首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Renal corpuscles from the juxtamedullary and subcapsular regions of the renal cortex were morphometrically analyzed in young rats and in adult rats that had been unilaterally nephrectomized or sham-operated at an early age. Mean corpuscular volumes increased 4.5-fold during normal development, and 7.7-fold as a result of compensatory hypertrophy in both cortical regions. Relative and absolute volumes were determined for Bowman's space, the glomerular tuft, and five glomerular components: epithelial, endothelial, and mesangial cells, capillaries, and the filtration membrane. Normal and hypertrophic enlargement of Bowman's space was slightly greater than glomerular growth, and the growth response of subcapsular glomeruli was greater than that of juxtamedullary glomeruli. The ratio of mean glomerular volumes between outer and inner glomeruli was 1:2 in both adult groups. Both adult groups also developed nearly identical proportions of all glomerular component structures, representing a relative decrease of epithelial cells and increase of capillaries compared to the young animals. Normal and hypertrophic maturation involved absolute increases in all glomerular cell populations, the length of capillary loops and the surface area of the filtration membrane, all nearly in proportion to the respective four- and seven-fold increases in glomerular volume. Changes in the filtration surface area are consistent with published data for glomerular filtration rates in normal and hypertrophied kidneys. The mean cell size in epithelial and mesangial populations doubled during growth, but was not greater than normal in mononephrectomized rats. Hyperplasia among all populations of glomerular cells is indicated in normal growth, and to a greater extent in compensatory renal hypertrophy.  相似文献   

2.
A progressive decrease in podocyte number underlies the development of glomerulosclerosis and reduced kidney function in aging nephropathy. Recent data suggest that under certain disease states, parietal epithelial cells (PECs) begin to express proteins considered specific to podocytes. To determine whether this phenomenon increases in aging kidneys, 4-, 12-, and 20-mo ad libitum-fed and 20-mo calorie-restricted (CR) rats were studied. Single and double immunostaining were performed with antibodies to the PEC protein paired box gene 2 (PAX2) and tight junction protein claudin-1, the podocyte-specific protein Wilms' tumor 1 (WT-1), and the proliferating cell protein (Ki-67). ImageJ software measured Bowman's basement membrane (BBM) length and glomerular tuft area in individual glomeruli from each animal to assess glomerular size. The results showed that in aged ad libitum rats, the decrease in number of podocytes/glomerular tuft area was accompanied by an increase in the number of PECs/BBM length at 12 and 20 mo (P < 0.01 vs. 4 mo). The increase in PEC number was due to proliferation (increase in PAX2/Ki-67 double-positive cells). Aging was accompanied by a progressive increase in the number of glomerular cells double staining for PAX2 and WT-1. In contrast, the control 20-mo-old CR rats had no increase in glomerular size, and podocyte and PEC number were not altered. These results suggest that although the number of PECs and PECs expressing podocyte proteins increase in aging nephropathy, they are likely not sufficient to compensate for the decrease in podocyte number.  相似文献   

3.
We studied the non-obese diabetic (NOD) mice model because it develops autoimmune diabetes that resembles human type 1 diabetes. In diabetic mice, urinary albumin excretion (UAE) was ten-fold increased at an “early stage” of diabetes, and twenty-fold increased at a “later stage” (21 and 40 days, respectively after diabetes diagnosis) as compared to non-obese resistant controls. In NOD Diabetic mice, glomerular enlargement, increased glomerular filtration rate (GFR) and increased blood pressure were observed in the early stage. In the late stage, NOD Diabetic mice developed mesangial expansion and reduced podocyte number. Circulating and urine ACE2 activity were markedly increased both, early and late in Diabetic mice. Insulin administration prevented albuminuria, markedly reduced GFR, blood pressure, and glomerular enlargement in the early stage; and prevented mesangial expansion and the reduced podocyte number in the late stage of diabetes. The increase in serum and urine ACE2 activity was normalized by insulin administration at the early and late stages of diabetes in Diabetic mice. We conclude that the Diabetic mice develops features of early kidney disease, including albuminuria and a marked increase in GFR. ACE2 activity is increased starting at an early stage in both serum and urine. Moreover, these alterations can be completely prevented by the chronic administration of insulin.  相似文献   

4.
The kidney filtration barrier consists of the capillary endothelium, the glomerular basement membrane and the slit diaphragm localized between foot processes of neighbouring podocytes. We report that collagen XVII, a transmembrane molecule known to be required for epithelial adhesion, is expressed in podocytes of normal human and mouse kidneys and in endothelial cells of the glomerular filtration barrier. Immunoelectron microscopy has revealed that collagen XVII is localized in foot processes of podocytes and in the glomerular basement membrane. Its role in kidney has been analysed in knockout mice, which survive to birth but have high neonatal mortality and skin blistering and structural abnormalities in their glomeruli. Morphometric analysis has shown increases in glomerular volume fraction and surface densities of knockout kidneys, indicating an increased glomerular amount in the cortex. Collagen XVII deficiency causes effacement of podocyte foot processes; however, major slit diaphragm disruptions have not been detected. The glomerular basement membrane is split in areas in which glomerular and endothelial basement membranes meet. Differences in the expression of collagen IV, integrins α3 or β1, laminin α5 and nephrin have not been observed in mutant mice compared with controls. We propose that collagen XVII has a function in the attachment of podocyte foot processes to the glomerular basement membrane. It probably contributes to podocyte maturation and might have a role in glomerular filtration.  相似文献   

5.
Podocyte foot processes are an important cellular layer of the glomerular barrier that regulates glomerular permeability. Insulin via the protein kinase G type Iα (PKGIα) signaling pathway regulates the balance between contractility and relaxation (permeability) of the podocyte barrier by regulation of the actin cytoskeleton. This mechanism was shown to be disrupted in diabetes. Rho family guanosine-5′-triphosphates (GTPases) are dynamic modulators of the actin cytoskeleton and expressed in cells that form the glomerular filtration barrier. Thus, changes in Rho GTPase activity may affect glomerular permeability to albumin. The present study showed that Rho family GTPases control podocyte migration and permeability. Moreover these processes are regulated by insulin in PKGIα-dependent manner. Modulation of the PKGI-dependent activity of Rac1 and RhoA GTPases with inhibitors or small-interfering RNA impair glomerular permeability to albumin. We also demonstrated this mechanism in obese, insulin-resistant Zucker rats. We propose that PKGIα-Rac1-RhoA crosstalk is necessary in proper organization of the podocyte cytoskeleton and consequently the stabilization of glomerular architecture and regulation of filtration barrier permeability.  相似文献   

6.
The kidney filter represents a unique assembly of podocyte epithelial cells that tightly enwrap the glomerular capillaries with their foot processes and the interposed slit diaphragm. So far, very little is known about the guidance cues and polarity signals required to regulate proper development and maintenance of the glomerular filtration barrier. We now identify Par3, Par6, and atypical protein kinase C (aPKC) polarity proteins as novel Neph1-Nephrin-associated proteins. The interaction was mediated through the PDZ domain of Par3 and conserved carboxyl terminal residues in Neph1 and Nephrin. Par3, Par6, and aPKC localized to the slit diaphragm as shown in immunofluorescence and immunoelectron microscopy. Consistent with a critical role for aPKC activity in podocytes, inhibition of glomerular aPKC activity with a pseudosubstrate inhibitor resulted in a loss of regular podocyte foot process architecture. These data provide an important link between cell recognition mediated through the Neph1-Nephrin complex and Par-dependent polarity signaling and suggest that this molecular interaction is essential for establishing the three-dimensional architecture of podocytes at the kidney filtration barrier.  相似文献   

7.
Autophagy is a ubiquitous catabolic process involving degradation of damaged organelles and protein aggregates. It shows cytoprotective effects in many cell types and helps to maintain cell homeostasis. In many glomerular diseases, podocyte damage leads to the disruption of the renal filtration barrier and subsequent proteinuria. Puromycin aminonucleoside (PAN) which induces podocyte apoptosis in vitro and in vivo is widely used for studying the pathophysiology of glomerular diseases. It has been shown that PAN induces autophagy in podocytes. However, the relationship between autophagy and apoptosis in PAN treated human podocytes is not known and the role of PAN-induced autophagy in podocyte survival remains unclear. Here we demonstrate that PAN induced autophagy in human podocytes prior to apoptosis which was featured with the activation of mTOR complex 1 (mTORC1). When the PAN-induced autophagy was inhibited by 3-methyladenine (3-MA) or chloroquine (CQ), podocyte apoptosis increased significantly along with the elevation of active caspase-3. Under such circumstance, the podocyte cytoskeleton was also disrupted. Collectively, our results suggested that the induced autophagy may be an early adaptive cytoprotective mechanism for podocyte survival after PAN treatment.  相似文献   

8.
Blood filtration in the kidney glomerulus is essential for physiological homeostasis. The filtration apparatus of the kidney glomerulus is composed of three distinct components: the fenestrated endothelial cells, the glomerular basement membrane, and interdigitating foot processes of podocytes that form the slit diaphragm. Recent studies have demonstrated that podocytes play a crucial role in blood filtration and in the pathogenesis of proteinuria and glomerular sclerosis; however, the molecular mechanisms that organize the podocyte filtration barrier are not fully understood. In this study, we suggest that tight junction protein 1 (Tjp1 or ZO-1), which is encoded by Tjp1 gene, plays an essential role in establishing the podocyte filtration barrier. The podocyte-specific deletion of Tjp1 down-regulated the expression of podocyte membrane proteins, impaired the interdigitation of the foot processes and the formation of the slit diaphragm, resulting in glomerular dysfunction. We found the possibility that podocyte filtration barrier requires the integration of two independent units, the pre-existing epithelial junction components and the newly synthesized podocyte-specific components, at the final stage in glomerular morphogenesis, for which Tjp1 is indispensable. Together with previous findings that Tjp1 expression was decreased in glomerular diseases in human and animal models, our results indicate that the suppression of Tjp1 could directly aggravate glomerular disorders, highlights Tjp1 as a potential therapeutic target.  相似文献   

9.
Podocytes of the renal glomerulus are unique cells with a complex cellular organization consisting of a cell body, major processes and foot processes. Podocyte foot processes form a characteristic interdigitating pattern with foot processes of neighboring podocytes, leaving in between the filtration slits that are bridged by the glomerular slit diaphragm. The highly dynamic foot processes contain an actin-based contractile apparatus comparable to that of smooth muscle cells or pericytes. Mutations affecting several podocyte proteins lead to rearrangement of the actin cytoskeleton, disruption of the filtration barrier and subsequent renal disease. The fact that the dynamic regulation of the podocyte cytoskeleton is vital to kidney function has led to podocytes emerging as an excellent model system for studying actin cytoskeleton dynamics in a physiological context.  相似文献   

10.
The purpose of this short review is to present the potential of using isolated glomeruli and cultured mesangial cells as two differentin vitro models to assess the glomerular effect of molecules with nephrotoxic properties. The advantage of using isolated renal glomeruli is that they conserve the architecture of this anatomical region of the kidney; moreover, they are free of any vascular, nervous or humoral influences derived from other regions of the kidney. Mesangial cells are perivascular pericytes located within the central portion of the glomerular tuft between capillary loops. Mesangial cells have a variety of functions including synthesis and assembly of the mesangial matrix, endocytosis and processing of plasma macromolecules, and control of glomerular hemodynamics, mainly the ultrafiltration coefficient K f, via mesangial cell contraction or release of vasoactive hormones. Most authors agree that mesangial cells play a major role in glomerular contraction, filtration surface area, and K f regulation. One of the major effects of toxicants on glomerular structures is contraction. We can assess quantitatively the degree of toxicant-induced mesangial cell contraction or glomerular contraction by measuring the changes in planar cell surface area or apparent glomerular cross-sectional area after exposition to the toxicant. Thesein vitro models can also reveal glomerular effects of xenobiotics that are difficult or impossible to observe in vivo. In addition, these studies permit a fundamental examination of the mechanism of action of xenobiotics on glomerular cells, including the possibility that at least a part of their effects are mediated by local mediators released by glomerular cells. We review the effects and the mechanisms of action of several toxicants such as gentamicin, cyclosporin, cisplatin, and cadmium on isolated glomeruli or cultured mesangial cells. As suchin vitro results confirmin vivo renal hemodynamic changes caused by toxicants, we conclude that these models are fruitful tools for the study of renal toxicity. Thesein vitro systems might also serve as a predictive tool in the evaluation of drugs inducing changes in glomerular filtration rate and as a way to propose protective agents against these dramatic hemodynamic effects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Podocytes are specialized cells of the kidney that form the blood filtration barrier in the kidney glomerulus. The barrier function of podocytes depends upon the development of specialized cell-cell adhesion complexes called slit-diaphragms that form between podocyte foot processes surrounding glomerular blood vessels. Failure of the slit-diaphragm to form results in leakage of high molecular weight proteins into the blood filtrate and urine, a condition called proteinuria. In this work, we test whether the zebrafish pronephros can be used as an assay system for the development of glomerular function with the goal of identifying novel components of the slit-diaphragm. We first characterized the function of the zebrafish homolog of Nephrin, the disease gene associated with the congenital nephritic syndrome of the Finnish type, and Podocin, the gene mutated in autosomal recessive steroid-resistant nephrotic syndrome. Zebrafish nephrin and podocin were specifically expressed in pronephric podocytes and required for the development of pronephric podocyte cell structure. Ultrastructurally, disruption of nephrin or podocin expression resulted in a loss of slit-diaphragms at 72 and 96 h post-fertilization and failure to form normal podocyte foot processes. We also find that expression of the band 4.1/FERM domain gene mosaic eyes in podocytes is required for proper formation of slit-diaphragm cell-cell junctions. A functional assay of glomerular filtration barrier revealed that absence of normal nephrin, podocin or mosaic eyes expression results in loss of glomerular filtration discrimination and aberrant passage of high molecular weight substances into the glomerular filtrate.  相似文献   

12.
Robo2 is the cell surface receptor for the repulsive guidance cue Slit and is involved in axon guidance and neuronal migration. Nephrin is a podocyte slit-diaphragm protein that functions in the kidney glomerular filtration barrier. Here, we report that Robo2 is expressed at the basal surface of mouse podocytes and colocalizes with nephrin. Biochemical studies indicate that Robo2 forms a complex with nephrin in the kidney through adaptor protein Nck. In contrast to the role of nephrin that promotes actin?polymerization, Slit2-Robo2 signaling inhibits nephrin-induced actin polymerization. In addition, the amount of F-actin associated with nephrin is increased in Robo2 knockout mice that develop an altered podocyte foot process structure. Genetic interaction study further reveals that loss of Robo2 alleviates the abnormal podocyte structural phenotype in nephrin null mice. These results suggest that Robo2 signaling acts as a negative regulator on nephrin to influence podocyte foot process architecture.  相似文献   

13.
The human kidneys filter 180 l of blood every day via about 2.5 million glomeruli. The three layers of the glomerular filtration apparatus consist of fenestrated endothelium, specialized extracellular matrix known as the glomerular basement membrane (GBM) and the podocyte foot processes with their modified adherens junctions known as the slit diaphragm (SD). In this study we explored the contribution of podocyte β1 integrin signaling for normal glomerular function. Mice with podocyte specific deletion of integrin β1 (podocin-Cre β1-fl/fl mice) are born normal but cannot complete postnatal renal development. They exhibit detectable proteinuria on day 1 and die within a week. The kidneys of podocin-Cre β1-fl/fl mice exhibit normal glomerular endothelium but show severe GBM defects with multilaminations and splitting including podocyte foot process effacement. The integrin linked kinase (ILK) is a downstream mediator of integrin β1 activity in epithelial cells. To further explore whether integrin β1-mediated signaling facilitates proper glomerular filtration, we generated mice deficient of ILK in the podocytes (podocin-Cre ILK-fl/fl mice). These mice develop normally but exhibit postnatal proteinuria at birth and die within 15 weeks of age due to renal failure. Collectively, our studies demonstrate that podocyte β1 integrin and ILK signaling is critical for postnatal development and function of the glomerular filtration apparatus.  相似文献   

14.
Integrins are transmembrane heteromeric receptors that mediate interactions between cells and extracellular matrix (ECM). β1, the most abundantly expressed integrin subunit, binds at least 12 α subunits. β1 containing integrins are highly expressed in the glomerulus of the kidney; however their role in glomerular morphogenesis and maintenance of glomerular filtration barrier integrity is poorly understood. To study these questions we selectively deleted β1 integrin in the podocyte by crossing β1flox/flox mice with podocyte specific podocin-cre mice (pod-Cre), which express cre at the time of glomerular capillary formation. We demonstrate that podocyte abnormalities are visualized during glomerulogenesis of the pod-Cre;β1flox/flox mice and proteinuria is present at birth, despite a grossly normal glomerular basement membrane. Following the advent of glomerular filtration there is progressive podocyte loss and the mice develop capillary loop and mesangium degeneration with little evidence of glomerulosclerosis. By 3 weeks of age the mice develop severe end stage renal failure characterized by both tubulointerstitial and glomerular pathology. Thus, expression of β1 containing integrins by the podocyte is critical for maintaining the structural integrity of the glomerulus.  相似文献   

15.
朱亚男  敖英  李斌  万阳  汪晖 《遗传》2018,40(2):116-125
足细胞是肾小球滤过屏障的重要组成部分,其数量减少或功能障碍将导致肾小球滤过功能损伤和相关肾脏疾病的发生。足细胞为不可再生性细胞,其数量和功能在一定程度上取决于其正常发育。已发表的文献和本实验室的研究工作表明,遗传或不良宫内环境等原因所致的足细胞发育不良,可能导致成年后肾小球滤过功能障碍,并成为某些胎源性肾脏疾病发生或易感的病因之一,而表观遗传学机制可能参与介导足细胞发育过程中某些关键基因的表达异常。本文对足细胞结构功能和正常发育、足细胞发育异常的病因和机制、以及足细胞发育异常所致的肾脏疾病等几方面进行综述,以期对发育源性足细胞相关肾脏疾病的诊断与治疗提供借鉴与参考。  相似文献   

16.
In most forms of glomerular diseases, loss of size selectivity by the kidney filtration barrier is associated with changes in the morphology of podocytes. The kidney filtration barrier is comprised of the endothelial lining, the glomerular basement membrane, and the podocyte intercellular junction, or slit diaphragm. The cell adhesion proteins nephrin and neph1 localize to the slit diaphragm and transduce signals in a Src family kinase Fyn-mediated tyrosine phosphorylation-dependent manner. Studies in cell culture suggest nephrin phosphorylation-dependent signaling events are primarily involved in regulation of actin dynamics and lamellipodium formation. Nephrin phosphorylation is a proximal event that occurs both during development and following podocyte injury. We hypothesized that abrogation of nephrin phosphorylation following injury would prevent nephrin-dependent actin remodeling and foot process morphological changes. Utilizing a biased screening approach, we found nonreceptor Src homology 2 (sh2) domain-containing phosphatase Shp2 to be associated with phosphorylated nephrin. We observed an increase in nephrin tyrosine phosphorylation in the presence of Shp2 in cell culture studies. In the human glomerulopathies minimal-change nephrosis and membranous nephropathy, there is an increase in Shp2 phosphorylation, a marker of increased Shp2 activity. Mouse podocytes lacking Shp2 do not develop foot process spreading when subjected to podocyte injury in vivo using protamine sulfate or nephrotoxic serum (NTS). In the NTS model, we observed a lack of foot process spreading in mouse podocytes with Shp2 deleted and smaller amounts of proteinuria. Taken together, these results suggest that Shp2-dependent signaling events are necessary for changes in foot process structure and function following injury.  相似文献   

17.
The glomerulus is a complex structure including four cell types, namely mesangial, visceral epithelial, parietal epithelial and endothelial cells. Mesangial cells resemble smooth muscle cells and play a major role in the synthesis of the components of the glomerular basement membrane and in the vasoreactivity of the glomerular tuft. In particular, they express receptors for angiotensin II which mediate mesangial cell contraction, this effect resulting in the decrease of the filtration area. They are also the site of synthesis of a variety of inflammatory agents which are involved in the development of glomerular injury in glomerulonephritis. Visceral epithelial cells, also referred to a podocytes, also participate in the synthesis of the normal constituents of the glomerular basement membrane. They express receptors for atrial natriuretic factor and possess on their surface a number of ectoenzymes. They also, in concert with mesangial cells, release metalloproteases which contribute to the degradation of the extracellular matrix. Parietal epithelial cells have been little studied. They represent the main constituent of the crescents observed in extracapillary proliferative glomerulonephritis. Endothelial cells secrete vasodilatory agents such as nitric oxide and prostacyclin and vasoconstrictor agents such as endothelin which act on the adjacent mesangial cells. New methods of culture of glomerular cells are in progress. Their aim is to keep as long as possible the physiological phenotype of these cells. Another progress is the availability of stable transformed cell lines which represent an abundant source of material for biochemical studies.  相似文献   

18.
19.
A cell type structurally resembling the podocyte of the renal glomerulus is situated in the gill of the crustacean Panulirus argus. These cells adjoin the medial septum of the gill filament and invariably face the efferent haemolymph channel. The basal cell surface is produced into a series of regular ridges, between which are inserted elongated cell processes, together constituting a palisade that includes narrow slits (250 A or more in width) resembling the filtration pores between the foot process of the glomerular epithelium. In each instance, the slit is traversed by a diaphragm which in the crustacean 'podocyte' is ca. 30 A in width and contiguous with the outer leaflet of the unit membrane limiting the cell. Numerous coated vesicles originate from the cell surface beneath the diaphragms. The possible role of these cells in detoxification by withdrawal of materials from the circulation is discussed.  相似文献   

20.
Podocytes are dynamic polarized cells that lie on the surface of glomerular capillaries and comprise an essential component of the glomerular filtration barrier. Podocytes are affected in the earliest stages of diabetic nephropathy and insulin signaling to podocytes is essential for normal glomerular function. Large-conductance Ca(2+)-activated K(+) channels (BK(Ca) channels) encoded by the Slo1 gene are expressed in podocytes in a complex with multiple glomerular slit diaphragm proteins including nephrin, TRPC6 channels, and several different actin-binding proteins. Here we show that insulin increases cell surface expression of podocyte BK(Ca) channels, which is accompanied by a corresponding increase in the density of current flowing through these channels. Insulin stimulation of BK(Ca) channels was detectable in 15 min and required activation of both Erk and Akt signaling cascades. Exposure to high glucose (36.1 mM) for 24 h caused a marked reduction in the steady-state surface expression of BK(Ca) channels as well as of the slit diaphragm signaling molecule nephrin. High glucose treatment also abolished the stimulatory effects of insulin on BK(Ca) current density, although insulin continued to increase phosphorylation of Erk and Akt under those conditions. Therefore, in contrast to most other cell types, high glucose abrogates the effects of insulin in podocytes at relatively distal steps in its signaling pathway. Insulin stimulation of BK(Ca) channels in podocytes may prepare podocytes to adapt to changes in pressure gradients that occur during postprandial hyperfiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号