首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Lectins and traffic in the secretory pathway   总被引:7,自引:0,他引:7  
Hauri H  Appenzeller C  Kuhn F  Nufer O 《FEBS letters》2000,476(1-2):32-37
Evidence is accumulating that intracellular animal lectins play important roles in quality control and glycoprotein sorting along the secretory pathway. Calnexin and calreticulin in conjunction with associated chaperones promote correct folding and oligomerization of many glycoproteins in the endoplasmic reticulum (ER). The mannose lectin ERGIC-53 operates as a cargo receptor in transport of glycoproteins from ER to Golgi and the homologous lectin VIP36 may operate in quality control of glycosylation in the Golgi. Exit from the Golgi of lysosomal hydrolases to endosomes requires mannose 6-phosphate receptors and exit to the apical plasma membrane may also involve traffic lectins. Here we discuss the features of these lectins and their role in glycoprotein traffic in the secretory pathway.  相似文献   

2.
Subsets of glycoproteins are thought to require lectin-like membrane receptors for efficient export out of the endoplasmic reticulum (ER). To identify new members related to two previously characterized intracellular lectins ERGIC-53/p58 and VIP36, we carried out an extensive database search using the conserved carbohydrate recognition domain (CRD) as a search string. A gene, more closely related to VIP36 than to ERGIC-53/p58, and hence called VIPL (VIP36-Like), was identified. VIPL has been conserved through evolution from zebra fish to man. The 2.4-kb VIPL mRNA was widely expressed to varying levels in different tissues. Using an antiserum prepared against the CRD, the 32-kDa VIPL protein was detected in various cell lines. The single N-linked glycan of VIPL remained endoglycosidase H-sensitive during a 2-h pulse-chase, even when the protein was overexpressed or mutated to allow export to the plasma membrane. VIPL localized primarily to the ER and partly to the Golgi complex. Like VIP36, the cytoplasmic tail of VIPL terminates in the sequence KRFY, a motif characteristic for proteins recycling between the ER and ERGIC/cis-Golgi. Mutating the retrograde transport signal KR to AA resulted in transport of VIPL to the cell surface. Finally, knock-down of VIPL mRNA using siRNA significantly slowed down the secretion of two glycoproteins (M(R) 35 and 250 kDa) to the medium, suggesting that VIPL may also function as an ER export receptor.  相似文献   

3.
Glycan moieties are essential for folding, sorting and targeting of glycoproteins through the secretory pathway to various cellular compartments. The molecular mechanisms that underlie these processes, however, are only now coming to light. Recent crystallographic and NMR studies of proteins located in the endoplasmic reticulum (ER), Golgi complex and ER-Golgi intermediate compartment have illuminated their roles in glycoprotein folding and secretion. Calnexin and calreticulin, both ER-resident proteins, have lectin domains that are crucial for their function as chaperones. The crystal structure of the carbohydrate-recognition domain of ER-Golgi intermediate compartment (ERGIC)-53 complements the biochemical and functional characterization of the protein, confirming that a lectin domain is essential for the role of this protein in sorting and transfer of glycoproteins from the ER to the Golgi complex. The lectin domains of calnexin and ERGIC-53 are structurally similar, although there is little primary sequence similarity. By contrast, sequence similarity between ERGIC-53 and vesicular integral membrane protein (VIP36), a Golgi-resident protein, leaves little doubt that a similar lectin domain is central to the transport and/or sorting functions of VIP36. The theme emerging from these studies is that carbohydrate recognition and modification are central to mediation of glycoprotein folding and secretion.  相似文献   

4.
Efficient transport of cell surface glycoproteins to the Golgi apparatus has been previously demonstrated for a limited number of proteins, and has been proposed to require selective sorting in the endocytic pathway after internalization. We have studied the endocytic fate of several glycoproteins that accumulate in different organelles in a variant clone of PC12, a regulated secretory cell line. The cation-independent mannose 6-phosphate receptor and the low density lipoprotein receptor, both rapidly internalized from the cell surface, and the synaptic vesicle membrane protein synaptophysin, were transported to the Golgi apparatus with equivalent, nonlinear kinetics. Transport to the Golgi apparatus (t1/2 = 2.5-3.0 h) was several times faster than turnover of these proteins (t1/2 greater than or equal to 20 h), indicating that transport of these proteins to the Golgi apparatus occurred on average several times for each protein. In contrast, Thy-1, a protein anchored in the membrane by a glycosylphosphoinositide group, was internalized and transported to the Golgi apparatus more slowly than the three transmembrane proteins. Since each of the transmembrane proteins studied showed the same t1/2 for transport to the Golgi apparatus, we conclude that transport of these proteins from the cell surface to the Golgi apparatus does not require sorting information specific to any one of these proteins. These results suggest that one of the functions of late endosomes is constitutive recycling of cell surface receptors through the Golgi apparatus if they fail to recycle to the cell surface directly from early endosomes, and that the late endosome recycling pathway is followed frequently by many rapidly internalized proteins.  相似文献   

5.
Temperature-sensitive mutants of semliki forest virus (SFV) and sindbis virus (SIN) were used to study the intracellular transport of virus membrane glycoproteins in infected chicken embryo fibroblasts. When antisera against purified glycoproteins and (125)I- labeled protein A from staphylococcus aureus were used only small amounts of virus glycoproteins were detected at the surface of SFV ts-1 and SIN Ts-10 infected cells incubated at the restrictive temperature (39 degrees C). When the mutant-infected cells were shifted to the permissive temperature (28 degrees C), in the presence of cycloheximide, increasing amounts of virus glycoproteins appeared at the cell surface from 20 to 80 min after the shift. Both monensin (10muM) and carbonylcyanide-p- trifluoromethoxyphenylhydrazone (FCCP; 10-20 muM) inhibited the appearance of virus membrane glycoproteins at the cell surface. Vinblastine sulfate (10 μg/ml) inhibited the transport by approximately 50 percent, whereas cytochalasin B (1 μg/ml) had only a marginal effect. Intracellular distribution of virus glycoproteins in the mutant-infected cells was visualized in double-fluorescence studies using lectins as markers for endoplasmic reticulum and Golgi apparatus. At 39 degrees C, the virus membrane glycoproteins were located at the endoplasmic reticulum, whereas after shift to 28 degrees C, a bright juxtanuclear reticular fluorescence was seen in the location of the Golgi apparatus. In the presence of monensin, the virus glycoproteins could migrate to the Golgi apparatus, although transport to the cell surface did not take place. When the shift was carried out in the presence of FCCP, negligible fluorescence was seen in the Golgi apparatus and the glycoproteins apparently remained in the rough endoplasmic reticulum. A rapid inhibition in the accumulation of virus glycoproteins at the cell surface was obtained when FCCP was added during the active transport period, whereas with monensin there was a delay of approximately 10 min. These results suggest a similar intracellular pathway in the maturation of both plasma membrane and secretory glycoproteins.  相似文献   

6.
Abstract

The relationship between the Ras-related GTP-binding protein, Rab 1 B, and intracellular transport of nascent low density lipoprotein (LDL) eceptor was studied in cultured human embryonic kidney cells (line 293) otransfected with plasmids encoding the LDL-receptor and either wild-type Rab 1 B or a Rab 1 B mutant (N1211) known to act as a dominant suppressor of ndogenous Rab 1 B function. [35S]Methionine pulse-chase analysis of mmunoprecipitated LDL-receptor indicated that coexpression with Rab 1 BN1211 but not Rab l BWT, impaired its conversion from the Endo-H-sensitive 120-125 kDa form to the O-glycosylated 160-170 kDa form, consistent with a block in ER → Golgi trafficking of the nascent receptor. In cells expressing Rab 1 BN1211, the newly synthesized LDL-receptor was unable to reach the cell surface as evidenced by its inaccessibility to sulfo-NHS-biotin added to the cultures. These observations provide a direct demonstration of Rab protein involvement in LDL receptor trafficking and lend support to the concept of Rab 1 B as a [niversal mediator of ER Golgi transport of membrane glycoproteins in mammalian cells.  相似文献   

7.
Endothelial receptor tyrosine kinases involved in angiogenesis   总被引:22,自引:0,他引:22       下载免费PDF全文
The Saccharomyces cerevisiae EMP47 gene encodes a nonessential type-I transmembrane protein with sequence homology to a class of intracellular lectins defined by ERGIC-53 and VIP36. The 12-amino acid COOH-terminal cytoplasmic tail of Emp47p ends in the sequence KTKLL, which conforms with the consensus for di-lysine-based ER-localization signals. Despite the presence of this motif, Emp47p was shown to be a Golgi protein at steady-state. The di-lysine motif of Emp47p was functional when transplanted onto Ste2p, a plasma membrane protein, conferring ER localization. Nevertheless, the di-lysine motif was required for Golgi-localization of Emp47p and showed the same charge- independent, position-dependent characteristics of other di-lysine motifs. Alpha-COP has been shown to be required for ER localization of di-lysine-tagged proteins. Consistent with this finding, the Ste2p- Emp47p hybrid protein was mislocalized to the cell surface in the alpha- COP mutant, ret1-1. Surprisingly, the Golgi-localization of Emp47p was unaffected by the ret1-1 mutation. To investigate whether Emp47p undergoes retrograde transport from the Golgi to the ER like other di- lysine-tagged proteins we developed an assay to measure this step after block of forward transport in a sec12 mutant. Under these conditions retrograde transport led to a specific redistribution of Emp47p from the Golgi to the ER. This recycling occurred from a Golgi subcompartment containing alpha 1,3 mannose-modified oligosaccharides suggesting that it originated from a medial-or later Golgi compartment. Thus Emp47p cycles between the Golgi apparatus and the ER and requires a di-lysine motif for its alpha-COP-independent, steady state localization in the Golgi.  相似文献   

8.
Stem cell factor, also known as Kit ligand (Kitl), belongs to the family of dimeric transmembrane growth factors. Efficient cell surface presentation of Kitl is essential for the migration, proliferation, and survival of melanocytes, germ cells, hemopoietic stem cells, and mastocytes. Here we demonstrate that intracellular transport of Kitl to the cell surface is driven by a motif in the cytoplasmic tail that acts independently of the previously described basolateral sorting signal. Transport of Kitl to the cell surface is controlled at the level of the endoplasmic reticulum (ER) and requires a C-terminal valine residue positioned at a distance of 19-36 amino acids from the border between the transmembrane and cytoplasmic domains. Deletion or substitution of the valine with other hydrophobic amino acids results in ER accumulation and reduced cell surface transport of Kitl at physiological expression levels. When these mutant proteins are overexpressed in the ER, they are transported by bulk flow to the cell surface albeit at lower efficiency. A fusion construct between Kitl and the green fluorescent protein-labeled extracellular domain of a temperature-sensitive mutant of vesicular stomatitis virus G protein revealed the valine-dependent recruitment into coat protein complex II-coated ER exit sites and vesicular ER to Golgi transport in living cells. Thus the C-terminal valine defines a specific ER export signal in Kitl. It is responsible for the capture of Kitl at coat protein complex II-coated ER exit sites, leading to subsequent cell surface transport under physiological conditions.  相似文献   

9.
p58/ERGIC-53 is an animal calcium-dependent lectin that cycles between the endoplasmic reticulum (ER) and the Golgi complex and appears to act as a cargo receptor for a subset of soluble glycoproteins exported from the ER. We have determined the crystal structure of the carbohydrate recognition domain (CRD) of p58, the rat homologue of human ERGIC-53, to 1.46 A resolution. The fold and ligand binding site are most similar to those of leguminous lectins. The structure also resembles that of the CRD of the ER folding chaperone calnexin and the neurexins, a family of non-lectin proteins expressed on neurons. The CRD comprises one concave and one convex beta-sheet packed into a beta-sandwich. The ligand binding site resides in a negatively charged cleft formed by conserved residues. A large surface patch of conserved residues with a putative role in protein-protein interactions and oligomerization lies on the opposite side of the ligand binding site. Together with previous functional data, the structure defines a new and expanding class of calcium-dependent animal lectins and provides a starting point for the understanding of glycoprotein sorting between the ER and the Golgi.  相似文献   

10.
The intracellular transport of two closely related membrane glycoproteins was studied in the murine B cell lymphoma line, AKTB-1b. Using pulse-chase radiolabeling, the kinetics of appearance of the class I histocompatibility antigens, H-2Kk and H-2Dk, at the cell surface were compared and found to be remarkably different. Newly synthesized H-2Kk is transported rapidly such that all radiolabeled molecules reach the surface within 1 h. In contrast, the H-2Dk antigen is transported slowly with a half-time of 4-5 h. The rates of surface appearance for the two antigens closely resemble the rates at which their Asn-linked oligosaccharides mature from endoglucosaminidase H (endo H)-sensitive to endo H-resistant forms, a process that occurs in the Golgi apparatus. This suggests that the rate-limiting step in the transport of H-2Dk to the cell surface occurs before the formation of endo H-resistant oligosaccharides in the Golgi apparatus. Subcellular fractionation experiments confirmed this conclusion by identifying the endoplasmic reticulum (ER) as the site where the H-2Dk antigen accumulates. The retention of this glycoprotein in the ER does not appear to be due to a lack of solubility or an inability of the H-2Dk heavy chain to associate with beta 2-microglobulin. Our data is inconsistent with a passive membrane flow mechanism for the intracellular transport of membrane glycoproteins. Rather, it suggests that one or more receptors localized to the ER membrane may mediate the selective transport of membrane glycoproteins out of the ER to the Golgi apparatus. The fact that H-2Kk and H-2Dk are highly homologous (greater than or equal to 80%) indicates that this process can be strongly influenced by limited alterations in protein structure.  相似文献   

11.
High level expression of the M2 ion channel protein of influenza virus inhibits the rate of intracellular transport of the influenza virus hemagglutinin (HA) and that of other integral membrane glycoproteins. HA coexpressed with M2 is properly folded, is not associated with GRP78- BiP, and trimerizes with the same kinetics as when HA is expressed alone. Analysis of the rate of transport of HA from the ER to the cis and medial golgi compartments and the TGN indicated that transport through the Golgi apparatus is delayed. Uncleaved HA0 was not expressed at the cell surface, and accumulation HA at the plasma membrane was reduced to 75-80% of control cells. The delay in intracellular transport of HA on coexpression of M2 was not observed in the presence of the M2-specific ion channel blocker, amantadine, indicating that the Golgi transport delay is due to the M2 protein ion channel activity equilibrating pH between the Golgi lumen and the cytoplasm, and not due to saturation of the intracellular transport machinery. The Na+/H+ ionophore, monensin, which also equilibrates pH between the Golgi lumen and the cytoplasm, caused a similar inhibition of intracellular transport as M2 protein expression did for HA and other integral membrane glycoproteins. EM data showed a dilation of Golgi cisternae in cells expressing the M2 ion channel protein. Taken together, the data suggest a similarity of effects of M2 ion channel activity and monensin on intracellular transport through the Golgi apparatus.  相似文献   

12.
We have used monospecific antisera to two lysosomal membrane glycoproteins, lgp120 and a similar protein, lgp110, to compare the biosynthesis and intracellular transport of lysosomal membrane components, plasma membrane proteins, and lysosomal enzymes. In J774 cells and NRK cells, newly synthesized lysosomal membrane and plasma membrane proteins (the IgG1/IgG2b Fc receptor or influenza virus hemagglutinin) were transported through the Golgi apparatus (defined by acquisition of resistance to endo-beta-N-acetylglucosaminidase H) with the same kinetics (t1/2 = 11-14 min). In addition, immunoelectron microscopy of normal rat kidney cells showed that lgp120 and vesicular stomatitis virus G-protein were present in the same Golgi cisternae demonstrating that lysosomal and plasma membrane proteins were not sorted either before or during transport through the Golgi apparatus. To define the site at which sorting occurred, we compared the kinetics of transport of lysosomal and plasma membrane proteins and a lysosomal enzyme to their respective destinations. Newly synthesized proteins were detected in dense lysosomes (lgp's and beta-glucuronidase) or on the cell surface (Fc receptor or hemagglutinin) after the same lag period (20-25 min), and accumulated at their final destinations with similar kinetics (t1/2 = 30-45 min), suggesting that these two lgp's are not transported to the plasma membrane before reaching lysosomes. This was further supported by measurements of the transport of membrane-bound endocytic markers from the cell surface to lysosomes, which exhibited additional lag periods of 5-15 min and half-times of 1.5-2 h. The time required for transport of newly synthesized plasma membrane proteins to the cell surface, and for the transport of plasma membrane markers from the cell surface to lysosomes would appear too long to account for the rapid transport of lgp's from the Golgi apparatus to lysosomes. Thus, the observed kinetics suggest that lysosomal membrane proteins are sorted from plasma membrane proteins at a post-Golgi intracellular site, possibly the trans Golgi network, before their delivery to lysosomes.  相似文献   

13.
In simple epithelial cells, apical and basolateral proteins and lipids in transit to the cell surface are sorted in the trans-Golgi network. We have recently isolated detergent-insoluble complexes from Madin-Darby canine kidney cells that are enriched in glycosphingolipids, apical cargo and a subset of the proteins of the exocytic carrier vesicles. The vesicular proteins are thought to be involved in protein sorting and include VIP21-caveolin. The vesicular protein VIP36 (36 kDa vesicular integral membrane protein) has been purified from a CHAPS-insoluble residue and a cDNA encoding VIP36 has been isolated. The N-terminal 31 kDa luminal/exoplasmic domain of the encoded protein shows homology to leguminous plant lectins. The transiently expressed protein is localized to the Golgi apparatus, endosomal and vesicular structures and the plasma membrane, as predicted for a protein involved in transport between the Golgi and the cell surface. It is diffusely localized on the plasma membrane but can be redistributed by antibody modulation into caveolae and clathrin-coated pits. We speculate that VIP36 binds to sugar residues of glycosphingolipids and/or glycosylphosphatidyl-inositol anchors and might provide a link between the extracellular/luminal face of glycolipid rafts and the cytoplasmic protein segregation machinery.  相似文献   

14.
The vesicular integral membrane protein VIP36 belongs to the family of animal lectins and may act as a cargo receptor trafficking certain glycoproteins in the secretory pathway. Immunoelectron microscopy of GH3 cells provided evidence that endogenous VIP36 is localized mainly in 70-100-nm-diameter uncoated transport vesicles between the exit site on the ER and the neighboring cis-Golgi cisterna. The thyrotrophin-releasing hormone (TRH) stimulation and treatment with actin filament-perturbing agents, cytochalasin D or B or latrunculin-B, caused marked aggregation of the VIP36-positive vesicles and the appearance of a VIP36-positive clustering structure located near the cis-Golgi cisterna. The size of this structure, which comprised conspicuous clusters of VIP36, depended on the TRH concentration. Confocal laser scanning microscopy confirmed the electron microscopically demonstrated distribution and redistribution of VIP36 in these cells. Furthermore, VIP36 colocalized with filamentous actin in the paranuclear Golgi area and its vicinity. This is the first study to show the ultrastructural distribution of VIP36 in the early secretory pathway in GH3 cells. It suggests that actin filaments are involved in glycoprotein transport between the ER and cis-Golgi cisterna by using the lectin VIP36.  相似文献   

15.
VIP36 is an intracellular lectin that cycles between the endoplasmic reticulum (ER) and the Golgi apparatus, and is thought to act as a cargo receptor in the transport and sorting of glycoproteins. Here we sought to identify the proteins that interact with VIP36 during the quality control of secretory proteins. VIP36 was crosslinked and immunoprecipitated from HEK293 cells that expressed Myc-tagged VIP36. An approximately 80 kDa protein coprecipitated with VIP36 and LC/MS/MS analysis revealed it to be immunoglobulin-binding protein (BiP), a major protein of the Hsp70 chaperone family. A VIP36 mutant with defective lectin activity was also proficient for the coimmunoprecipitation of an equivalent amount of BiP, indicating that the interaction between VIP36 and BiP was carbohydrate-independent. Immunoelectron microscopy experiment demonstrated that the interaction between VIP36 and BiP occurred in the ER. However, the VIP36 coprecipitated with BiP was resistant to endo beta-N-acetylglucosaminidase H treatment. A pulse-chase experiment revealed that the amount of BiP interacting with VIP36 did not change over more than 2 h. These results suggest that the interaction of VIP36 and BiP is not due to chaperone-substrate complex. Surface plasmon resonance analysis using recombinant proteins confirmed these binding characteristics of VIP36 and BiP in vitro. The interaction between recombinant soluble VIP36 and BiP is dependent on divalent cations but not on ATP. This mode of interaction is also different from that observed between BiP and its chaperone substrates. These observations suggest a new role for VIP36 in the quality control of secretory proteins.  相似文献   

16.
We have investigated the effect of colcemid-induced disassembly of microtubules, which is accompanied by retraction of the endoplasmic reticulum and fragmentation of the Golgi apparatus, on glycoprotein biosynthesis and transport in Chinese hamster ovary (CHO) cells. CHO cells were metabolically radiolabeled with [6- 3H]galactose or [2- 3H]mannose in the presence of either 0.1% dimethyl sulfoxide or 10 microM colcemid in dimethyl sulfoxide. The fine structure of glycoprotein asparagine-linked oligosaccharide structures synthesized in the presence or absence of colcemid was analyzed by lectin affinity chromatography, ion exchange chromatography, and methylation analysis using radiolabeled glycopeptides prepared by Pronase digestion. The fractionation patterns of [3H]mannose- and [3H]galactose-labeled glycopeptides on immobilized lectins indicated that processing to complex N-linked chains and poly-N-acetyllactosamine modification were similar in control and colcemid-treated cells. In addition, colcemid treatment did not alter the extent of sialylation or the linkage position of sialic acid residues to galactose. Using a trypsin release protocol, it was also found that the transport of newly synthesized glycoproteins to the cell surface was not affected by colcemid. These results demonstrate that the morphologically altered ER and Golgi apparatus in colcemid-treated CHO cells are completely functional with respect to the rate and fidelity of protein asparagine-linked glycosylation. Furthermore, movement of newly synthesized glycoproteins to and through the ER and Golgi apparatus and their transport to the cell surface in nonpolarized cells appears to be microtubule-independent.  相似文献   

17.
The molecular mechanism underlying the transport of G protein-coupled receptors from the endoplasmic reticulum (ER) to the cell surface is poorly understood. This issue was addressed by determining the role of Rab1, a Ras-related small GTPase that coordinates vesicular protein transport in the early secretory pathway, in the subcellular distribution and function of the angiotensin II type 1A receptor (AT1R), beta2-adrenergic receptor (AR), and alpha2B-AR in HEK293T cells. Inhibition of endogenous Rab1 function by transient expression of dominant-negative Rab1 mutants or Rab1 small interfering RNA (siRNA) induced a marked perinuclear accumulation and a significant reduction in cell-surface expression of AT1R and beta2-AR. The accumulated receptors were colocalized with calregulin (an ER marker) and GM130 (a Golgi marker), consistent with Rab1 function in regulating protein transport from the ER to the Golgi. In contrast, dominant-negative Rab1 mutants and siRNA had no effect on the subcellular distribution of alpha2B-AR. Similarly, expression of dominant-negative Rab1 mutants and siRNA depletion of Rab1 significantly attenuated AT1R-mediated inositol phosphate accumulation and ERK1/2 activation and beta2-AR-mediated ERK1/2 activation, but not alpha2B-AR-stimulated ERK1/2 activation. These data indicate that Rab1 GTPase selectively regulates intracellular trafficking and signaling of G protein-coupled receptors and suggest a novel, as yet undefined pathway for movement of G protein-coupled receptors from the ER to the cell surface.  相似文献   

18.
Anterograde cell surface transport of nascent G protein‐coupled receptors (GPCRs) en route from the endoplasmic reticulum (ER) through the Golgi apparatus represents a crucial checkpoint to control the amount of the receptors at the functional destination and the strength of receptor activation‐elicited cellular responses. However, as compared with extensively studied internalization and recycling processes, the molecular mechanisms of cell surface trafficking of GPCRs are relatively less defined. Here, we will review the current advances in understanding the ER‐Golgi‐cell surface transport of GPCRs and use angiotensin II type 1 receptor as a representative GPCR to discuss emerging roles of receptor‐interacting proteins and specific motifs embedded within the receptors in controlling the forward traffic of GPCRs along the biosynthetic pathway.   相似文献   

19.
Rubella virus (RV) has been reported to bud from intracellular membranes in certain cell types. In this study the intracellular site of targeting of RV envelope E2 and E1 glycoproteins has been investigated in three different cell types (CHO, BHK-21 and Vero cells) transfected with a cDNA encoding the two glycoproteins. By indirect immunofluorescence, E2 and E1 were localized to the Golgi region of all three cell types, and their distribution was disrupted by treatment with BFA or nocodazole. Immunogold labeling demonstrated that E2 and E1 were localized to Golgi cisternae and indicated that the glycoproteins were distributed across the Golgi stack. Analysis of immunoprecipitates obtained from stably transfected CHO cells revealed that E2 and E1 become endo H resistant and undergo sialylation without being transported to the cell surface. Transport of RV glycoproteins to the Golgi complex was relatively slow (t1/2 = 60-90 min). Coprecipitation experiments indicated that E2 and E1 form a heterodimer in the RER. E1 was found to fold much more slowly than E2, suggesting that the delay in transport of the heterodimer to the Golgi may be due to the slow maturation of E1 in the ER. These results indicate that RV glycoproteins behave as integral membrane proteins of the Golgi complex and thus provide a useful model to study targeting and turnover of type I membrane proteins in this organelle.  相似文献   

20.
Secretory proteins are exported from the endoplasmic reticulum (ER) by bulk flow and/or receptor-mediated transport. Our understanding of this process is limited because of the low number of identified transport receptors and cognate cargo proteins. In mammalian cells, the lectin ER Golgi intermediate compartment 53-kD protein (ERGIC-53) represents the best characterized cargo receptor. It assists ER export of a subset of glycoproteins including coagulation factors V and VIII and cathepsin C and Z. Here, we report a novel screening strategy to identify protein interactions in the lumen of the secretory pathway using a yellow fluorescent protein-based protein fragment complementation assay. By screening a human liver complementary DNA library, we identify alpha1-antitrypsin (alpha1-AT) as previously unrecognized cargo of ERGIC-53 and show that cargo capture is carbohydrate- and conformation-dependent. ERGIC-53 knockdown and knockout cells display a specific secretion defect of alpha1-AT that is corrected by reintroducing ERGIC-53. The results reveal ERGIC-53 to be an intracellular transport receptor of alpha1-AT and provide direct evidence for active receptor-mediated ER export of a soluble secretory protein in higher eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号