首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary As part of an ongoing study of the influence of environmental factors on pregnancy, childbirth, and fetuses, comparisons have been made between incidences in 1969–1974 and in 1980–1982 of chromosome aberrations in liverborn children in the same area of Denmark. The incidence of chromosome aberrations in the first period was 2.6 per 1000, compared with 4.1 per 1000 during the latter period. However, the difference was mainly due to an increase in inversions, and this in turn was due to a difference in chromosome staining methods between the two periods.It is concluded that the Danish study and similar studies in the United States, Canada, and Scotland indicate that early detection of chromosome aberrations by chromosome examination at birth is indicated in order to be able to inform and counsel parents of children with chromosome aberrations. Chromosome examination at birth is also of importance in the diagnosis of structural inheritable chromosome aberrations and consequent family investigation and genetic counseling.  相似文献   

2.
3.
The experience on prenatal chromosome diagnosis of four Turkish centers participating in a collaborative study on 6041 genetic amniocentesis performed during a 4-8 years period were reviewed. 5887 (97.5%) patients had strong clinical indications for prenatal chromosome studies and 154 (2.5%) were referred because of maternal anxiety and a bad history of previous gestations. The main indication groups were: advanced maternal age (3197 cases), positive serum screening (2011 cases), ultrasound-identified anomaly (492 cases), previous fetus/child with chromosomal aberrations (103 cases), a history of a previous abnormal and/or mentally handicapped child (70 cases) and a parental chromosome rearrangement (14 cases). The average maternal age was 33.9 years and average gestational age was 18 weeks. A total of 179 affected fetuses were detected in this collaborative study (3%) of which 133 were unbalanced (74.3%). Among the 124 (69%) numerical aberrations, 102 (82.3%) were autosomal aneuploidies, 20 (16.1%) were gonosomal aneuploidies and 2 (1.6%) were poliploidies. Among the 55 (31%) structural aberrations, balanced translocation was the most common (63.6%) and 11 cases of inversion, four cases of unbalanced translocation, two cases of marker chromosome and three cases of other abnormalities were found. The overall culture success rate was 99.7%. Pregnancy termination that is permitted by legal authorities was accepted by 94.7% (126/133) with parents at unbalanced cytogenetic result announcement.  相似文献   

4.
Vaccination of albino mice with live measles vaccine caused an increase in the chromosome aberrations frequency during the period from the 30th till the 120th day of the experiment. The maximum increase in the number of chromosome aberrations as well as in centromeric and telomeric chromosome associations was observed 60 days after immunization. Chromatid breaks were main type of the structural aberrations observed.  相似文献   

5.
Chronological changes of chromosome aberration rates related to accumulated doses in chronically exposed humans and animals at a low-dose-rate have not been well studied. C3H female specific pathogen-free mice (8 weeks of age) were chronically irradiated. Chromosome aberration rate in mouse splenocytes after long-term exposure to low-dose-rate (LDR) gamma-rays was serially determined by conventional Giemsa method. Incidence of dicentrics and centric rings increased almost linearly up to 8000 mGy following irradiation for about 400 days at a LDR of 20 mGy/day. Clear dose-rate effects were observed in the chromosome aberration frequencies between dose rates of 20 mGy/day and 200 Gy/day. Furthermore, the frequencies of complex aberrations increased as accumulated doses increased in LDR irradiation. This trend was also observed for the incidences of micronuclei and trisomies of chromosomes 5, 13 and 18 in splenocytes, detected by micronucleus assay and metaphase fluorescence in situ hybridization (FISH) method, respectively. Incidences of 2-4 micronuclei and trisomy increased in mouse splenocytes after irradiation of 8000 mGy at a LDR of 20 mGy/day. These complex chromosome aberrations and numerical chromosome aberrations seem to be induced indirectly after radiation exposure and thus the results indicate that continuous gamma-ray irradiation for 400 days at LDR of 20 mGy/day induced chromosomal instability in mice. These results are important to evaluate the biological effects of long-term exposure to LDR radiation in humans.  相似文献   

6.
In vitro cultures of peripheral blood lymphocytes from human and muntjac (barking deer) females who were at an advanced stage of pregnancy (32-37 weeks pregnant women and 20-24 weeks pregnant muntjacs) showed an enhanced frequency of SCEs and X-ray-induced chromosome aberrations when compared with those of nonpregnant females. Lymphocyte cultures of nonpregnant females to which sex hormones progesterone, oestrogen and human chorionic gonadotropin (HCG) were added together exogenously also showed higher frequency of SCEs. The plausible reason(s) for such high incidence of SCEs during pregnancy is discussed.  相似文献   

7.
Chromosome aberrations were analyzed at the first-cleavage metaphase of mouse eggs fertilized in vitro with sperm exposed to ultraviolet light (UV) as well as to methyl and ethyl methanesulfonate (MMS and EMS). The frequencies of chromosome aberrations markedly increased with dose of UV as well as with concentration of MMS and EMS. In the UV-irradiation group, the frequency of chromosome-type aberrations was much higher than that of chromatid-type aberrations. About 90% of chromosome aberrations observed in the eggs following MMS and EMS treatment to sperm were chromosome type in which the frequency of chromosome fragments was the highest. The effects of UV on the induction of chromosome aberrations were clearly potentiated by post-treatment incubation of fertilized eggs in the presence of Ara-C or caffeine, but the effects of MMS and EMS were not pronounced by post-treatment of Ara-C or caffeine. The results indicate a possibility that UV damage induced in mouse sperm DNA is reparable in the eggs during the period between the entry of sperm into the egg cytoplasm and the first-cleavage metaphase.  相似文献   

8.
Background levels of chromosomal aberrations and sister-chromatid exchanges (SCEs) were determined in CHO-99 cells, an oxygen-tolerant variant substrain of Chinese hamster ovary (CHO-20) cells capable of stable proliferation under an atmosphere of 99% O2/1% CO2, a level of hyperoxia at which cultured mammalian cells normally cannot survive. The mean chromosomal aberration frequency in CHO-99 cells was as high as 1 aberration per cell (mainly chromatid and chromosome gaps and breaks) versus 0.05 aberration/cell in CHO-20 cells, while the SCE frequency was 1.7- to 2.1-fold increased. While most aberrations were apparently distributed at random over the chromosomes, up to 31% of the aberrations appeared to be involved in site-specific fragility at a homologous site in chromosomes Z3 and Z4. Immediately upon shifting CHO-99 cells to air-equilibrated conditions their SCE frequency decreased to the control level, whereas the aberration rate persisted at a still elevated level of 0.16-0.31 aberration per cell, even after a culture period of 14 weeks under normoxia. This indicates that at least part of the chromosomal instability is a constitutional property of the variant cells, i.e., not directly dependent upon hyperoxic stress. In CHO-99 X CHO-20 hybrids the occurrence of chromatid-type aberrations and fragile site but not that of chromosome-type aberrations was suppressed under normoxic conditions, suggesting that chromatid-type aberrations and fragile site expression on the one hand and chromosome-type aberrations on the other hand are mediated by different constitutional defects in CHO-99 cells. No gross alterations in (deoxy)ribonucleoside triphosphate pools were detected in CHO-99 cells that could be held responsible for their chromosomal instability. In addition, no increased level of DNA damage was detected by the technique of alkaline elution. The excessive chromosomal instability in CHO-99 cells, as observed under hyperoxic conditions, may originate from reactive intermediates giving rise to DNA double-strand breaks and/or a type of DNA lesion that is resistant to the conditions of the alkaline elution technique. However, alternative mechanisms based upon reactive species interfering with DNA replication/repair processes cannot be excluded.  相似文献   

9.
The induction of chromosome aberrations in mouse eggs by exposure to HTO beta-particles and 60Co gamma-rays at the early pronuclear stage was examined at the first-cleavage metaphase by using an in vitro fertilization technique. Eggs at the pronuclear stage were exposed to beta-particles in a chemically defined medium containing tritiated water (HTO) for 2 h at 3-5 h after insemination. Other eggs at the same stage were exposed to gamma-rays from 60Co during the same period. The dose-response relationships for frequencies of chromosome aberrations per egg were fitted to a linear-quadratic model for HTO beta-particles, and to a linear model for 60Co gamma-rays. The chromosome aberrations were mainly chromosome-type, and the majority of all aberrations were fragments. RBE values of HTO beta-particles relative to 60Co gamma-rays and acute X-rays, which were estimated from the ratio of the linear regression coefficients over 0.05-Gy range, were 2.0 and 1.6, respectively.  相似文献   

10.
Positive results in the in vitro assay for chromosome aberrations sometimes occur with test chemicals that apparently do not react with DNA, being negative in tests for mutation in bacteria, for DNA strand breaks, and for covalent binding to DNA. These chromosome aberrations typically occur over a narrow concentration range at toxic doses, and with mitotic inhibition. Indirect mechanisms, including oxidative damage, cytotoxicity and inhibition of DNA synthesis induced by chemical exposure, may be involved. Understanding when such mechanisms are operating is important in evaluating potential mutagenic hazards, since the effects may occur only above a certain threshold dose. Here, we used two-parameter flow cytometry to assess DNA synthesis inhibition (uptake of bromodeoxyuridine [BrdUrd]) associated with the induction of aberrations in CHO cells by DNA-reactive and non-reactive chemicals, and to follow cell cycle progression. Aphidicolin (APC), a DNA polymerase inhibitor, induces aberrations without reacting with DNA; 50 μM APC suppressed BrdUrd uptake during a 3-h treatment to < 10% of control levels. Several new drug candidates induced aberrations concomitant with marked reductions in cell counts at 20 h (to 50–60% of controls) and suppression of BrdUrd uptake (<15% of control). Several non-mutagenic chemicals and a metabolic poison, which induce DNA double strand breaks and chromosome aberrations at toxic dose levels, also suppressed DNA synthesis. In contrast, the alkylating agents 4-nitroquinoline-1-oxide, mitomycin C, methylnitrosourea, ethylnitrosourea, methylmethane sulfonate and ethylmethane sulfonate, and a topoisomerase II inhibitor, etoposide, produced many aberrations at concentrations that were less toxic (cell counts ≥73% of controls) and gave little inhibition of DNA synthesis during treatment (BrdUrd uptake ≥85% of controls), although cell cycle delay was seen following the 3-h treatment. Thus, inhibition of DNA synthesis at the time of treatment is supporting evidence for an indirect mechanism of aberrations, when there is no direct DNA reactivity.  相似文献   

11.
A comparison has been made, in Chinese hamster cells, of the ability of various methylated oxypurines to inhibit post-replication repair of DNA after UV irradiation and to potentiate UV-induced chromosome aberrations. DNA synthesized in UV-irradiated cells contains gaps, which are subsequently sealed by a process termed post-replication repair. In rodent cells this process is inhibited by caffeine and its analogues. This has been quantitated by measuring the molecular weight of the DNA synthesized in UV-irradiated cells during a 4-h pulse-labelling period in the presence or absence of inhibitors--the lower molecular weight the greater the inhibition. Eight methylated oxypurines were tested; caffeine and chlorocaffeine were always the most potent inhibitors, tetramethyluric acid was inactive, and the other five derivatives (methoxycaffeine, ethoxycaffeine, paraxanthine, theobromine and theophylline) had intermediate effects. Measurements of the potentiation of UV-induced chromosome aberrations showed that treatments with caffeine or chlorocaffeine again had the greatest effects, tetramethyluric acid and also theophylline had no potentiating activity, and methoxycaffeine was intermediate. This correlation between effects at the molecular and cytological levels is consistent with the hypothesis that the inhibition of post-replication repair by methylated oxypurines gives rise to the increased production of chromosome aberrations.  相似文献   

12.
A limited number of contradictory reports have appeared in the literature about the ability of radiofrequency (rf) radiation to induce chromosome aberrations in different biological systems. The technical documentation associated with such reports is often absent or deficient. In addition, no information is available as to whether any additional genotoxic hazard would result from a simultaneous exposure of mammalian cells to rf radiation and a chemical which (by itself) induces chromosome aberrations. In the work described, we have therefore tested two hypotheses. The first is that rf radiation by itself, at power densities and exposure conditions which are higher than is consistent with accepted safety guidelines, can induce chromosome aberrations in mammalian cells. The second is that, during a simultaneous exposure to a chemical known to be genotoxic, rf radiation can affect molecules, biochemical processes, or cellular organelles, and thus result in an increase or decrease in chromosome aberrations. Mitomycin C (MMC) and Adriamycin (ADR) were selected because they act by different mechanisms, and because they might put normal cells at risk during combined-modality rf radiation (hyperthermia)-chemotherapy treatment of cancer. The studies were performed with suitable 37 degrees C and equivalent convection heating-temperature controls in a manner designed to discriminate between any thermal and possible nonthermal action. Radiofrequency exposures were conducted for 2 h under conditions resulting in measurable heating (a maximum increase of 3.2 degrees C), with pulsed-wave rf radiation at a frequency of 2450 MHz and an average net forward power of 600 W, resulting in an SAR of 33.8 W/kg. Treatments with MMC or ADR were for a total of 2.5 h and encompassed the 2-h rf radiation exposure period. The CHO cells from each of the conditions were subsequently analyzed for chromosome aberrations. In cells exposed to rf radiation alone, and where a maximum temperature of approximately 40 degrees C was achieved in the tissue culture medium, no alteration in the frequency from 37 degrees C control levels was observed. Relative to the chemical treatment with MMC alone at 37 degrees C, for two different concentrations, no alteration was observed in the extent of chromosome aberrations induced by either simultaneous rf radiation exposure or convection heating to equivalent temperatures. At the ADR concentration that was used, most of the indices of chromosome aberrations which were scored indicated a similar result.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The induction of chromosome aberrations, micronuclei and SCEs was studied in hepatocytes of F344 rats exposed in vivo to hepatocarcinogens. Hepatocytes were isolated and allowed to proliferate in Williams' medium E supplemented with epidermal growth factor. Cells were fixed after a culture period of 48 h. Oral administration of dimethylnitrosamine at doses of 2.5-20 mg/kg body weight (bw) induced (1) chromosome aberrations in up to 27% of the metaphase cells 2-48 h after its administration, (2) SCEs with a frequency of up to 0.9 per chromosome 2-48 h after its administration, and (3) micronuclei in up to 2.9% of the cells 16-48 h after its administration. Oral administration of 2-acetylaminofluorene at doses of 6.25-200 mg/kg bw induced (1) chromosome aberrations in up to 35% of the metaphase cells after 2-48 h, (2) SCEs at up to 0.9 per chromosome and (3) micronuclei in up to 2.5% of the cells with a maximum after 4 h. Oral administration of CCl4, a non-genotoxic hepatocarcinogen, at a dose of 1600 mg/kg bw did not induce chromosome aberrations, SCEs or micronuclei within 4-72 h. Intraperitoneal injections of Trp-P-1, Glu-P-1, MeIQx, IQ and nitro-IQ resulted in chromosome aberrations in up to 16% of the metaphase cells and SCEs at up to 0.9 per chromosome, while injections of Trp-P-2 and Glu-P-2 produced SCEs at up to 0.7 and 1.1 per chromosome, respectively. The present method of in vivo cytogenetic assay using rats without partial hepatectomy or mitogen treatment in vivo should be useful for evaluating the tumor-initiating activities of hepatocarcinogens.  相似文献   

14.
S Y Li  J K Lin 《Mutation research》1990,242(3):219-224
Rats were treated intraperitoneally with different concentrations of aflatoxin B1 (AFB1) or N-nitrosophenacetin (NP). Blood was sequentially drawn by venous puncture at 6, 24, 72, 120 h and 14 days after a single injection of AFB1 or NP. After AFB1 the frequency of SCEs and chromosome aberrations increased progressively and reached a maximum level after 24 h and then decreased with time. By 2 weeks post treatment, the SCE and chromosome aberration values were within the control range. A small but significant SCE induction was observed when rats were treated with NP, but no chromosome breakage was induced even at the highest dose (20 mg/kg). We suggest that the elimination of DNA damage by repair mechanisms and lymphocyte turnover is responsible for the reduction of SCEs and chromosome aberrations with time. This assay seems promising for sequential monitoring of cytogenetic damage in rat lymphocytes following in vivo exposure to genotoxicants.  相似文献   

15.
BACKGROUND: The origin and evolution of somatic chromosome aberrations in colorectal cancer is still poorly understood. The data in the literature suggest that some specific chromosome aberrations are more common. It is not known, however, if there is a correlation of these with near-diploid and high aneuploidy previously proposed to be a characteristic of the adenoma-carcinoma sequence. METHODS: Chromosome 1, 7, 17 and 18 numerical aberrations and 1p deletions were evaluated by fluorescence in situ hybridization analysis for 20 human sporadic colorectal adenocarcinomas in 70 distinct tumor sectors and correlated with flow cytometric DNA index (DI) values. RESULTS: Aneusomy for at least one of the investigated chromosomes was observed in 60 of 70 tumor sectors corresponding to 19 of 20 adenocarcinomas (95%). Deletions at 1p, observed in 8 of 18 adenocarcinomas (44%), were intratumor homogeneous in 7 of 8 tumors. In contrast, the other aberrations were intratumor heterogeneous. Aneusomies of chromosomes 1, 7, and 17 were strongly associated with DNA high aneuploidy (DI > or = 1.4), whereas aneusomy of chromosome 18 and 1p deletions were equally common among DNA diploid and near-diploid tumors (DI < 1.4 and DI not equal to 1). CONCLUSIONS: Overall, these data suggest the existence of different aneuploidization routes correlated with specific chromosome aberrations. In addition, intratumor homogeneity of 1p deletions appears to be an indication of early occurrence or strong selection. We also suggest that tumors with monosomies and in particular monosomies-trisomies for the same chromosomes support a model of aneuploidization and chromosome instability during the colorectal tumor progression based on loss of symmetry during chromosome segregation (Giaretti: Lab Invest 71:904-910, 1994).  相似文献   

16.
An analysis of structural aberrations in human sperm chromosomes   总被引:10,自引:0,他引:10  
We have analyzed structural aberrations in 5,000 sperm chromosome complements obtained from 20 men over a 5-yr period by fusion of human sperm with hamster eggs. Detailed data are presented on 366 abnormal cells with 379 analyzable breakpoints. The frequency of cells with structural aberrations ranged from 1.9% to 14.5% among donors; this interindividual variability was statistically significant (p less than 0.0001). In contrast, repeat samples from individual men showed no significant variation over time. The number of sperm chromosome sets processed per hamster egg had no effect on the frequency with which structural aberrations occurred, nor were sperm chromosome abnormalities altered by varying capacitation or culture conditions. The spectrum of structural aberrations observed in human sperm chromosomes and a chi-square analysis of breakpoints based on DNA content are presented. Although human sperm chromosome abnormalities were visualized with a cross-species system, we believe that they represent an inherent, biologically significant phenomenon.  相似文献   

17.
The frequency of chromosome aberrations in bone-marrow cells of mice in tissue incompatibility conflicts, and in the lymphocytes of the peripheral blood of 20 patients suffering from different allergies was studied. It was established that in mice, during allograft rejection, i.e. on the 10th–15th days after grafting of allogeneic skin, the frequency of cells with chromosome aberrations increases significantly up to 12–15% against 4–5% in the control. On the 20th day after grafting, the level of chromosome aberrations falls back to the control level. In allergic patients the frequency of cells with chromosome aberrations was 10.7% (4–22%). In numerous control subjects this value did not exceed 2%. The highest level of aberrations was found during the acute stage of the disease especially in patients in the state of anaphylactic shock. No correlation was found between the frequency of aberrant cells and the action of definite allergens. The problem of the possibility of extending the above described phenomenon to non-immunocompetent cells of mammals, and of the role of immunological stress in spontaneous mutagenesis are discussed.  相似文献   

18.
The effects of preirradiation with blue light on the shift of the fluence-response curve for the first and the second positive curvatures were examined in Pilobolus crystallinus (Wiggers) Tode sporangiophores. A 1-min preirradiation with blue light at 47 or 960 nmol·m-2 lowered the fluence-response curve for the first positive curvature and shifted the peak to a higher fluence. The fluence-response curve was shifted back to a lower fluence when a dark period was inserted between the preirradiation and the curvature-inducing light. This shift back to lower fluence was biphasic when the fluence was high (960 nmol · m-2), indicating the participation of two components in the phototropic reaction for the first positive curvature.The fluence-response curve for the second positive curvature did not seem to be shifted to a higher fluence region when fluence was varied by varying exposure time. However, the fluence-response curve obtained by varying the fluence rate of a 20-min irradiation period indicated that the second positive curvature was also shifted to a higher-fluence region by preirradiation with blue light. A small shoulder appeared on the fluence-response curve when preirradiation at a high fluence rate was given.Abbreviations BL blue light - CIL curvature-inducing light  相似文献   

19.
Mice were exposed at various ages to 1 Gy or 2 Gy of X rays, and translocation frequencies in peripheral blood T cells, spleen cells, and bone marrow cells were determined with FISH painting of chromosomes 1 and 3 when the animals were 20 weeks old. It was found that the mean translocation frequencies were very low (< or =0.8%) in mice exposed in the fetal or early postnatal stages. However, with the increase in animal age at the time of irradiation, the frequency observed at 20 weeks old became progressively higher then reached a plateau (about 5%) when mice were irradiated when > or =6 weeks old. A major role of p53 (Trp53)-dependent apoptosis for elimination of aberrant cells was not suggested because irradiated fetuses, regardless of the p53 gene status, showed low translocation frequencies (1.8% in p53(-/-) mice and 1.4% in p53(+/-) mice) compared to the frequency in the p53(-/-) mother (7.4%). In contrast, various types of aberrations were seen in spleen and liver cells when neonates were examined shortly after irradiation, similar to what was observed in bone marrow cells after irradiation in adults. We interpreted the results as indicating that fetal cells are generally sensitive to induction of chromosome aberrations but that the aberrant cells do not persist because fetal stem cells tend to be free of aberrations and their progeny replace the pre-existing cell populations during the postnatal growth of the animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号