首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
With the synthesis of a new, strongly basic Immobiline (pK 10.3 at 10 degrees C) it has been possible to formulate a new pH 10-11 recipe for focusing very alkaline proteins, not amenable to fractionation with conventional isoelectric focusing in carrier ampholyte buffers. In this formulation, water is added as an acidic Immobiline having pK = 14 and a unit molar concentration (or with a pK = 15.74 and standard 55.56 molarity) since around pH 11 its buffering power becomes significant. The gel contains a 'conductivity quencher', i.e. a density gradient incorporated in the matrix, with the dense region located on the cathodic side (pH 11) for (a) smoothing the voltage gradient on the separation cell and (b) reducing the anodic electrosmotic flow due to the net positive charge acquired by the matrix at pH 11 (1 mM excess protonated amino groups to act as counterions to the 1 mm OH- groups in the bulk water solution generated by the local value of pH 11). Excellent focusing is obtained for such alkaline proteins as lysozyme (pI 10.55), So-6 (a leaf protein, pI 10.49), cytochrome c (pI 10.45) and ribonuclease (pI 10.12).  相似文献   

2.
The feasibility of purifying subcellular membranes, especially plasma membranes, from oat roots using isoelectric focusing has been examined. Membranes from oat (Avena sativa L. cv Garry) root homogenates were fractionated using discontinuous sucrose density gradient centrifugation and then electrofocused using a microanalytical isoelectric focusing column. The column contained either a broad-range (pH 3-10) or narrow-range (pH 3-6) pH gradient stabilized by a 5 to 15% Ficoll gradient. Results from the broad-range columns confirmed that the isoelectric pH (pI) values of the membranes were in the acidic range, with pI values ranging from 3.9 to 5.2. Using narrow-range pH gradients, it was possible to fractionate further plasma membrane-enriched material obtained from a sucrose density gradient. We had no success at fractionating crude membrane preparations from oat roots. Narrow-range pH gradients generated by commercial ampholytes were more successful than those generated by acetate/acetic acid mixtures.  相似文献   

3.
The evolution of isoelectric focusing is traced back over the years, from a somewhat shaky origin to present-day immobilized pH gradients. Four generations of methodology are classified and discussed: (A) Kolin's approach, consisting of a two-step technique, generation of a pH gradient by diffusion followed by a rapid electrokinetic protein separation; (B) Svensson-Rilbe's approach, consisting of creating a pH gradient in an electric field by utilizing as buffers a multitude of carrier ampholytes, i.e. of amphoteric species possessing good buffering capacity and conductivity at their pI; (C) immobilized pH gradients, by which non-amphoteric buffers and titrants (acrylamido weak acids and bases), titrated around their pK values, are grafted (insolubilized) onto a polyacrylamide gel matrix and (D) mixed-bed carrier ampholyte-Immobiline gel, by which a soluble, carrier ampholyte generated pH gradient coexists in the same matrix with an insoluble, Immobiline generated, pH gradient.  相似文献   

4.
T Kesvatera  B J?nsson  E Thulin  S Linse 《Proteins》1999,37(1):106-115
The ionization state of seven glutamate residues, one aspartate, and the C-terminal alpha-COOH group in bovine apo calbindin D(9k) has been studied by measurement and modeling of the pH titration curves and apparent pK(a) values. The observed pK(a) ranged from 3.0 to 6.5. Most of the observed acidic groups were half-ionized at lower pH values than those in unstructured proteins. As a rule, the ionization equilibria extended over a wider pH range than in the case of unperturbed single titrations, indicating a complex influence of protein charges on the charge state of each individual residue. Glu17, which is a backbone Ca(2+)-ligand in the N-terminal binding loop of calbindin D(9k), was half-protonated at pH 3.6 but manifested biphasic titration with apparent pK(a) values of 3.2 and 6.5. Complementary Monte Carlo simulations of the titration process and pK(a) values of the acidic groups in calbindin D(9k) reproduce the experimentally observed titration features, except for the pronounced double titration of Glu17. Discrepancies between the results from direct measurement and from modeling may be partly caused by changes in the protein structure when the net charge changes from -8 to +11 over the isoelectric point at pH 5. Proteins 1999;37:106-115.  相似文献   

5.
The preparative aspects of isoelectric focusing (IEF) in immobilized pH gradients (IPG) have been investigated as a function of the following parameters: environmental ionic strength (I), gel geometry and shape of pH gradient. As model proteins, hemoglobin (Hb) A and a minor, glycosylated component (HbA1c), with a delta pI = 0.04 pH units, have been selected. The load capacity increases almost linearly, as a function of progressively higher I values, from 0.5 X up to 2 X molarity of buffering Immobiline (pK 7.0) to abruptly reach a plateau at 3 X concentration of buffering ion. The load capacity also increases almost linearly as a function of gel thickness from 1 to 5 mm, without apparently levelling off. When decreasing the pH interval from 1 pH unit (pH 6.8-7.8) to 1/2 pH unit (pH 7.05-7.55) the amount of protein loaded in the HbA zone could be increased by 40%. In 5 mm thick gels, at 2 X pK 7.0 Immobiline concentration, over a 1/2 pH unit span, up to 350 mg HbA (in a 12.5 X 11 cm gel) could be loaded in a single zone, the load limit of the system being around 45 mg protein/ml gel volume.  相似文献   

6.
The net charge and isoelectric pH (pI) of a protein depend on the content of ionizable groups and their pK values. Ribonuclease Sa (RNase Sa) is an acidic protein with a pI = 3.5 that contains no Lys residues. By replacing Asp and Glu residues on the surface of RNase Sa with Lys residues, we have created a 3K variant (D1K, D17K, E41K) with a pI = 6.4 and a 5K variant (3K + D25K, E74K) with a pI = 10.2. We show that pI values estimated using pK values based on model compound data can be in error by >1 pH unit, and suggest how the estimation can be improved. For RNase Sa and the 3K and 5K variants, the solubility, activity, and stability have been measured as a function of pH. We find that the pH of minimum solubility varies with the pI of the protein, but that the pH of maximum activity and the pH of maximum stability do not.  相似文献   

7.
An acidic lethal protein, Mojave toxin, has been isolated from the venom of Crotalus scutulatus scutulatus. The purified toxin had an i.v. LD50 of 0.056 μg/g in white mice. Disc polycrylamide gel electrophoresis at pH values of 9.6 and 3.8 and isoelectric focusing in polyacrylamide gels with a pH 3.5–10 Ampholyte gradient were used to establish the presence of one major protein band. The pI of the most abundant form of the toxin was determined to be 5.5 by polyacrylamide gel isoelectric focusing experiments. The molecular weight was established to be 24,310 daltons from amino acid composition data. Mojave toxin was shown to consist of two subunits, one acidic and one basic with isoelectric point (pI) values of 3.6 and 9.6, respectively. Amino acid analyses established molecular weights of 9593 for the acidic component and 14,673 for the basic component. The acidic subunit consisted of three peptide chains intermolecularly linked by cystine residues. The basic subunit was a single polypeptide chain with six intramolecular disulfide bonds. The basic subunit was lethal to test animals with an intravenous LD50 of 0.58 μg/g. Following recombination of the subunits a recombinant toxin was isolated which was identical to the native toxin by comparisons of electrophoretic mobility and toxicities. Comparisons of circular dichroism spectra also indicated reassociation to the native toxin structure. Phospholytic activity was associated with Mojave toxin and the basic subunit was responsible for this enzymic activity. Phospholipase activity of the basic subunit was inhibited by addition of the acidic subunit.  相似文献   

8.
Molecular analyses of an acidic transthyretin Asn 90 variant.   总被引:3,自引:0,他引:3       下载免费PDF全文
A mutation in transthyretin (TTR Asn 90) has been identified in the Portuguese and German populations. This variant has a lower pI and was found by screening analyses in 2/4,000 German subjects and in 4/1,200 Portuguese by using either double one-dimensional (D1-D) electrophoresis with isoelectric focusing (IEF) or hybrid isoelectric focusing in immobilized pH gradient (HIEF) as the final separation step. The Portuguese population sample was from the area where TTR Met 30-associated familial amyloidotic polyneuropathy (FAP) prevails, and it was divided into (a) a group of 500 individuals belonging to FAP kindreds and (b) a group of 700 collected at random. HIEF showed two particular situations: (1) one case, from an FAP kindred, was simultaneously carrier of the Met 30 substitution and the acidic variant, and (2) one individual, from the randomly selected Portuguese sample, had only the acidic monomer. Comparative peptide mapping, by HPLC, of the acidic variant carriers and of normal TTR showed the presence of an abnormal tryptic peptide, not present in the normal TTR digests, with an asparagine-for-histidine substitution at position 90 explained by a single base change of adenine for cytosine in the histidine codon. This was confirmed at the DNA level by RFLP analyses of PCR-amplified material after digestion with SphI and BsmI. In all carriers of the Asn 90 substitution, no indicators were found for an association with traits characteristic for FAP.  相似文献   

9.
The surface charge of plant protoplasts has been measured by a new technique, isoelectric focusing. The protoplasts were loaded in a dextran density gradient over which a pH gradient was superimposed. When voltage was applied, protoplasts moved to a point in the gradient corresponding to their isoelectric point (pI). The pI of the protoplasts varied with the compounds used for pH gradient generation. Using commercial ampholytes for pH gradient formation, the pI of all protoplasts tested was 4.4 ± 0.2, and viability following electrophoresis was low. Using an acetate/acetic acid mixture to generate the pH gradient, the pI of protoplasts varied from 3.7 to 5.3 depending on the species and tissue type of the parental cells. Postelectrophoresis viability was high. Using isoelectric focusing techniques, it was possible to separate mixtures of protoplasts derived from different species of plants.  相似文献   

10.
Recombinant human growth hormone (r-hGH) expressed in Escherichia coli, was 70-80% purified by a combination of ion-exchange chromatography and metal ion affinity chromatography. For the last purification step, a multicompartment electrolyzer was used, containing three compartments delimited by isoelectric membranes and two additional anodic and cathodic chambers. The central compartment was situated between two membranes having isoelectric points (pI) of 5.08 (anodic) and of 5.16 (cathodic), i.e. equidistant from the pI value of hGH (pI 5.12). r-hGH was isoelectric between these two membranes and could not leave the central chamber, while more acidic and more cathodic impurities collected in the two lateral chambers under the influence of the electric field. The r-hGH, thus purified, exhibited a single band by isoelectric focusing (IEF) in immobilized pH gradients (IPG) and gave recoveries greater than 90%. The problem of isoelectric precipitation in a practically ion-free environment was alleviated by focusing in 30% glycerol added with 1% neutral detergent (Nonidet-P40). The latter was eliminated by passage through a Q-Sepharose column after collecting the pI 5.12 band from the electrolyzer. Also the pre-hormone (pre-hGH) can be purified in a similar manner (30% glycerol, 1% Nonidet P-40) between two membranes having pIs 4.77 (anodic) and 4.87 (cathodic) (pre-hGH pI 4.82). This paper demonstrates the possibility of purifying by a focusing process also poorly soluble proteins at the pI.  相似文献   

11.
The synthesis of a new, pK 8.05 acrylamido weak base for isoelectric focusing in immobilized pH gradients (IPG) is here reported. This compound N,N-bis(2-hydroxyethyl)-N'-acryloyl-1,3-diaminopropane is strongly hydrophilic, and thus inhibits any potential hydrophobic interaction among proteins and the grafted basic groups in an IPG matrix. In addition, this novel buffer represents a step ahead towards the goal of closing the 'gap' between the commercially available Immobilines, pK 7.0 and 8.5. Owing to the large distance between these two neighboring pK values, it is difficult to arrange for linear narrow pH gradients in this region. IPG compositions obtained with this new buffer give highly linear pH gradients and protein profiles identical to those obtained with commercial Immobilines.  相似文献   

12.
Isoelectric focusing (IEF) of only approximately 1 microg of rat brain tubulin yields 27-30 distinct charge variants in the pH range of 4.5-5.4 with band separations of 0.01-0.02 pH units as detected by silver staining. Variants can be efficiently transferred from the immobilized gradient strip to polyvinylidene difluoride (PVDF) membranes for reaction with monoclonal antibodies. C-terminal-directed antibodies to alpha- and beta-tubulin yield patterns similar to N-terminal-directed antibodies. Removal of the acidic C-termini with subtilisin to form tubulin S increases the pI values by approximately 1 pH unit, leads to a loss in the isoelectric distinction between the alpha- and beta-tubulin variants seen by N-terminal-directed antibodies, and abolishes reactions with all beta-variants and all but three alpha variants by C-terminal-directed antibodies (TU-04 and TU-14). Many, but not all, of the variants are substrates for autopalmitoylation of rat brain tubulin. The distribution of isoelectric variants differs between cytoplasm and membrane fractions from PC12 pheochromocytoma cells. A potential role for different variants is suggested.  相似文献   

13.
We describe and compare the use of isoelectric focusing (IEF) in a granulated Sephadex matrix and in polyacrylamide immobilized pH gradients to separate an aromatase inhibitor (follicle regulatory protein: FRP) in preparative amounts from porcine follicular fluid (PFF). The starting material for IEF was derived from pFF after passage through agarose immobilized textile dye Orange A (0.5 KC1 eluent). Before IEF, some Orange A bound (OAB) material was further purified on a FPLC employing a Mono-Q anion exchange column. Previous use of chromatofocusing indicated that aromatase inhibitory activity is largely concentrated in OAB fractions with a pI in the ranges of pH approximately 4.5 and approximately 6.5. The current study revises these findings to provide a more precise measure of the isoelectric points in question to pH 4.73 +/- 0.05 and pH 6.41 +/- 0.06. The use of Sephadex was limited by gradient instability and the selection of pH ranges available. IEF using immobilized pH gradients had several advantages over Sephadex: 1) broader selection of gradients from 0.1 to 7.0 pH units; greater resolving power, and enhanced stability. The principal disadvantage of the immobiline system was the recovery of focused material from the gel matrix. The use of isoelectric focusing with immobilized pH gradients on a preparative scale to purify FRP from OAB resulted in a greater than 50% recovery with a substantial increase in specific activity (from ID50 approximately 300 micrograms/ml to 20 ng/ml).  相似文献   

14.
Isoelectric focusing studies of bacteriorhodopsin   总被引:1,自引:0,他引:1  
Purified bacteriorhodopsin (BR) samples show a minimum of four isoelectric forms in immobilized pH gradient isoelectric focusing gels. The bands occur as doublets with isoelectric points (pI) centered at 5.20 (principal species) and 5.60. In typical preparations additional bands may be observed at 4.90, 5.07 and 5.50. Purple membrane (PM) was proteolyzed with papain to calibrate the pI shift produced by changing the number of charges on the protein. Asp-242 is removed during the first cleavage between residues 239 and 240 resulting in the loss of a single negative charge and a shift of the principal doublet by +0.35 pH units to pI 5.55. The second papain cleavage occurs between residues 231 and 232 which removes Glu-232, -234 and -237 and shifts the pI by +0.60 pH units to pI 6.10. The +0.60 pH shift upon the second papain cleavage is consistent with the loss of two negative charges and is supported by prior evidence that at least one of the three glutamate residues lost during the second proteolysis step is protonated and neutral in the intact protein. The native and proteolyzed products of BR retain the characteristic 550 nm absorption maxima for solubilized BR. A model for the structural origin of the pI heterogeneity of BR species in proteolyzed PM is presented.  相似文献   

15.
Sphingomyelinase, purified to apparent homogeneity from human placenta, is an acidic protein, as judged from its amino acid composition and by isoelectric focusing of the carboxymethylated protein. The amino acid composition is characterized by an approximately equal content of hydrophobic and polar amino acid residues. The reduced-alkylated polypeptides were separated into two groups. Most of the polypeptides were heterogeneous with pI values of 4.4-5.0, but an additional more minor component was observed at pI 5.4. Liquid isoelectric focusing resolved the purified enzyme into a single major component (pI 4.7-4.8), a minor component (pI 5.0-5.4) and a plateau region of activity (pI 6-7). On thin-layer isoelectric focusing, the protein profile obtained from each of these regions was the same. In addition, the substrate specificity, Km values and effect of inhibitory substances were identical. We conclude that sphingomyelinase is an acidic, microheterogeneous protein that likely exists as a holopolymer of a single major polypeptide chain. the heterogeneity of the intact protein on isoelectric focusing appears to reflect this microheterogeneity, which is influenced by a tendency to associate with itself and with detergents such as Triton X-100.  相似文献   

16.
Recently, we have developed a high-resolution two-dimensional separation strategy for the analysis of complex peptide mixtures. This methodology employs isoelectric focusing of peptides on immobilized pH gradient (IPG) gels in the first dimension, followed by reversed-phase chromatography in the second dimension, and subsequent tandem mass spectrometry analysis. The traditional approach to this mixture problem employs strong-cation-exchange (SCX) chromatography in the first dimension. Here, we present a direct comparison of these two first-dimensional techniques using complex protein samples derived from the testis of Rattus norvegicus. It was found that the use of immobilized pH gradients (narrow range pH 3.5-4.5) for peptide separation in the first dimension yielded 13% more protein identifications than the optimized off-line SCX approach (employing the entire pI range of the sample). In addition, the IPG technique allows for a much more efficient use on mass spectrometer analysis time. Separation of a tryptic digest derived from a rat testis sample on a narrow range pH gradient (over the 3.5-4.5 pH range) yielded 7626 and 2750 peptides and proteins, respectively. Peptide and protein identification was performed with high confidence using SEQUEST in combination with a data filtering program employing pI and statistical based functions to remove false-positives from the data.  相似文献   

17.
Carboxypeptidase N was partially purified on a TEAE-cellulose column and subjected to isoelectric focusing in sucrose gradient columns containing ampholine gradients of pH range 3-10 and 4-8. Activity separated into two major peaks with pI values of pH 3.8 and 4.3. Both peaks were totally converted to an active desialated enzyme with isoelectric point of pH 5.2 to 5.4. These results indicate that carboxypeptidase N is a sialoprotein with at least two forms, differing in sialic acid content, in serum. Catalytic activity is not dependent upon sialic acid but the latter may possibly influence stability since loss of activity occurred in the desialated enzyme with repeat focusing.  相似文献   

18.
The primary goal of this study was to gain a better understanding of the effect of environment and ionic strength on the pK values of histidine residues in proteins. The salt-dependence of pK values for two histidine residues in ribonuclease Sa (RNase Sa) (pI=3.5) and a variant in which five acidic amino acids have been changed to lysine (5K) (pI=10.2) was measured and compared to pK values of model histidine-containing peptides. The pK of His53 is elevated by two pH units (pK=8.61) in RNase Sa and by nearly one pH unit (pK=7.39) in 5K at low salt relative to the pK of histidine in the model peptides (pK=6.6). The pK for His53 remains elevated in 1.5M NaCl (pK=7.89). The elevated pK for His53 is a result of screenable electrostatic interactions, particularly with Glu74, and a non-screenable hydrogen bond interaction with water. The pK of His85 in RNase Sa and 5K is slightly below the model pK at low salt and merges with this value at 1.5M NaCl. The pK of His85 reflects mainly effects of long-range Coulombic interactions that are screenable by salt. The tautomeric states of the neutral histidine residues are changed by charge reversal. The histidine pK values in RNase Sa are always higher than the pK values in the 5K variant. These results emphasize that the net charge of the protein influences the pK values of the histidine residues. Structure-based pK calculations capture the salt-dependence relatively well but are unable to predict absolute histidine pK values.  相似文献   

19.
The mechanism of complexation of pI range 3.5--5 Ampholine to heparin in isoelectric focusing has been explored by the dye-binding technique at different pH values in solution. There is no significant interaction between heparin and Ampholine at pH 6.7. Weak, or selective, binding occurs at pH 5.1, and very strong interaction at pH 3.5. In the latter system, the Ampholine components appear to behave as polycations due to their ordered sequence of positive charges, each two methylene groups apart, which favors a strong binding to polyanions. In addition, there appear to be variable stoichiometries for the strong binding between heparin and Ampholine, depending on their relative amounts. It is proposed that at a low ratio of heparin to Ampholine (Ampholine excess), aggregation is perpendicular to the heparin chain, with the end ammonium charge of each Ampholine molecule neutralizing one negative charge along the heparin molecule; at higher ratios (heparin excess), the bound Ampholine segment is aligned parallel to the heparin molecule, so that on the average one Ampholine component neutralizes approx. three negative charges. The banding of heparin in isoelectric focusing in the pH range 3.0--4.5 can be explained by aggregation of the various components on heparin in amounts dependent upon the net charge on the Ampholine species at the given pH, and upon the changing stoichiometries as a function of the variation in ratio of heparin to Ampholine along the pH gradient. Binding of Ampholine to polygalacturonate was also demonstrated in excess Ampholine in a pH range dependent on the degree of protonation of the carboxyl groups of this acidic polysaccharide as well as on the net positive charge of the Ampholine. The aggregation seen at pH 4.2--4.5 led to the prediction and subsequent demonstration that polygalacturonate would also exhibit binding upon isoelectric focusing. This supports the hypothesis that aggregation of Ampholine on polyanions having sufficient charge density is a general phenomenon which can lead to spurious banding of certain polymers at appropriate pH ranges in isoelectric focusing. On the basis of their behavior in isoelectric focusing at pH 3.0--4.5, strength of aggregation of the polyanions studied appears to be heparin A = heparin B greather than polyglutamate greater than carboxyl-reduced heparin B greater than polygalacturonic acid.  相似文献   

20.
Transient state isoelectric focusing (TRANSIF) is a kinetic method which offers quantitative information about relevant parameters pertaining both to methodological aspects and to the physical characterization of amphoteric molecules. TRANSIF data are obtained with an improved scanning isoelectric focusing assembly coupled to an on-line digital data acquisition and processing system which is used to continuously record changes in peak position (x), peak area, segmental pH gradient (Δ(pH)Δx), and isoelectric point (pI) of proteins during focusing. This improved apparatus has made it feasible to follow the temporal stability of an isoelectric focusing system in a quantitative fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号