细菌利用和矿化营养物质的影响,细菌捕食者和水温对细菌生长的影响等方面就鱼池生态系内影响细菌生长的主要制约因素进行研究。结果表明,向池水中添加P明显促进了细菌的生长和对C、N素的吸收,而添加C和N对细菌数量增长和营养物质吸收的作用不明显,但添加N明显增强了细菌对有机N的矿化能力,表明原池水中C、N供应充足,而无机磷限制了细菌的生长和对营养物质的利用;捕食组的细菌生长速率最低,比对照组减少6.26%-15.4%,且增长结束后细菌数量下降较其它组显著;池塘水体的原有细菌丰度,试验培养中细菌增长数量和生长速率在温度较高的季节也较高,温度升高促进了细菌生长,减弱捕食对细菌生长的负作用。  相似文献   

3.
Once the weathering of parent material ceases to supply significant inputs of phosphorus (P), vegetation depends largely on the decomposition of litter and soil organic matter and the associated mineralization of organic P forms to provide an adequate supply of this essential nutrient. At the same time, the decomposition of litter is often characterized by the immobilization of nutrients, suggesting that nutrient availability is a limiting factor for this process. Immobilization temporally decouples nutrient mineralization from decomposition and may play an important role in nutrient retention in low-nutrient ecosystems. In this study, we used a common substrate to study the effects of native soil P availability as well as artificially elevated P availability on litter decomposition rates in a lowland Amazonian rain forest on highly weathered soils. Although both available and total soil P pools varied almost three fold across treatments, there was no significant difference in decomposition rates among treatments. Decomposition was rapid in all treatments, with approximately 50% of the mass lost over the 11-month study period. Carbon (C) and nitrogen (N) remaining and C:N ratios were the most effective predictors of amount of mass remaining at each time point in all treatments. Fertilized treatments showed significant amounts of P immobilization (P < 0.001). By the final collection point, the remaining litter contained a quantity equivalent to two-thirds of the initial P and N, even though only half of the original mass remained. In these soils, immobilization of nutrients in the microbial biomass, late in the decomposition process, effectively prevents the loss of essential nutrients through leaching or occlusion in the mineral soil.  相似文献   

4.
Photosynthetic stimulation by elevated [CO2] is largely regulated by nitrogen and phosphorus availability in the soil. During a 6 year Free Air CO2 Enrichment (FACE) experiment with poplar trees in two short rotations, inorganic forms of soil nitrogen, extractable phosphorus, microbial and total nitrogen were assessed. Moreover, in situ and potential nitrogen mineralization, as well as enzymatic activities, were determined as measures of nutrient cycling. The aim of this study was to evaluate the effects of elevated [CO2] and fertilization on: (1) N mineralization and immobilization processes; (2) soil nutrient availability; and (3) soil enzyme activity, as an indication of microbial and plant nutrient acquisition activity. Independent of any treatment, total soil N increased by 23% in the plantation after 6 years due to afforestation. Nitrification was the main process influencing inorganic N availability in soil, while ammonification being null or even negative. Ammonium was mostly affected by microbial immobilization and positively related to total N and microbial biomass N. Elevated [CO2] negatively influenced nitrification under unfertilised treatment by 44% and consequently nitrate availability by 30% on average. Microbial N immobilization was stimulated by [CO2] enrichment and probably enhanced the transformation of large amounts of N into organic forms less accessible to plants. The significant enhancement of enzyme activities under elevated [CO2] reflected an increase in nutrient acquisition activity in the soil, as well as an increase of fungal population. Nitrogen fertilization did not influence N availability and cycling, but acted as a negative feed-back on phosphorus availability under elevated CO2.  相似文献   

5.
Sterilized soil samples (20 g of soil per 50-ml flask), amended with 600 μg of glucose-carbon and 60 μg of NH4-N · g of dry soil−1, were inoculated with bacteria (Pseudomonas paucimobilis) alone or with bacteria and amoebae (Acanthamoeba polyphaga). We used wet-dry treatments, which involved air drying the samples to a moisture content of approximately 2% and remoistening the samples three times during the 83-day experiment. Control treatments were kept moist. In the absence of amoebae, bacterial populations were reduced by the first drying to about 60% of the moist control populations, but the third drying had no such effect. With amoebae present, bacterial numbers were not significantly affected by the dryings. Amoebal grazing reduced bacterial populations to 20 to 25% of the ungrazed bacterial populations in both moisture treatments. Encystment was an efficient survival mechanism for amoebae subjected to wet-dry cycles. The amoebal population was entirely encysted in dry soil, but the total number of amoebae was not affected by the three dryings. Growth efficiencies for amoebae feeding on bacteria were 0.33 and 0.39 for wet-dry and constantly moist treatments, respectively, results that compared well with those previously reported for Acanthamoeba spp.  相似文献   

6.
采用悉生微缩体系,研究了40d 培养期内不添加外源基质条件下食细菌线虫(Protorhabdtis sp.)和细菌(Pseudom onassp.)的相互作用及其对N、P转化的影响。在种植及不种植小麦的土壤中,发现接种线虫后细菌数量显著增加,非根标土壤细菌的增加量又比根际土明显。在种植小麦体系中,根际与非根际土壤线虫均比不种作物体系有增加趋势,其中根际土壤线虫种群的提高尤为显著。只加细菌处理中土壤N、P均无净矿化,相反培养前期出现轻微的生物固定。线虫的引入显著提高了土壤矿质N、微生物量N 和微生物量P的含量,但对土壤有效P影响很小。这表明线虫活动主要是促进了N的矿化,而P表现出较强的生物固定。文中还分析了线虫捕食对细菌的增殖作用以及线虫——细菌相互作用在N、P矿化和生物固定中的机理。  相似文献   

7.
Bacteria (Pseudomonas), amoebae (Acanthamoeba), and nematodes (Mesodiplogaster) were raised in soil microcosms with and without glucose additions. Nematode and amoebal grazing on bacteria significantly reduced bacterial populations by the end of a 24-day incubation period. Amoebal numbers decreased in the presence of nematodes with a corresponding increase in nematode numbers which reached a maximum of 230 nematodes/g of soil in the treatment with amoebae and glucose additions. After 24 days the nematode populations in the treatments without carbon additions were dominated by resistant dauer larvae indicating the unavailability of food. Although larval numbers were high in the treatments with glucose additions, the adult component of the population was still increasing at the end of the 24-day experiment. The effect of the presence of amoebae on nematode abundance was of the same magnitude as addition of 600g glucose-C.  相似文献   

8.
Simkania negevensis, a novel microorganism belonging to the family Simkaniaceae in the order Chlamydiales, has an intracellular developmental cycle during which two morphological entities, elementary bodies (EB) and reticulate bodies (RB), are seen by electron microscopy. Rates of seropositivity to the organism are high in certain population groups, and S. negevensis has been associated with respiratory illness in humans. This study reports for the first time the ability of S. negevensis to survive and grow inside Acanthamoeba polyphaga in addition to its known ability to grow in cell cultures of human or simian origin. Infectivity of S. negevensis and growth in amoebae were monitored by immunoperoxidase assays. Long-term persistence and exponential growth of S. negevensis in amoebal trophozoites were demonstrated by infectivity assays and by electron microscopy. EB and dividing RB of S. negevensis were observed within inclusion bodies inside A. polyphaga. When S. negevensis-infected A. polyphaga amoebae were exposed to adverse conditions resulting in encystation of the amoebae, several possible outcomes were observed: cysts containing both normal amoebic cytoplasm and S. negevensis; cysts in which S. negevensis cells were relegated to the space between cyst walls; and cysts containing S. negevensis, but apparently lacking amoebal cytoplasm. S. negevensis within dried amoebal cysts was capable of long-term survival. The possibility that amoebae may have a role in natural transmission of S. negevensis needs to be investigated.  相似文献   

9.
Summary The concept of the relative nutrient requirement (L n) that was introduced in the first paper of this series is used to analyse the effects of the dominant plant population on nutrient cycling and nutrient mineralization in wet heathland ecosystems. A distinction is made between the effect that the dominant plant species has on (1) the distribution of nutrients over the plant biomass and the soil compartment of the ecosystem and (2) the recirculation rate of nutrients. The first effect of the dominant plant species can be calculated on the basis of the /k ratio (which is the ratio of the relative mortality to the decomposition constant). The second effect can be analysed using the relative nutrient requirement (L n). The mass loss and the changes in the amounts of N and P in decomposing above-ground and below-ground litter produced by Erica tetralix and Molinia caerulea were measured over three years. The rates of mass loss from both above-ground and below-ground litter of Molinia were higher than those from Erica litter. After an initial leaching phase, litter showed either a net release or a net immobilization of nitrogen or phosphorus that depended on the initial concentrations of these nutrients. At the same sites, mineralization of nitrogen and phosphorus were measured for two years both in communities dominated by Molinia and in communities dominated by Erica. There were no clear differences in the nitrogen mineralization, but in one of the two years, phosphate mineralization in the Molinia-community was significantly higher. On the basis of the theory that was developed, mineralization rates and ratios between amounts of nutrients in plant biomass and in the soil were calculated on the basis of parameters that were independently measured. There was a reasonable agreement between predicted and measured values in the Erica-communities. In the Molinia-communities there were large differences between calculated and measured values, which was explained by the observation that the soil organic matter in these ecosystems still predominantly consisted of Erica-remains.  相似文献   

10.
Soil macrofauna and nitrogen on a sub-Antarctic island   总被引:4,自引:0,他引:4  
Summary The densities, diets and habitat preferences of the soil macrofaunal species on sub-Antarctic Marion Island (47°S, 38°E) are described. Their role in N cycling on the island is assessed, using a mire-grassland community as an example. Primary production on the island is high and this leads to a substantial annual requirement of nutrients by the vegetation. This requirement must almost wholly be met by mineralization of nutrient reserves in the organic matter. Rates of peat nitrogen mineralization mediated by microorganisms alone are much too low to account for rates of N uptake by the vegetation. Although soil macroinvertebrates, and bacteria represent a very small fraction of the total N pool, their interaction accounts for most of the peat N mineralization, as indicated by the amounts of inorganic N released into solution in microcosms. Extrapolation of the microcosm results shows that the soil macrofauna (mainly earthworms) stimulate the release of enough N from the mire-grassland peat to account for maximum N mineralization rates calculated from temporal changes in peat inorganic N levels and plant uptake during the most active part of the growing season. Considering that large numbers of mesoand microinvertebrates occur and must also contribute to nutrient mineralization, the soil faunal component is clearly of crucial importance to nutrient cycling on Marion Island. This is probably true of all sub-Antarctic islands.  相似文献   

11.
Nitrogen and phosphorus additions from anthropogenic sources can alter the nutrient pool of aquatic systems, both through increased nutrient concentrations and changes in stoichiometry. Because bacteria are important in nutrient cycling and aquatic food webs, information about how nutrients affect bacterial communities enhances our understanding of how changes in nutrient concentrations and stoichiometry potentially affect aquatic ecosystems as a whole. In this study, bacterial communities were examined in biofilms from cobbles collected across seasons at three sites along the Mahoning River (Ohio) with differing levels of inorganic nutrient inputs. Members of the alpha-, beta-, and gamma-proteobacteria, the Cytophaga–Flavobacteria cluster, and the Domain Bacteria were enumerated using fluorescent in situ hybridization. Detrended canonical correspondence analysis (DCCA) revealed that stoichiometric ratios, especially the dissolved inorganic nitrogen (DIN):soluble reactive phosphorus (SRP) molar ratio (NO2/NO3 + NH4:soluble reactive phosphorus), were correlated with abundance of the various bacterial taxa. However, the patterns were complicated by correlations with single nutrient concentrations and seasonal changes in temperature. Seasonal cycles appeared to play an important role in structuring the community, as there were distinct winter communities and temperature was negatively correlated with abundance of both alpha-proteobacteria and Cytophaga–Flavobacteria. However, nutrients and stoichiometry also appeared to affect the community. Numbers of cells hybridizing the Domain Bacteria probe were correlated with the DOC:DIN ratio, the beta-proteobacteria had a negative correlation with soluble reactive phosphorus concentrations and a positive correlation with the DIN:SRP ratio, and the Cytophaga–Flavobacteria had a significant negative partial correlation with the DIN:SRP ratio. Abundances of the alpha- or gamma-proteobacteria were not directly correlated to nutrient concentrations or stoichiometry. It appears that nutrient stoichiometry may be an important factor structuring bacterial communities; however, it is one of many factors, such as temperature, that are interlinked and must be considered together when studying environmental bacteria.  相似文献   

12.
The aim of this work was to evaluate the role of different environmental conditions (oxic and anoxic), and the presence of macrofauna and/or meiofauna during the different steps of Scirpus maritimus L. decomposition/mineralization under controlled laboratory conditions. The results showed no significant differences between the anaerobic and the aerobic degradation of plant material, under the presence of bacteria or meiofauna. Nevertheless, under anoxic conditions sediment mineralization was enhanced, with an increase concentration of phosphorus and ammonium in the water phase. Concerning the presence of fauna, results show that, although bacterial activity was responsible for 70% of the S. maritimus leaves degradation, the presence of macrofauna together with meiofauna enhanced the leaves mineralization up to 90%. Moreover, the presence of macrofauna together with meiofauna significantly affected the decomposition of phosphorus and of nitrogen, as well as the leaves lesser labile structural parts, by increasing the mineralization of plant carbon, and raised the nutrient turnover within the system.The present study reinforces the functional link between fauna levels on the nutrient dynamics in salt marshes ecosystems, namely at the vegetation detritus/water column interface. Handling editor: S. M. Thomaz  相似文献   

13.
There are many similarities between the interactions of environmental protozoa with pathogenic bacterial species and those observed in mammalian macrophages. Since single-celled protozoa predate mammalian hosts, it is likely that interactions in environmental biofilms have selected for many of the bacterial virulence mechanisms responsible for human disease. In order to better understand bacterial-phagocyte interactions, we developed a selection for Acanthamoeba castellanii variants that are more resistant to killing by bacterial pathogens. We identified four amoebal clones that display decreased phagocytosis of bacteria but no difference in uptake of latex beads compared to wild-type amoebae. These amoebal variants display differences in cellular morphology, partial resistance to killing by bacteria, more bactericidal activity, and higher frequencies of lysosome fusion with the bacterial vacuole. Three proteins are present at lower levels in these variants than in wild-type amoebae, and matrix-assisted laser desorption ionization-time of flight mass spectrometry allowed identification of two of them as actin and hsp90. We found that specific inhibitors of hsp90 produce a similar phenotypic effect in macrophages. These data suggest that hsp90 plays a role in phagocytic and, possibly, bactericidal pathways that affect interactions of phagocytic cells with bacteria.  相似文献   

14.
Abstract Inoculation of fungi into soil has been suggested for biological control of plant diseases. The aim of our work was to test the ability of protozoa to reduce the density of introduced fungal populations. The survival of Fusarium oxysporum in non-sterile soil was studied after introduction at densities of: 1 × 104, 1 × 106 and 5 × 107 cfu/g soil. The dynamics of protozoa were also followed. The fungal populations remained close to the initial inoculation densities and did not induce the growth of indigenous protozoa. A bacterial population ( Enterobacter aerogenes ) was used to promote and stimulate the predatory activity of amoebae. Then, after simultaneous inoculation with bacteria and fungi, the density of protozoa increased but this had no effect on the fungal population, although some amoebae are able to feed on small fungal propagules such as conidia. The physiological state of Fusarium in soil and intraspecific competition seem to be more important in regulating introduced fungal populations than amoebal predation. We conclude that the regulation of bacterial and fungal populations in soil depend on different mechanisms.  相似文献   

15.
We examine what circumstances allow the coexistence of microorganisms following different nutritional strategies, using a mathematical model. This model incorporates four nutritional types commonly found in planktonic ecosystems: (1) heterotrophic bacteria that consume dissolved organic matter and are prey to some of the other organisms; (2) heterotrophic zooflagellates that depend entirely on bacterial prey; (3) phototrophic algae that depend only on light and inorganic nutrients, and (4) mixotrophs that photosynthesize, take up inorganic nutrients, and consume bacterial prey. Mixotrophs are characterized by a parameter representing proportional mixing of phototrophic and heterotrophic nutritional strategies. Varying this parameter, a range of mixotrophic strategies was examined in hypothetical habitats differing in supplies of light, dissolved organic carbon, and dissolved inorganic phosphorous. Mixotrophs expressing a wide range of mixotrophic strategies persisted in model habitats with low phosphorus supply, but only those with a strategy that is mostly autotrophic persisted with high nutrient supply, and then only when light supply was also high. Organisms representing all four nutritional strategies were predicted to coexist in habitats with high phosphorus and light supplies. Coexistence involves predation by zooflagellates and mixotrophs balancing the high competitive ability of bacteria for phosphorus, the partitioning of partially overlapping resources between all populations, and possibly nonequlibrium dynamics. In most habitats, the strategy predicted to maximize the abundance of mixotrophs is to be mostly photosynthetic and supplement nutritional needs by consuming bacteria.  相似文献   

16.
Nutrient loads and nutrient cycling, especially of phosphorus and nitrogen, are among the most important controls on the character of freshwater ecosystems and have been greatly affected by human actions. Despite the widespread importance of nutrients in freshwater ecosystems, the varied linkages between nutrient cycling and freshwater mussel populations have not been thoroughly described. Here, I explore three of these linkages. First, I suggest that nutrient loads are related to the well-being of mussel populations through several mechanisms, probably producing a nonlinear and non-monotonic relationship between nutrient loads and mussel populations. Second, I discuss the ability of mussels to spatially focus nutrients from the overlying water onto the sediments, which has not been fully appreciated, perhaps because nutrient cycling has been viewed chiefly from the viewpoint of the well-mixed water column rather than the patchy sediments. Third, I discuss the ability of mussel populations to accumulate and release nutrients, introducing time lags into nutrient dynamics and stoichiometry (“nutrient capacitance”). Finally, I propose a speculative analysis of the role of freshwater mussels in the nutrient cycles of pristine river systems, which must have been much greater than in modern rivers, with their high nutrient loads and depleted mussel populations.  相似文献   

17.
Protozoans are gaining recognition as environmental hosts for a variety of waterborne pathogens. We compared the growth of Mycobacterium avium, a human pathogen associated with domestic water supplies, in coculture with the free-living amoeba Acanthamoeba polyphaga with the growth of M. avium when it was separated from amoebae by a 0.1-μm-pore-size polycarbonate membrane (in a parachamber). Although viable mycobacteria were observed within amoebal vacuoles, there was no significant difference between bacterial growth in coculture and bacterial growth in the parachamber. This suggests that M. avium is able to grow saprozoically on products secreted by the amoebae. In contrast, Legionella pneumophila, a well-studied intracellular parasite of amoebae, multiplied only in coculture. A comparison of amoebae infected with L. pneumophila and amoebae infected with M. avium by electron microscopy demonstrated that there were striking differences in the locations of the bacteria within amoebal cysts. While L. pneumophila resided within the cysts, M. avium was found within the outer walls of the double-walled cysts of A. polyphaga. These locations may provide a reservoir for the bacteria when environmental conditions become unfavorable.  相似文献   

18.
Summary A study was made of the effects of drying the soil at various temperatures on the subsequent mineralization of carbon, nitrogen and phosphorus of native and added organic matter in the soil.Heating the soil, especially at 100°C was shown to increase the solubility of soil nitrogen, phosphorus and organic matter. On moistening dried soil and incubating, the mineralization of native soil organic matter (humus) increased with the drying temperature and with the length of drying period. Drying, especially at 100°C, reduced the decomposition of fresh organic matter added to the soil. In contrast it increased the mineralization of soil organic nitrogen, but while the bulk of the inorganic nitrogen so produced was converted to nitrate at the lower drying temperature, nitrification did not occur in the soil dried at 100°C.Addition of decomposable organic materials caused nitrate immobilization and retarded the nitrification of the ammonia produced.Drying the soil also caused an immobilization of soil phosphorus, but while this was short-lived at the lower temperatures, it persisted up to twelve weeks in the soil dried at 100°C. Addition of decomposable organic materials increased phosphorus immobilization.  相似文献   

19.
This study examines the impacts of woody, N2-fixing invasive Acacia spp. on the patterns of nutrient cycling in two invaded ecosystems of differing nutrient status in the Cape floristic region. Patterns of soil nutrient mineralization were measured by a field incubation method while the significance of the fixation process in altering nutrient cycling was assessed by the 15N natural abundance technique. The results confirm earlier reports that invasion by woody shrubs results in organic matter and nutrient enrichment of surface soils of both ecosystems. However, patterns of nutrient availability (phosphorus and nitrogen) were not necessarily enhanced. In the more fertile strandveld both phosphorus and nitrogen (significant at P<0.10) showed trends towards enhanced annual mineralization rates upon invasion, while in the low nutrient fynbos system only phosphorus followed this trend. It is unclear whether this differential response is a consequence of plant- or soil-derived feedbacks on the decomposition processes in each system. The 15N values of the soils from the invaded sites of both ecosystems indicated a strong influence of the alien species on the soil nitrogen component. However, as with other studies of natural ecosystems, the contribution of nitrogen from fixation could not be readily quantified with the 15N natural abundance method because of problems in selecting suitable non-N2-fixing reference plants. A technique of disrupting nodule structure and function, by fumigation with O2, to obtain the 15N value of a non-N2-fixing speciment of the study species was tried and found to overcome some of the problems associated with the lack of suitable reference plants. With this technique it was possible to detect the almost total dependence of A. saligna on N2-fixation in the fynbos soils with their low nitrogen mineralization rates. In the strandveld ecosystem with much higher soil nitrogen release rates A. cyclops was only partly dependent on fixation (about half) for its nitrogen. The nutrient enrichment of both ecosystems and trends towards enhanced rates of nutrient mineralization could have profound implications on the long-term success of alien invader clearing operations and the restoration of the indigenous flora at these sites.  相似文献   

20.
We discuss the mechanisms leading to nutrient limitation in tropical marine systems, with particular emphasis on nitrogen cycling in Caribbean ecosystems. We then explore how accelerated nutrient cycling from human activities is affecting these systems.Both nitrogen and phosphorus exert substantial influence on biological productivity and structure of tropical marine ecosystems. Offshore planktonic communities are largely nitrogen limited while nearshore ecosystems are largely phosphorus limited. For phosphorus, the ability of sediment to adsorb and store phosphorus is probably greater for tropical carbonate sediments than for most nearshore sediments in temperate coastal systems. However, the ability of tropical carbonate sediments to take up phosphorus can become saturated as phosphorus loading from human sources increases. The nature of the sediment, the mixing rate between nutrient-laden runoff waters and nutrient-poor oceanic waters and the degree of interaction of these water masses with the sediment will probably control the dynamics of this transition.Nearshore tropical marine ecosystems function differently from their temperate counterparts where coupled nitrification/denitrification serves as an important mechanism for nitrogen depuration. In contrast, nearshore tropical ecosystems are more susceptible to nitrogen loading as depurative capacity of the microbial communities is limited by the fragility of the nitrification link. At the same time, accumulation of organic matter in nearshore carbonate sediments appears to impair their capacity for phosphorus immobilization. In the absence of depurative mechanisms for either phosphorus or nitrogen, limitation for both these nutrients is alleviated and continued nutrient loading fuels the proliferation of nuisance algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号