首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang HM  Ou HC  Hsieh SJ 《Life sciences》2000,66(19):1879-1892
Beta-amyloid ((A)beta) is a peptide of 39-42 amino acids that is the primary component of plaques in Alzheimer's disease (AD). The mechanism by which (A)beta expresses its neurotoxic effects may involve induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels. Cultured cortical cells were utilized to study the alterations in calcium homeostasis underlying the neurotoxic effect of (A)beta. Serum supplement B27 and vitamin E were effective in preventing neuronal death as assessed by lactate dehydrogenase (LDH) release, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and number of apoptotic nuclei. In addition, (A)beta-induced cytosolic free calcium ([Ca2+]i) was blocked by antioxidants vitamin E and U83836E, but not by N-methyl-D-aspartic acid (NMDA) receptor antagonist MK-801, or by voltage-gated calcium channel blocker nimodipine. Taken together, the results suggest that NMDA receptor and voltage-gated calcium channels are not involved in (A)beta-induced [Ca2+]i increase. This increase appeared to be the result of extracellular calcium influx by some unknown mechanisms. In addition, antioxidants such as B27 were effective in protecting cultured cortical neurons against (A)beta, and correlated with (A)beta attenuation of early calcium response.  相似文献   

2.
3-Nitropropionic acid (3NP), an irreversible inhibitor of succinate dehydrogenase, induces both rapid necrotic and slow apoptotic death in rat hippocampal neurons. Low levels of extracellular glutamate (10 microM) shift the 3NP-induced cell death mechanism to necrosis, while NMDA receptor blockade results in predominantly apoptotic death. In this study, we examined the 3NP-induced alterations in free cytosolic and mitochondrial calcium levels, ATP levels, mitochondrial membrane potential, and calpain and caspase activity, under conditions resulting in the activation of apoptotic and necrotic pathways. In the presence of 10 microM glutamate, 3NP administration resulted in a massive elevation in [Ca(2+)](c) and [Ca(2+)](m), decreased ATP, rapid mitochondrial membrane depolarization, and a rapid activation of calpain but not caspase activity. In the presence of the NMDA receptor antagonist MK-801, 3NP did not induce a significant elevation of [Ca(2+)](c) within the 24h time period examined, nor increase [Ca(2+)](m) within 1h. ATP was maintained at control levels during the first hour of treatment, but declined 64% by 16h. Calpain and caspase activity were first evident at 24h following 3NP administration. 3NP treatment alone resulted in a more rapid decline in ATP, more rapid calpain activation (within 8h), and elevated [Ca(2+)](m) as compared to the results obtained with added MK-801. Together, the results demonstrate that 3NP-induced necrotic neuron death is associated with a massive calcium influx through NMDA receptors, resulting in mitochondrial depolarization and calpain activation; while 3NP-induced apoptotic neuron death is not associated with significant elevations in [Ca(2+)](c), nor with early changes in [Ca(2+)](m), mitochondrial membrane potential, ATP levels, or calpain activity.  相似文献   

3.
Using a fluorescent probe for superoxide, hydroethidine, we have demonstrated that glucose deprivation (GD) activates production of reactive oxygen species (ROS) in cultured cerebellar granule neurons. ROS production was insensitive to the blockade of ionotropic glutamate channels by MK-801 (10 microM) and NBQX (10 microM). Inhibitors of mitochondrial electron transport, i.e. rotenone (complex I), antimycin A (complex III), or sodium azide (complex IV), an inhibitor of mitochondrial ATP synthase--oligomycin, an uncoupler of oxidative phosphorylation--CCCP, a chelator of intracellular Ca2+--BAPTA, an inhibitor of electrogenic mitochondrial Ca2+ transport--ruthenium red, as well as pyruvate significantly decreased neuronal ROS production induced by GD. GD was accompanied by a progressive decrease in the mitochondrial membrane potential and an increase in free cytosolic calcium ions, [Ca2+](i). Pyruvate, BAPTA, and ruthenium red lowered the GD-induced calcium overload, while pyruvate and ruthenium red also prevented mitochondrial membrane potential changes induced by GD. We conclude that GD-induced ROS production in neurons is related to potential-dependent mitochondrial Ca2+ overload. GD-induced mitochondrial Ca2+ overload in neurons in combination with depletion of energy substrates may result in the decrease of the membrane potential in these organelles.  相似文献   

4.
Neurotrophic and neurotoxic effects of zinc on neonatal cortical neurons   总被引:1,自引:0,他引:1  
Although zinc exerts direct neurotoxic action, this metal is also essential for the activity of numerous biological systems and zinc deficiency has been associated with various pathologies. We investigated the cellular responses and neuronal viability following exposure to different concentrations of zinc in primary cultures of neonatal rat cortical neurons. Higher concentrations of zinc (0.15 and 0.2 mM) triggered excessive zinc influx, glutathione depletion and ATP loss leading to necrotic neuronal death. In contrast, lower concentrations of zinc (0.05 and 0.1 mM) attenuated serum-deprivation induced apoptotic neuronal death. The antiapoptotic action of low amounts of zinc was found both in mixed cultures and neuron-enriched cultures indicating the independence of glial mediator. Neurotrophic action was not accompanied by significant alteration in those cellular responses but required chelatable zinc. The N-methyl-D-aspartate (NMDA) antagonist, MK-801, mimicked the beneficial effect of zinc in protecting neuronal death. Moreover, both MK-801 and zinc eliminated NMDA-induced neuronal injury. The results suggest that zinc is an intrinsic factor for neuron survival and exogenous zinc, in low amounts, is an active neuroprotectant against serum deprivation in part through the antagonism of NMDA receptor activation.  相似文献   

5.
Glutamate is a well-characterized excitatory neurotransmitter in the central nervous system (CNS). Recently, glutamate receptors (GluRs) were also found in peripheral tissues, including the heart. However, the function of GluRs in peripheral organs remains poorly understood. In the present study, we found that N-methyl-D-aspartate (NMDA) could increase intracellular calcium ([Ca(2+)]i) level in a dose-dependent manner in cultured neonatal rat cardiomyocytes. NMDA at 10(-4) M increased the levels of reactive oxygen species (ROS), cytosolic cytochrome c (cyto c), and 17-kDa caspase-3, but depolarized mitochondrial membrane potential, leading to cardiomyocyte apoptosis. In addition, NMDA treatment induced an increase in bax mRNA but a decrease in bcl-2 mRNA expression in the cardiomyocytes. The above effects of NMDA were blocked by the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), and by ROS scavengers glutathione (GSH) and N-acetylcystein (NAC). These results suggest that stimulation of NMDA receptor in the cardiomyocyte may lead to apoptosis via a Ca(2+), ROS, and caspase-3 mediated pathway. These findings suggest that NMDA receptor may play an important role in myocardial pathogenesis.  相似文献   

6.
N-methyl-D-aspartate receptor (NMDAR) activity plays a key role in cerebral ischemia. Although NMDAR is also expressed in cardiomyocytes, little research has been performed on NMDAR activity in myocardial ischemia. Here, using an in vitro oxygen-glucose deprivation (OGD) cardiomyocyte model, we evaluated the effects of NMDAR activity upon calcium influx, viability, apoptosis, and investigated the roles of several key mitogen-activated protein kinases (MAPKs). Primary human neonatal cardiomyocytes were cultured under OGD conditions to mimic in vivo ischemic conditions. Enhancing NMDAR activity via NMDA significantly promoted calcium influx, decreased cell viability, increased apoptosis, and enhanced p38 MAPK phosphorylation in OGD cardiomyocytes (all P < 0.05). These effects were rescued by several calcium-channel blockers (ie, MK-801, La3+, Gap26 peptide, 18β-glycyrrhetinic acid) but most potently rescued via the NMDAR-specific antagonist MK-801 or removal of extracellular free calcium (all P < 0.05). Knocking-down p38 MAPK activity by small-molecule inhibition or genetic methods significantly increased cell viability and reduced apoptosis (all P < 0.05). Enhancing p38 MAPK activity abolished MK-801′s apoptosis-reducing effects in a p38 MAPK-dependent manner. In conclusion, NMDAR-driven calcium influx promotes apoptosis in ischemic human cardiomyocytes, an effect which can be attributed to enhanced p38 MAPK activity.  相似文献   

7.
A decrease in zinc (Zn) levels increases the production of cell oxidants, affects the oxidant defense system and triggers oxidant sensitive signals in neuronal cells. However, the underlying mechanisms are still unclear. This work tested the hypothesis that the increase in neuronal oxidants that occurs when cellular Zn decreases is mediated by the activation of the NMDA receptor. Differentiated PC12 cells were cultured in control, Zn-deficient or Zn-repleted media. The incubation in Zn deficient media led to a rapid increase in cellular calcium levels, which was prevented by a NMDA receptor antagonist (MK-801). Cellular calcium accumulation was associated with NADPH oxidase and nitric oxide synthase (NOS) activation, an increase in cell oxidant levels, and an associated activation of a redox-sensitive signal (AP-1). In cells incubated in the Zn deficient medium, NADPH oxidase activation was prevented by MK-801 and by a protein kinase C inhibitor. The rise in cell oxidants was prevented by inhibitors of NADPH oxidase, of the NOS and by MK-801. A similar pattern of inhibitor action was observed for zinc deficiency-induced AP-1 activation. Results demonstrate that a decrease in extracellular Zn leads to an increase in neuronal oxidants through the activation of the NMDAR that leads to calcium influx and to a calcium-mediated activation of protein kinase C/NADPH oxidase and NOS. Changes in extracellular Zn concentrations can be sensed by neurons, which using reactive oxygen and nitrogen species as second messengers, can regulate signaling involved in neuronal development and function.  相似文献   

8.
Analysis of small dorsal root ganglion (DRG) neurons revealed novel functions for vanilloid receptor 1 (VR1) in the regulation of cytosolic Ca(2+). The VR1 agonist capsaicin induced Ca(2+) mobilization from intracellular stores in the absence of extracellular Ca(2+), and this release was inhibited by the VR1 antagonist capsazepine but was unaffected by the phospholipase C inhibitor xestospongins, indicating that Ca(2+) mobilization was dependent on capsaicin receptor binding and was not due to intracellular inositol-1,4,5-trisphosphate generation. Confocal microscopy revealed extensive expression of VR1 on endoplasmic reticulum, consistent with VR1 operating as a Ca(2+) release receptor. The main part of the capsaicin-releasable Ca(2+) store was insensitive to thapsigargin, a selective endoplasmic reticulum Ca(2+)-ATPase inhibitor, suggesting that VR1 might be predominantly localized to a thapsigargin-insensitive endoplasmic reticulum Ca(2+) store. In addition, VR1 was observed to behave as a store-operated Ca(2+) influx channel. In DRG neurons, capsazepine attenuated Ca(2+) influx following thapsigargin-induced Ca(2+) store depletion and inhibited thapsigargin-induced inward currents. Conversely, transfected HEK-293 cells expressing VR1 showed enhanced Ca(2+) influx and inward currents following Ca(2+) store depletion. Combined data support topographical and functional diversity for VR1 in the regulation of cytosolic Ca(2+) with the plasma membrane-associated form behaving as a store-operated Ca(2+) influx channel and endoplasmic reticulum-associated VR1 possibly functioning as a Ca(2+) release receptor in sensory neurons.  相似文献   

9.
10.
The N-methyl-D-aspartate (NMDA) ion channel blocker MK-801 administered systemically or as a nanoliter injection into the nucleus of the solitary tract (NTS), increases meal size. Furthermore, we have observed that ablation of the NTS abolishes increased meal size following systemic injection of dizocilpine (MK-801) and that MK-801-induced increases in intake are attenuated in rats pretreated with capsaicin to destroy small, unmyelinated, primary afferent neurons. These findings led us to hypothesize that NMDA receptors on central vagal afferent terminals or on higher-order NTS neurons innervated by these vagal afferents might mediate increased food intake. To evaluate this hypothesis, we examined 15% sucrose intake after 50-nl MK-801 injections ipsilateral or contralateral to unilateral nodose ganglion removal (ganglionectomy). On the side contralateral to ganglionectomy, vagal afferent terminals would be intact and functional, whereas ipsilateral to ganglionectomy vagal afferent terminals would be absent. Three additional control preparations also were included: 1) sham ganglionectomy and 2) subnodose vagotomy either contralateral or ipsilateral to NTS cannula placement. We found that rats with subnodose vagotomies increased their sucrose intake after injections of MK-801 compared with saline, regardless of whether injections were made contralateral (12.6 +/- 0.2 vs. 9.6 +/- 0.3 ml) or ipsilateral (14.2 +/- 0.6 vs. 9.7 +/- 0.4 ml) to vagotomy. Rats with NTS cannula placements contralateral to nodose ganglionectomy also increased their intake after MK-801 (12.2 +/- 0.9 and 9.2 +/- 1.1 ml for MK-801 and saline, respectively). However, rats with placements ipsilateral to ganglionectomy did not respond to MK-801 (8.0 +/- 0.5 ml) compared with saline (8.3 +/- 0.4 ml). We conclude that central vagal afferent terminals are necessary for increased food intake in response to NMDA ion channel blockade. The function of central vagal afferent processes or the activity of higher-order NTS neurons driven by vagal afferents may be modulated by NMDA receptors to control meal size.  相似文献   

11.
The effect of N-methyl-D-aspartate (NMDA) receptor antagonists on cell viability was studied in rat primary cortical cells. NMDA antagonists [MK-801 and 2-amino-5-phosphonovalerate (APV)] induced cell shrinkage, nuclear condensation or fragmentation, and internucleosomal DNA fragmentation. Treatment of cells with MK-801 (an NMDA antagonist) for 1-2 days induced apoptotic cell death in a dose-dependent manner (1 nM to 10 microM). NMDA (25 microM), however, inhibited the MK-801 (0.1 microM)-induced apoptotic cell death. MK-801 and APV decreased the concentration of intracellular calcium ion. Activation of caspase-3 was accompanied by MK-801-induced cell death in a dose-dependent manner, and an inhibitor of caspase-3 reduced the cell death. Further, cycloheximide (0.2 microg/ml) completely protected the cells from MK-801-induced apoptotic cell death and caspase-3 activation. Insulin-like growth factor I completely attenuated MK-801-induced apoptotic cell death and caspase-3 activation. These results demonstrated that the moderate NMDA receptor activation is probably involved in the survival signal of the neuron.  相似文献   

12.
Death-associated protein kinase (DAPK) is a calcium calmodulin-regulated serine/threonine protein kinase involved in ischemic neuronal death. In situ hybridization experiments show that DAPK mRNA expression is up-regulated in brain following a global ischemic insult and down-regulated in ischemic tissues after focal ischemia. DAPK is inactive in normal brain tissues, where it is found in its phosphorylated state and becomes rapidly and persistently dephosphorylated and activated in response to ischemia in vivo. A similar dephosphorylation pattern is detected in primary cortical neurons subjected to oxygen glucose deprivation or N-methyl-D-aspartate (NMDA)-induced toxicity. Both a calcineurin inhibitor, FK506, and a selective NMDA receptor antagonist, MK-801, inhibit the dephosphorylation of DAPK after in vitro ischemia. This indicates that DAPK could be activated by NMDA receptor-mediated calcium flux, activation of calcineurin, and subsequent DAPK dephosphorylation. Moreover, concomitantly to dephosphorylation, DAPK is proteolytically processed by cathepsin after ischemia. Furthermore, a selective DAPK inhibitor is neuroprotective in both in vitro and in vivo ischemic models. These results indicate that DAPK plays a key role in mediating ischemic neuronal injury.  相似文献   

13.
The weaver mutation impairs migration of the cerebellar granular neurons and induces neuronal death during the first two weeks of postnatal life. To elucidate the molecular mechanisms for the impaired neuronal migration, we investigated the rescue mechanisms of the weaver (wv/wv) granule neurons in vitro. We found that Fab2 fragments of antibodies against a neurite outgrowth domain of the B2 chain of laminin enhanced neurite outgrowth and neuronal migration of the weaver granule neurons on a laminin substratum and in the established cable culture system. The rescue of the weaver granule neurons by antibodies against the B2 chain of laminin may result from the neutralizing effect of these antibodies against the elevated B2 chain levels of the weaver brain. The L-type calcium channel blocker, verapamil (1-5 microM), also rescued the weaver granule neurons. High concentrations of MK-801 (10- 20 microM), a glutamate receptor antagonist and voltage-gated calcium channel blocker, rescued the weaver granule neurons similar to verapamil, but low concentrations of MK-801 (1 microM) had no rescue effect. Simultaneous patch-clamp studies indicated that the weaver granule neurons did not express functional N-methyl-D-aspartate receptors further indicating that the rescue of the weaver granule neurons by MK-801 resulted from its known inhibition of voltage-gated calcium channels. The present results indicate that antibodies against the B2 chain of laminin, verapamil, and high concentrations of MK-801 protect the weaver granule neurons from the otherwise destructive action of the weaver gene. Thus, both the laminin system and calcium channel function contribute to the migration deficiency of the weaver granule neurons.  相似文献   

14.
Abstract: Although the mechanism of neuronal death in neurodegenerative diseases remains unknown, it has been hypothesized that relatively minor metabolic defects may predispose neurons to N -methyl- d -aspartate (NMDA) receptor-mediated excitotoxic damage in these disorders. To further investigate this possibility, we have characterized the excitotoxic potential of the reversible succinate dehydrogenase (SDH) inhibitor malonate. After its intrastriatal stereotaxic injection into male Sprague-Dawley rats, malonate produced a dose-dependent lesion when assessed 3 days after surgery using cytochrome oxidase histochemistry. This lesion was attenuated by coadministration of excess succinate, indicating that it was caused by specific inhibition of SDH. The lesion was also prevented by administration of the noncompetitive NMDA antagonist MK-801. MK-801 did not induce hypothermia, and hypothermia itself was not neuroprotective, suggesting that the neuroprotective effect of MK-801 was due to blockade of the NMDA receptor ion channel and not to any nonspecific effect. The competitive NMDA antagonist LY274614 and the glycine site antagonist 7-chlorokynurenate also profoundly attenuated malonate neurotoxicity, further indicating an NMDA receptor-mediated event. Finally, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) antagonist NBQX (2,3-dihydroxy-6-nitro-7-sulfamoylbenzo( f )-quinoxaline) was ineffective at preventing malonate toxicity at a dose that effectively reduced S -AMPA toxicity, indicating that non-NMDA receptors are involved minimally, if at all, in the production of the malonate lesion. We conclude that inhibition of SDH by malonate results in NMDA receptor-mediated excitotoxic neuronal death. If this mechanism of "secondary" or "weak" excitotoxicity plays a role in neurodegenerative disease, NMDA antagonists and other "antiexcitotoxic" strategies may have therapeutic potential for these diseases.  相似文献   

15.
Incubation of rat lymphocytes with homocysteine (HC) or homocysteic acid (HCA) was found to increase the stationary levels of free radicals in lymphocytes, the effect of both ligands being mediated by ionotropic receptors activated by N-methyl-D-aspactic acid (NMDA), the expression of which on rat lymphocyte membranes was earlier demonstrated. In agreement with these data, increase of free radicals in the lymphocyte cytoplasm is preceded by an increase in the intracellular calcium levels, activation of protein kinase C, nicotinamide adenine dinucleotide phosphate oxidase and/or nitric oxide synthase. Both HC and HCA increase the production of IFN-γ and TNF-α by lymphocytes and antagonist of NMDA receptors; MK-801 prevents this effect. The data presented show that rat lymphocyte membrane contains functionally active NMDA receptors, which regulate cytokine accumulation.  相似文献   

16.
NMDA-mediated calcium entry and reactive oxygen species (ROS) production are well-recognized perpetrators of ischemic neuronal damage. The current studies show that these events lead to the release of the protein hydrolase, cathepsin B, from lysosomes 2 h following 5-min oxygen–glucose deprivation in the rat hippocampal slice. This release reflects a lysosomal membrane permeabilization (LMP) and was measured as the appearance of diffuse immunolabeled cathepsin B in the cytosol of CA1 pyramidal neurons. Necrotic neuronal damage begins after the release of cathepsins and is prevented by inhibitors of either cathepsin B or D indicating that the release of cathepsins is an important mediator of severe damage. There was an increase in superoxide levels, measured by dihydroethidium fluorescence, at the same time as LMP and reducing ROS levels with antioxidants, Trolox or N -tert-butyl-α-phenyl nitrone, blocked LMP. Both LMP and ROS production were blocked by an NMDA channel blocker (MK-801) and by inhibitors of mitogen-activated protein kinase kinase (U0126), calcium-dependent/independent phospholipases A2 (methyl arachidonyl fluorophosphonate) but not calcium-independent phospholipases A2 (bromoenol lactone) and cyclooxygenase-2 (NS398). A cell-permeant specific inhibitor of calpain (PD150606) prevented LMP, but not ROS production. It is concluded that LMP results in part from calcium-initiated and extracellular signal-regulated kinase-initiated arachidonic acid metabolism, which produces free radicals; it also requires the action of calpain.  相似文献   

17.
Recently we showed that the level of mitochondrial mRNA was decreased prior to neuronal death induced by glutamate. As the level of mRNA is regulated by ribonuclease (RNase), we examined RNase activity and its expression in the primary cultures of cortical neurons after glutamate treatment in order to evaluate the involvement of RNase in glutamate-induced neuronal death. A 15-min exposure of the cultures to glutamate at the concentration of 100muM produced marked neuronal damage (more than 70% of total cells) at 24-h post-exposure. Under the experimental conditions used, RNA degradation was definitely observed at a period of 4-12-h post-exposure, a time when no damage was seen in the neurons. Glutamate-induced RNA degradation was completely prevented by the N-methyl-d-aspartic acid (NMDA) receptor channel blocker MK-801 or the NR2B-containing NMDA receptor antagonist ifenprodil. Glutamate exposure produced enhanced expression of RNase L at least 2-12h later, which was absolutely abolished by MK-801. However, no significant change was seen in the level of RNase H1 mRNA at any time point post-glutamate treatment. Immunocytochemical studies revealed that RNase L expressed in response to glutamate was localized within the nucleus, mitochondria, and cytoplasm in the neurons. Taken together, our data suggest that expression of RNase L is a signal generated by NMDA receptor in cortical neurons. RNase L expression and RNA degradation may be events that cause neuronal damage induced by NMDA receptor activation.  相似文献   

18.
The death of dopaminergic neurons that occurs spontaneously in mesencephalic cultures was prevented by depolarizing concentrations of K+ (20-50 mM). However, unlike that observed previously in other neuronal populations of the PNS or CNS, promotion of survival required concurrent blockade of either NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors by the specific antagonists, MK-801 and GYKI-52466, respectively. Rescued neurons appeared to be healthy and functional because the same treatment also dramatically enhanced their capacity to accumulate dopamine. The effects on survival and uptake were rather specific to dopaminergic neurons, rapidly reversible and still observed when treatment was delayed after plating. Glutamate release increased substantially in the presence of elevated concentrations of K+, and chronic treatment with glutamate induced a loss of dopaminergic neurons that was prevented by MK-801 or GYKI-52466 suggesting that an excitotoxic process interfered with survival when only the depolarizing treatment was applied. The effects of the depolarizing stimulus in the presence of MK-801 were mimicked by BAY K-8644 and abolished by nifedipine, suggesting that neuroprotection resulted from Ca(2+) influx through L-type calcium channels. Measurement of intracellular calcium revealed that MK-801 or GYKI-52466 were required to maintain Ca(2+) levels within a trophic range, thus preventing K+-induced excitotoxic stress and Ca(2+) overload. Altogether, our results suggest that dopaminergic neurons may require a finely tuned interplay between glutamatergic receptors and calcium channels for their development and maturation.  相似文献   

19.
Hydrogen peroxide (H2O2), a major non-radical reactive oxygen species (ROS) could elicit intracellular oxidative damage and/or cause extracellular free calcium influx by activating the NMDA receptor or through calcium channels. In the present study, NMDA receptor antagonist MK-801 fully blocked H2O2-induced neuronal cell death, whereas green tea (GT) extract containing-antioxidants only partially suppressed the neurotoxicity of H2O2. These suggest that majority of ROS overproduction is downstream of H2O2-induced calcium influx. A novel neuroprotectant PAN-811 was previously demonstrated to efficiently attenuate ischemic neurotoxicity. PAN-811 hereby fully blocks H2O2-elicited neuronal cell death with a more advanced neuroprotective profile than that of GT extract. PAN-811 was also shown to protect against CaCl2-elicited neurotoxicity. Efficient protection against oxidative stress-induced neurotoxicity by PAN-811 indicates its potential application in treatment of ROS-mediated neurodegenerative diseases. W.P. and C.M.D. had equal contributions to this project  相似文献   

20.
The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist [3H]MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of [3H]MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. [3H]MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated [3H]MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by [3H]TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-[3H]SKF 10,047. [3H]MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that [3H]MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号