首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Chlorophenol degradation coupled to sulfate reduction.   总被引:11,自引:9,他引:2       下载免费PDF全文
We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO2. Formation of sulfide from sulfate was confirmed with a radiotracer technique. No methane was formed, verifying that sulfate reduction was the electron sink. Addition of molybdate, a specific inhibitor of sulfate reduction, inhibited chlorophenol degradation completely. These results indicate that the chlorophenols were mineralized under sulfidogenic conditions and that substrate oxidation was coupled to sulfate reduction. In acclimated cultures the three monochlorophenol isomers and 2,4-dichlorophenol were degraded at rates of 8 to 37 mumol liter-1 day-1. The relative rates of degradation were 4-chlorophenol greater than 3-chlorophenol greater than 2-chlorophenol, 2,4-dichlorophenol. Sulfidogenic cultures initiated with biomass from an anaerobic bioreactor used in treatment of pulp-bleaching effluents dechlorinated 2,4-dichlorophenol to 4-chlorophenol, which persisted, whereas 2,6-dichlorophenol was sequentially dechlorinated first to 2-chlorophenol and then to phenol.  相似文献   

2.
Chlorophenol degradation coupled to sulfate reduction   总被引:2,自引:0,他引:2  
We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO2. Formation of sulfide from sulfate was confirmed with a radiotracer technique. No methane was formed, verifying that sulfate reduction was the electron sink. Addition of molybdate, a specific inhibitor of sulfate reduction, inhibited chlorophenol degradation completely. These results indicate that the chlorophenols were mineralized under sulfidogenic conditions and that substrate oxidation was coupled to sulfate reduction. In acclimated cultures the three monochlorophenol isomers and 2,4-dichlorophenol were degraded at rates of 8 to 37 mumol liter-1 day-1. The relative rates of degradation were 4-chlorophenol greater than 3-chlorophenol greater than 2-chlorophenol, 2,4-dichlorophenol. Sulfidogenic cultures initiated with biomass from an anaerobic bioreactor used in treatment of pulp-bleaching effluents dechlorinated 2,4-dichlorophenol to 4-chlorophenol, which persisted, whereas 2,6-dichlorophenol was sequentially dechlorinated first to 2-chlorophenol and then to phenol.  相似文献   

3.
Chlorophenolic waste most often contains phenol and rho-cresol along with chlorophenols. A Rhodococcus erythropolis strain M1 was isolated with the ability to degrade 2-chlorophenol, phenol and p-cresol (100 mgl(-1), each) in 18, 24 and 20 h, respectively, with negligible lag. However, Rhodococcus sp. characterized by low growth rate, pose a threat to be outgrown by bacteria occurring in natural habitats. In the present study, interaction of R. erythropolis M1 with another isolated bacteria generally encountered in activated sludge for water treatment like Pseudomonas fluorescens P1 was studied. 2-chlorophenol, phenol and p-cresol were selected as the substrates for the study. Viable cell counts showed competitive interaction between the species on 2-chlorophenol and phenol. Specific growth rate of pure culture of R. erythropolis M1 was higher than P. fluorescens P1 on 2-chlorophenol. However, in mixed culture, P. fluorescens P1 showed higher growth rate. Degradation of phenol showed higher growth rate of R. erythropolis M1 both in pure and in mixed culture form. Degradation of p-cresol had shown similar counts for both populations indicating neutral type of interaction. This observation was substantiated by detecting the growth rate, where both cultures had similar growth rate in pure and in the mixed culture form. Rate of 2-chlorophenol degradation was higher when R. erythropolis M1 was used as the pure culture as compared to the degradation rates observed with the P. fluorescens P1 or with the mixed culture. However, in case of phenol and p-cresol, degradation by the mixed culture had resulted in higher degradation rates as compared to the degradation of the substrates by both the axenic cultures.  相似文献   

4.
Degradation of chlorophenols catalyzed by laccase   总被引:1,自引:0,他引:1  
The degradations of 2,4-dichlorophenol (2,4-DCP), 4-chlorophenol (4-CP) and 2-chlorophenol (2-CP) catalyzed by laccase were carried out. The optimal condition regarding degradation efficiency was also discussed, which included reaction time, pH value, temperature, concentration series of chlorophenols and laccase. Results showed that the capability of laccase was the best, while to oxidize 2,4-DCP among the above-mentioned chlorophenols. Within 10 h, the removal efficiency of 2,4-DCP, 2-CP and 4-CP could reach 94%, 75% and 69%, respectively. The optimal pH for laccase to degrade chlorophenols was around 5.5. The increase of laccase concentration or temperature might result in the degradation promotion. The trends of degradation percentage were various among these three chlorophenols with the concentration increase of chlorophenols. Degradation of 2,4-DCP is a first-order reaction and the reaction activation energy is about 44.8 kJ mol−1. When laccase was immobilized on chitosan, crosslinked with glutaraldehyde, the activity of immobilized laccase was lower than that of free laccase, but the stability improved significantly. The removal efficiency of immobilized laccase to 2,4-DCP still remained over 65% after six cycles of operation.  相似文献   

5.
The degradation of 2,4-dinitrophenol (2,4-DNP) by Rhodococcus erythropolis HL PM-1 was studied. The enzymes involved in 2,4-DNP degradation were inducible, and their resynthesis took place during the process. Cell immobilization by embedding into agar gels decreased the degrader activity. The maximum rates of 2,4-DNP degradation by free and immobilized cells were 10.0 and 5.4 nmol/min per mg cells, respectively. The concentration dependence of 2,4-DNP degradation was typical of substrate inhibition kinetics. The immobilized cells were used in a model reactor designed for 2,4-DNP biodegradation. Its maximum capacity was 0.45 nmol/min per mg cells at a volumetric flow rate of 20 h–1. The reactor operated for 14 days without losing capacity; its half-life equaled 16 days.  相似文献   

6.
As part of our effort at establishing microbial consortia of relevance for the bioremediation of xenobiotics polluted environments in Mexico, we assessed the aerobic biodegradation of 2,4-dichlorophenol (2,4-DCP) by a consortium of four Bacillus species that were isolated from a polluted soil by enrichment using a mixture of chlorophenols. The bacterial consortium effectively biodegraded 2-chlorophenol, 3-chlorophenol and 2,4-dichlorophenol at degradation rates of between 1.7 and 6.7 μmoles l−1 h−1. In the presence of NH4Cl or KNO2 as nitrogen sources, 2,4-DCP was variously degraded. Under both conditions, cell biomass attained highest values of 350 and 450 mg l−1 respectively, while the amounts of 2,4-DCP metabolized in 21 days reached peak values of 2.1 and 2.5 mM representing between 70 and 85% degradation respectively. Chloride releases during the same period were highest at 4.7 mM and 5.3 mM in the presence of the two nitrogen sources. The presence of free-chloride in the culture medium had a significant impact on the catabolism of 2,4-dichlorophenol.  相似文献   

7.
Study of the conversion of chlorophenols byRhodococcus opacus 1G,R. rhodnii 135,R. rhodochrous 89, andR. opacus 1cp disclosed the dependence of the conversion rate and pathway on the number and position of chlorine atoms in the aromatic ring. The most active chlorophenol converter, strainR. opacus 1cp, grew on each of the three isomeric monochlorophenols and on 2,4-dichlorophenol; the rate of growth decreased from 4-chlorophenol to 3-chlorophenol and then to 2-chlorophenol. The parameters of growth on 2,4-dichlorophenol were the same as on 3-chlorophenol. None of the strains studied utilized trichlorophenols. A detailed study of the pathway of chlorophenol transformation showed that 3-chloro-, 4-chloro-, and 2,4-dichlorophenol were utilized by the strains via a modifiedortho-pathway. 2-Chlorophenol and 2,3-dichlorophenol were transformed by strainsR. opacus 1cp andR. rhodochrous 89 via corresponding 3-chloro- and 3,4-dichlorocatechols, which were then hydroxylated with the formation of 4-chloropyrogallol and 4,5-dichloropyrogallol; this route had not previously been described in bacteria. Phenol hydroxylase ofR. opacus 1G exhibited a previously undescribed catalytic pattern, catalyzing oxidative dehalogenation of 2,3,5-trichlorophenol with the formation of 3,5-dichlorocatechol but not hydroxylation of the nonsubstituted position 6.  相似文献   

8.
A Pseudomonas cepacia, designated strain BRI6001, was isolated from peat by enrichment culture using 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. BRI6001 grew at up to 13 mM 2,4-D, and degraded 1 mM 2,4-D at an average starting population density as low as 1.5 cells/ml. Degradation was optimal at acidic pH, but could also be inhibited at low pH, associated with chloride release from the substrate, and the limited buffering capacity of the growth medium. The only metabolite detected during growth on 2,4-D was 2,4-dichlorophenol (2,4-DCP), and degradation of the aromatic nucleus was by intradiol cleavage. Growth lag times prior to the on-set of degradation, and the total time required for degradation, were linearly related to the starting population density and the initial 2,4-D concentration. BRI6001, grown on 2,4-D, oxidized a variety of structurally similar chlorinated aromatic compounds accompanied by stoichiometric chloride release.  相似文献   

9.
Study of the conversion of chlorophenols by Rhodococcus opacus 1G, R. rhodnii 135, R. rhodochrous 89, and R. opacus 1cp disclosed the dependence of the conversion rate and pathway on the number and position of chlorine atoms in the aromatic ring. The most active chlorophenol converter, strain R. opacus 1cp, grew on each of the three isomeric monochlorophenols and on 2,4-dichlorophenol; the rate of growth decreased from 4-chlorophenol to 3-chlorophenol and then to 2-chlorophenol. The parameters of growth on 2,4-dichlorophenol were the same as on 3-chlorophenol. None of the strains studied utilized trichlorophenols. A detailed study of the pathway of chlorophenol transformation showed that 3-chloro-, 4-chloro-, and 2,4-dichlorophenol were utilized by the strains via a modified ortho-pathway. 2-Chlorophenol and 2,3-dichlorophenol were transformed by strains R. opacus 1cp and R. rhodochrous 89 via corresponding 3-chloro- and 3,4-dichloropyrocatechols, which were then hydroxylated with the formation of 4-chloropyrogallol and 4,5-dichloropyrogallol; this route had not previously been described in bacteria. Phenol hydroxylase of R. opacus 1G exhibited a previously undescribed catalytic pattern, catalyzing oxidative dehalogenation of 2,3,5-trichlorophenol with the formation of 3,5-dichloropyrocatechol but not hydroxylation of the nonsubstituted position 6.  相似文献   

10.
A pure culture of 2,4-dichlorophenol (2,4-DCP)-degrading bacteria was isolated from a natural enrichment that had been adapted to chlorophenols in the aeration pond of the Baikalsk pulp and paper mill (Russia). The bacteria were identified by 16S rDNA intergenic region analysis, using PCR with universal primers. Comparative analysis of the 16S rDNA sequence (1545 bp) in the GenBank database revealed that these bacteria are related to Bacillus cereus GN1. Degradation of 2,4-DCP was studied using this culture in liquid medium under aerobic conditions, at initial concentrations of 20–560 μM 2,4-DCP. The 2,4-DCP degradation rates by B. cereus GN1 could be determined at concentrations up to 400 μM. However, higher concentrations of 2,4-DCP (560 μM) were inhibitory to cell growth.  相似文献   

11.
Soils were sampled from two agricultural fields, two relatively pristine forests, and one suburban forest in Ontario, Canada. The ability of these soils to mineralize 2,4-dichlorophenoxyacetate, 3-chlorobenzoate, 4-chlorophenol, 2,4-dichlorophenol, pentachlorophenol, and atrazine was determined using 14C-labeled substrates. Direct preexposure was necessary before atrazine mineralization could be detected; however, it was not necessary for degradation of any of the other chemicals. 2,4-dichlorophenoxyacetate and pentachlorophenol mineralization was much higher in the agricultural soils relative to the pristine forest soils, but 3-chlorobenzoate and 2,4-dichlorophenol mineralization rates showed the opposite trend. Mineralization of 4-chlorophenol was about equivalent in all soils. Suburban forests soils were indistinguishable from agricultural soils with respect to their degradation of 2,4-dichlorophenoxyacetate and chlorobenzoate. Additionally, they were better able than any of the soils to withstand the toxic effects of pentachlorophenol. Pentachlorophenol mineralization was highly variable in the pristine forest soils, ranging from about 6 to 50%. Abiotic factors such as pH, soil type, and organic and moisture content did not account for these significant site differences. The selective forces responsible for these differences, and the possible differences in microbial populations are discussed.  相似文献   

12.
Alcaligenes xylosoxidans subspecies denitrificans JH1 was enriched with 2-chlorophenol from a mixed culture degrading different chloro- and methylphenols. The strain used all monochloro- and monomethylphenols apart from 2-methylphenol as sole source of energy and carbon with stoichiometric release of chloride. 4-Chlorophenol was mineralized up to a concentration of 1.3 mM. Degradation of mixtures of monochloro- and monomethylphenols occurred at least partially except for the mixture of 2-chlorophenol and 3-methylphenol. Depending upon the growth substrates used, enzymes of the ortho and/or meta cleavage pathway catalysed the degradation of the phenols. The transformation of chlorophenols was concluded to occur exclusively via the ortho cleavage pathway because no chlorocatechol 2,3-dioxygenase activity was found in chlorophenol-grown cells. Degradation of 4-methylphenol in strain JH1 occurred both by the ortho and meta cleavage pathway as indicated by the finding that the ortho- and meta-cleaving dioxygenases were expressed in 4-methylphenol-grown cells. Transformation of methylphenols by the ortho cleavage pathway led to the accumulation of methyllactones as dead-end products. Mixtures of methyl- and chlorophenols were metabolized mainly by the ortho cleavage pathway because chlorocatechols formed inactivated the constitutive catechol 2,3-dioxygenase which caused channelling of methylphenols into the ortho cleavage pathway.  相似文献   

13.
Two instantaneously fed sequencing batch reactors (SBRs), one receiving 4-chlorophenol (4-CP) (SBR4) only and one receiving mixture of 4-CP and 2,4-dichlorophenol (2,4-DCP) (SBRM), were operated with increasing chlorophenols concentrations in the feed. Complete degradation of chlorophenols and high-Chemical oxygen demand (COD) removal efficiencies were observed throughout the reactors operation. Only a fraction of biomass (competent biomass) was thought to be responsible for the degradation of chlorophenols due to required unique metabolic pathways. Haldane model developed based on competent biomass concentration fitted reasonably well to the experimental data at different feed chlorophenols concentrations. The presence of 2,4-DCP competitively inhibited 4-CP degradation and its degradation began only after complete removal of 2,4-DCP. Based on the experimental results, the 4-CP degrader’s fraction in SBRM was estimated to be higher than that in SBR4 since 2,4-DCP degraders were also capable of degrading 4-CP due to similarity in the degradation pathways of both compounds.  相似文献   

14.
Thauera sp. strain DKT isolated from sediment utilized 2,4-dichlorophenoxyacetic acid (2,4D) and its relative compounds as sole carbon and energy sources under anaerobic conditions and used nitrate as an electron acceptor. The determination of 2,4D utilization at different concentrations showed that the utilization curve fitted well with the Edward model with the maximum degradation rate as 0.017?±?0.002 mM/day. The supplementation of cosubstrates (glucose, acetate, sucrose, humate and succinate) increased the degradation rates of all tested chemical substrates in both liquid and sediment slurry media. Thauera sp. strain DKT transformed 2,4D to 2,4-dichlorophenol (2,4DCP) through reductive side-chain removal then dechlorinated 2,4DCP to 2-chlorophenol (2CP), 4-chlorophenol (4CP) and phenol before complete degradation. The relative degradation rates by the isolate in liquid media were: phenol?>?2,4DCP?>?2CP?>?4CP?>?2,4D?≈?3CP. DKT augmentation in sediment slurry enhanced the degradation rates of 2,4D and chlorophenols. The anaerobic degradation rates in the slurry were significantly slower compared to the rates in liquid media.  相似文献   

15.
We investigated the anaerobic biodegradation of mono- and dichlorophenol isomers by fresh (unacclimated) sludge and by sludge acclimated to either 2-chlorophenol, 3-chlorophenol, or 4-chlorophenol. Biodegradation was evaluated by monitoring substrate disappearance and, in selected cases, production of 14CH4 from labeled substrates. In unacclimated sludge, each of the monochlorophenol isomers was degraded. The relative rates of disappearance were in this order: ortho greater than meta greater than para. For the dichlorophenols in unacclimated sludge, reductive dechlorination of the Cl group ortho to phenolic OH was observed, and the monochlorophenol compounds released were subsequently degraded. 3,4-Dichlorophenol and 3,5-dichlorophenol were persistent. Sludge acclimated to 2-chlorophenol cross-acclimated to 4-chlorophenol but did not utilize 3-chlorophenol. This sludge also degraded 2,4-dichlorophenol. Sludge acclimated to 3-chlorophenol cross-acclimated to 4-chlorophenol but not to 2-chlorophenol. This sludge degraded 3,4- and 3,5-dichlorophenol but not 2,3- or 2,5-dichlorophenol. The specific cross-acclimation patterns observed for monochlorophenol degradation demonstrated the existence of two unique microbial activities that were in turn different from fresh sludge. The sludge acclimated to 4-chlorophenol could degrade all three monochlorophenol isomers and 2,4- and 3,4-dichlorophenol. The active microbial population in this sludge appeared to be a mixture of populations present in the 2-chlorphenol- and 3-chlorophenol-acclimated sludges, both of which could utilize 4-chlorophenol. Experiments with 14C-radiolabeled p-chlorophenol, o-chlorophenol, and 2,4-dichlorophenol demonstrated that these compounds were converted to 14CH4 and 14CO2.  相似文献   

16.
Anaerobic/aerobic conditions affected bacterial community composition and the subsequent chlorophenols (CPs) degradation in biocathode microbial fuel cells (MFCs). Bacterial communities acclimated with either 4-chlorophenol (4-CP) or 2,4-dichlorophenol (2,4-DCP) under anaerobiosis can degrade the respective substrates more efficiently than the facultative aerobic bacterial communities. The anaerobic bacterial communities well developed with 2,4-DCP were then adapted to 2,4,6-trichlorophenol (2,4,6-TCP) and successfully stimulated for enhanced 2,4,6-TCP degradation and power generation. A 2,4,6-TCP degradation rate of 0.10 mol/m3/d and a maximum power density of 2.6 W/m3 (11.7 A/m3) were achieved, 138 and 13 % improvements, respectively compared to the controls with no stimulation. Bacterial communities developed with the specific CPs under anaerobic/aerobic conditions as well as the stimulated biofilm shared some dominant genera and also exhibited great differences. These results provide the most convincing evidence to date that anaerobic/aerobic conditions affected CPs degradation with power generation from the biocathode systems, and using deliberate substrates can stimulate the microbial consortia and be potentially feasible for the selection of an appropriate microbial community for the target substrate (e.g. 2,4,6-TCP) degradation in the biocathode MFCs.  相似文献   

17.
Summary The purpose of this investigation was to show whether or no employing a starter culture of the bacterium Rhodococcus erythropolis that produces 6,6-trehalosedicorynomycolates could replace the addition of purified biosurfactant known to accelerate hydrocarbon degradation by an original soil population in a stirred reactor. The rate of degradation, degree of elimination of hydrocarbons, mineralization and degree of oxidation were determined in order to assess the extent of degradation. In comparison with degradation by soil microorganisms only an acceleration of utilization of the hydrocarbons was observed in cultivations of growing cells of R. erythropolis, although the effect of purified trehalosedicorynomycolates is not reached. Except for a higher degree of oxidation a sufficient amount of trehalosedicorynomycolates bound to autoclaved biomass of R. erythropolis does not have any effect.  相似文献   

18.
Pseudomonas sp. B13 was grown in continuous culture on 4-chlorophenol as the only carbon source. Maximum growth rate of 0.4h-1 was observed at a substrate concentration of >0.01 mM and <0.15 mM. In addition to the enzymes of phenol catabolism, high specific 1,2-dioxygenase activities with chlorocatechols as substrates were found. The isomeric monochlorinated phenols were also totally degraded by 4-chlorophenol grown cells. (+)-2,5-Dihydro-4-methyl- and (+)-2,5-dihydro-2-methyl-5-oxo-furan-2-acetic acid were formed in high yield as dead-end catabolites from cooxidation of cresoles.Several dichlorophenols except 2,6-dichlorophenol were removed from the culture fluid by chlorophenol grown cells. Ring cleavage of chlorinated catechols were shown to be one of the critical steps in chlorophenol catabolism. A catabolic pathway for isomeric chlorophenols is discussed.Non-Standard Abbreviations HPLC High performance liquid chromatography - DHB Dihydrodihydroxybenzoate 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid  相似文献   

19.
A new phenol- and 2,4-dichlorophenol (2,4-DCP)-degrading strain Rhodococcus erythropolis 17S isolated from the soil contaminated with phenol and its derivatives for a long time was characterized. The strain was identified based on phenotypic, physiological, and biochemical features as well as on the results of 16S rRNA gene sequencing. The growth of R. erythropolis 17S in batch culture using phenol and 2,4-DCP as sources of carbon and energy has been studied. The concentration of phenol and 2,4-DCP in culture medium decreased by 55% (on the fourth day) and 47% (on the 22nd day) in comparison to the control, respectively. It is concluded that R. erythropolis 17S can be used for phenol removal from industrial wastewaters of petrochemical and tanning extract production plants.  相似文献   

20.
Summary The capability of Rhodococcus erythropolis CCM 2595(ATCC 11048) to utilize phenol, pyrocatechol, resorcinol, p-nitrophenol, p-chlorophenol, hydroquinone and hydroxybenzoate, respectively, or as respective binary mixtures with phenol, was described. This capability was found to depend on the substrate and its initial concentration. Some monoaromatic compounds had a suppressive effect on the strain’s ability to utilize phenol in a binary mixture and easily utilizable monoaromatics were strong inducers of the phenol 2-monooxygenase (EC 1.14.13.7). The capacity of R. erythropolis to colonize a synthetic zeolite was demonstrated and the enhancement of phenol tolerance of biofilms utilizing phenol was observed. The effect of humic acids on phenol killing was described and discussed as well. To allow use of recombinant DNA technology for strain improvement, methods of genetic transfer (transformation and conjugation) in R. erythropolis were established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号