首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used the Bacillus brevis-pNU212 system to develop a mass production system for the protective antigen (PA) of Bacillus anthracis. A moderately efficient expression-secretion system for PA was constructed by fusing the PA gene from B. anthracis with the B. brevis cell-wall protein signal-peptide encoding region of pNU212, and by introducing the recombinant plasmid, pNU212-mPA, into B. brevis 47-5Q. The clone producing PA secreted about 300 microg of recombinant PA (rPA) per ml of 5PY-erythromycin medium after 4 days incubation at 30 degrees C. The rPA was fractionated from the culture supernatant of B. brevis 47-5Q carrying pNU212-mPA using ammonium sulfate at 70% saturation followed by anion exchange chromatography on a Hitrap Q, a Hiload 16/60 Superdex 200 gel filtration column and a phenyl sepharose hydrophobic interaction column, yielding 70 mg rPA per liter of culture. The N-terminal sequence of the purified rPA was identical to that of native PA from B. anthracis. The purified rPA exhibited cytotoxicity towards J774A.1 cells when combined with lethal factor. The rPA formulated in either Rehydragel HPA or MPL-TDM-CWS adjuvant (Ribi-Trimix) elicited the expression of a large amount of anti-PA and neutralizing antibodies in guinea pigs and completely protected them against a 100 LD50 challenge with fully virulent B. anthracis spores.  相似文献   

2.
Immune correlates of protection against anthrax   总被引:1,自引:0,他引:1  
Bacillus anthracis protective antigen (PA) has been produced from a recombinant B. subtilis and its efficacy, when combined with the Ribi adjuvant (MPL-TDW-CWS) or alhydrogel, has been compared with that of the licensed UK human vaccine, in guinea pigs challenged with aerosolized Ames strain spores. Recombinant PA combined with the Ribi adjuvant performed as well as PA from B. anthracis cultures in previous reports ( Ivins & Welkos 1986 ; Ivins et al . 1990 ; Turnbull et al . 1991 ; Jones et al . 1996 ; McBride et al . 1998 ) giving protection in 100% of animals exposed to the highest challenge dose of the Ames strain of B. anthracis that can be administered practically (retained lung doses of approximately 106 spores).
In attempts at identifying markers of protection in immunized individuals, rPA in combination with the Ribi adjuvant induced a marker IgG2 response in guinea pigs with no significant differences in IgG1 levels when compared with other vaccine formulations ( McBride et al . 1998 ). In BALBc mice, rPA with the Ribi adjuvant induced a higher IgG2a response compared with rPA with anhydrogel and the human vaccine.
To examine the role of anti-PA-specific antibodies in protection, guinea pig sera is being passively transferred into guinea pigs and SCID mice, followed by protection.
Similarly, B- and T-lymphocytes from immunized BALB/c mice are being separately and passively transferred into SCID mice with subsequent challenge. The neutralizing ability of the PA-specific antibodies is being studied using an in vitro macrophage lysis assay.  相似文献   

3.
The anthrax toxin consists of three proteins, protective antigen (PA), lethal factor, and edema factor that are produced by the Gram-positive bacterium, Bacillus anthracis. Current vaccines against anthrax use PA as their primary component. In this study, we developed a scalable process to produce and purify multi-gram quantities of highly pure, recombinant PA (rPA) from Escherichia coli. The rPA protein was produced in a 50-L fermentor and purified to >99% purity using anion-exchange, hydrophobic interaction, and hydroxyapatite chromatography. The final yield of purified rPA from medium cell density fermentations resulted in approximately 2.7 g of rPA per kg of cell paste (approximately 270 mg/L) of highly pure, biologically active rPA protein. The results presented here exhibit the ability to generate multi-gram quantities of rPA from E. coli that may be used for the development of new anthrax vaccines and anthrax therapeutics.  相似文献   

4.
Antibodies against the protective antigen (PA) of Bacillus anthracis play a key role in response to infection by this important pathogen. The aim of this study was to produce and characterize monoclonal antibodies (mAbs) specific for PA and to identify novel neutralizing epitopes. Three murine mAbs with high specificity and nanomolar affinity for B. anthracis recombinant protective antigen (rPA) were produced and characterized. Western immunoblot analysis, coupled with epitope mapping using overlapping synthetic peptides, revealed that these mAbs recognize a linear epitope within domain 2 of rPA. Neutralization assays demonstrate that these mAbs effectively neutralize lethal toxin in vitro.  相似文献   

5.
The fatal bacterial infection caused by inhalation of the Bacillus anthracis spores results from the synthesis of protein toxins-protective antigen (PA), lethal factor (LF), and edema factor (EF)--by the bacterium. PA is the target-cell binding protein and is common to the two effector molecules, LF and EF, which exert their toxic effects once they are translocated to the cytosol by PA. PA is the major component of vaccines against anthrax since it confers protective immunity. The large-scale production of recombinant protein-based anthrax vaccines requires overexpression of the PA protein. We have constitutively expressed the protective antigen protein in E. coli DH5alpha strain. We have found no increase in degradation of PA when the protein is constitutively expressed and no plasmid instability was observed inside the expressing cells. We have also scaled up the expression by bioprocess optimization using batch culture technique in a fermentor. The protein was purified using metal-chelate affinity chromatography. Approximately 125 mg of recombinant protective antigen (rPA) protein was obtained per liter of batch culture. It was found to be biologically and functionally fully active in comparison to PA protein from Bacillus anthracis. This is the first report of constitutive overexpression of protective antigen gene in E. coli.  相似文献   

6.
Current human anthrax vaccines available in the United States and Europe consist of alum-precipitated supernatant material from cultures of a toxigenic, nonencapsulated strain of Bacillus anthracis. The major component of human anthrax vaccine that confers protection is protective antigen (PA). A second-generation human vaccine using the recombinant PA (rPA) is being developed. In this study, to prevent the toxicity and the degradation of the native rPA by proteases, we constructed two PA variants, delPA (163-168) and delPA (313-314), that lack trypsin (S(163)-R(164)-K(165)-K(166)-R(167)-S(168)) or chymotrypsin cleavage sequence (F(313)-F(314)), respectively. These proteins were expressed in Bacillus brevis 47-5Q. The delPAs were fractionated from the culture supernatant of B. brevis by ammonium sulfate at 70% saturation, followed by anion exchange chromatography on a Hitrap Q, Hiload 16/60 superdex 200 gel filtration column and phenyl sepharose hydrophobic interaction column. In accordance with previous reports, both delPA proteins combined with lethal factor protein did not show any cytotoxicity on J774A.1 cells. The delPA (163-168) and delPA (313-314) formulated either in Rehydragel HPA or MPL-TDM-CWS (Ribi-Trimix), elicited a comparable amount of anti-PA and neutralizing antibodies to those of native rPA in guinea pigs, and confers full protection of guinea pigs from 50xLD50 of fully virulent B. anthracis spore challenges. Ribi-Trimix was significantly more effective in inducing anti-PA and neutralizing antibodies than Rehydragel HPA. These results indicate the possibility of delPA (163-168) and delPA (313-314) proteins being developed into nontoxic, effective and stable recombinant vaccine candidates.  相似文献   

7.
This report describes the immunogenicity and protective efficacy of Escherichia coli-expressed recombinant protective antigen (rPA) in New Zealand White rabbits and Rhesus Macaques against an aerosol challenge with Bacillus anthracis spores (IVRI strain, tox+cap+). A dose-ranging study was performed in which it became evident that the level of anti-PA IgG and toxin-neutralizing antibody titer was directly proportional to the dose of rPA administered. However, the onset time of primary and secondary immune response was not dependent on the dosage. Revaccination of primed animals with the same threshold dose yielded a robust and rapid secondary response. Quantitative differences in peak titers were obtained for both the animal models, in addition to qualitative differences in the immune kinetics. In spite of a weak priming response, the secondary response in rabbits peaked earlier than that in macaques once the booster dose was administered. However, evaluation of the post-challenge quantitative anti-rPA ELISA titer measurements indicated higher titers for non-human primates as compared to the lagomorphs. Importantly, 100% protection was seen for the dosage groups that received ≥25 μg rPA, following a challenge against a target dose of 1000 LD50 of aerosolized spores of Bacillus anthracis.  相似文献   

8.
Microbe Russian Anti-Plague Research Institute, Saratov A hybrid plasmid pUB110PA-1 demonstrating stable functioning in the cells of Bacillus strains and containing the gene of biosynthesis of Bacillus anthracis protective antigen was constructed. The recombinant strains surpassing the anthrax vaccinal cultures in the secreted synthesis of the protective antigen were obtained and their immunological efficacy was assessed. A single inoculation of Guinea pigs with the dose of 5 x 107 spores of the recombinant strains imparted efficient protection against B. anthracis challenge. Immune responses were characterized by high indices of immunity and titers of antibodies to the protective antigen. In contrast to the anthrax vaccinal preparations, the gene-engineering strains imposed no residual virulence for BALB/n mice and Guinea pigs.  相似文献   

9.
Anthrax is a lethal infectious disease caused by the spore-forming Bacillus anthracis . The two major virulence factors of B. anthracis are exotoxin and the poly-γ- d -glutamic acid (PGA) capsule. The three components of the exotoxin, protective antigen (PA), lethal factor and edema factor act in a binary combination, which results in massive edema and organ failure in the progress of anthrax disease. The antiphagocytic PGA capsule disguises the bacilli from immune surveillance and allows unimpeded growth of bacilli in the host. Because PA can elicit a protective immune response, it has been a target of the anthrax vaccine. In addition to PA, efforts have been made to include PGA as a component of the anthrax vaccine. In this study, we report that PA–PGA conjugates induce expressions of anti-PA, anti-PGA and toxin-neutralizing antibodies in guinea-pigs and completely protect guinea-pigs against a 50 × LD50 challenge with fully virulent B. anthracis spores. Polyclonal rabbit antisera produced against either PA or ovalbumin conjugated to a PGA-15mer offer a partial passive protection to guinea-pigs against B. anthracis infection, indicating that anti-PGA antibodies play a protective role. Our results demonstrate that PA–PGA conjugate vaccines are effective in the guinea-pig model, in addition to the previously reported mouse model.  相似文献   

10.
11.
The efficacy of multi-agent DNA vaccines consisting of a truncated gene encoding Bacillus anthracis lethal factor (LFn) fused to either Yersinia pestis V antigen (V) or Y .?pestis F1 was evaluated. A/J mice were immunized by gene gun and developed predominantly IgG1 responses that were fully protective against a lethal aerosolized B.?anthracis spore challenge but required the presence of an additional DNA vaccine expressing anthrax protective antigen to boost survival against aerosolized Y.?pestis.  相似文献   

12.
重组炭疽保护性抗原的表达、纯化与生物活性分析   总被引:14,自引:1,他引:14  
构建分泌型表达质粒 ,在大肠杆菌中实现了重组炭疽保护性抗原 (rPA)的分泌型表达。重组蛋白位于细菌外周质 ,表达量约占菌体总蛋白的 10 %。以离子交换、疏水层析和凝胶过滤为基础 ,建立了rPA的纯化工艺 ,每升培养物可获得约 15mgrPA ,纯度可达 95 %以上。体外细胞毒性试验显示rPA具有较好的生物学活性。用rPA免疫家兔产生的抗血清在体外可抑制炭疽致死毒素的活性 ,表明rPA可诱导机体产生保护性免疫。以上结果为今后发展新一代炭疽疫苗打下基础  相似文献   

13.
Mucosal, but not parenteral, immunization induces immune responses in both systemic and secretory immune compartments. Thus, despite the reports that Abs to the protective Ag of anthrax (PA) have both anti-toxin and anti-spore activities, a vaccine administered parenterally, such as the aluminum-adsorbed anthrax vaccine, will most likely not induce the needed mucosal immunity to efficiently protect the initial site of infection with inhaled anthrax spores. We therefore took a nasal anthrax vaccine approach to attempt to induce protective immunity both at mucosal surfaces and in the peripheral immune compartment. Mice nasally immunized with recombinant PA (rPA) and cholera toxin (CT) as mucosal adjuvant developed high plasma PA-specific IgG Ab responses. Plasma IgA Abs as well as secretory IgA anti-PA Abs in saliva, nasal washes, and fecal extracts were also induced when a higher dose of rPA was used. The anti-PA IgG subclass responses to nasal rPA plus CT consisted of IgG1 and IgG2b Abs. A more balanced profile of IgG subclasses with IgG1, IgG2a, and IgG2b Abs was seen when rPA was given with a CpG oligodeoxynucleotide as adjuvant, suggesting a role for the adjuvants in the nasal rPA-induced immunity. The PA-specific CD4(+) T cells from mice nasally immunized with rPA and CT as adjuvant secreted low levels of CD4(+) Th1-type cytokines in vitro, but exhibited elevated IL-4, IL-5, IL-6, and IL-10 responses. The functional significance of the anti-PA Ab responses was established in an in vitro macrophage toxicity assay in which both plasma and mucosal secretions neutralized the lethal effects of Bacillus anthracis toxin.  相似文献   

14.
Protective antigen is essential for the pathology of Bacillus anthracis and is the proposed immunogen for an improved human anthrax vaccine. Known since discovery to comprise differentially charged isoforms, the cause of heterogeneity has eluded specific structural definition until now. Recombinant protective antigen (rPA) contains similar isoforms that appear early in fermentation and are mostly removed through purification. By liquid chromatography-tandem mass spectrometry sequencing of the entire protein and inspection of spectral data for amino acid modifications, pharmaceutical rPA contained measurable deamidation at seven of its 68 asparagine residues. A direct association between isoform complexity and percent deamidation was observed such that each decreased with purity and increased with protein aging. Position N537 consistently showed the highest level of modification, although its predicted rate of deamidation ranked 10th by theoretical calculation, and other asparagines of higher predicted rates were observed to be unmodified. rPA with more isoforms and greater deamidation displayed lower activities for furin cleavage, heptamerization, and holotoxin formation. Lethal factor-mediated macrophage toxicity correlated inversely with deamidation at residues N466 and N408. The described method measures deamidation without employing theoretical isotopic distributions, comparison between differentially treated samples or computational predictions of reactivity rates, and is broadly applicable to the characterization of other deamidated proteins.  相似文献   

15.
The stability of heterologous proteins secreted by gram-positive bacteria is greatly influenced by the microenvironment on the trans side of the cytoplasmic membrane, and secreted heterologous proteins are susceptible to rapid degradation by host cell proteases. In Bacillus subtilis, degradation occurs either as the proteins emerge from the presecretory translocase and prior to folding into their native conformation or after the native conformation has been reached. The former process generally involves membrane- and/or cell wall-bound proteases, while the latter involves proteases that are released into the culture medium. The identification and manipulation of factors that influence the folding of heterologous proteins has the potential to improve the yield of secreted heterologous proteins. Recombinant anthrax protective antigen (rPA) has been used as a model secreted heterologous protein because it is sensitive to proteolytic degradation both before and after folding into its native conformation. This paper describes the influence of the microenvironment on the trans side of the cytoplasmic membrane on the stability of rPA. Specifically, we have determined the influence of net cell wall charge and its modulation by the extent to which the anionic polymer teichoic acid is D-alanylated on the secretion and stability of rPA. The potential role of the dlt operon, responsible for D-alanylation, was investigated using a Bacillus subtilis strain encoding an inducible dlt operon. We show that, in the absence of D-alanylation, the yield of secreted rPA is increased 2.5-fold. The function of D-alanylation and the use of rPA as a model protein are evaluated with respect to the optimization of B. subtilis for the secretion of heterologous proteins.  相似文献   

16.
Protective antigen (PA) is a component of the Bacillus anthracis lethal and edema toxins and the basis of the current anthrax vaccine. In its heptameric form, PA targets host cells and internalizes the enzymatically active components of the toxins, namely lethal and edema factors. PA and other toxin components are secreted from B. anthracis using the Sec-dependent secretion pathway. This requires them to be translocated across the cytoplasmic membrane in an unfolded state and then to be folded into their native configurations on the trans side of the membrane, prior to their release from the environment of the cell wall. In this study we show that recombinant PA (rPA) requires the extracellular chaperone PrsA for efficient folding when produced in the heterologous host, B. subtilis; increasing the concentration of PrsA leads to an increase in rPA production. To determine the likelihood of PrsA being required for PA production in its native host, we have analyzed the B. anthracis genome sequence for the presence of genes encoding homologues of B. subtilis PrsA. We identified three putative B. anthracis PrsA proteins (PrsAA, PrsAB, and PrsAC) that are able to complement the activity of B. subtilis PrsA with respect to cell viability and rPA secretion, as well as that of AmyQ, a protein previously shown to be PrsA-dependent.  相似文献   

17.
A new generation anthrax vaccine is expected to target not only the anthrax protective antigen (PA) protein, but also other virulent factors of Bacillus anthracis. It is also expected to be amenable for rapid mass immunization of a large number of people. This study aimed to address these needs by designing a prototypic triantigen nasal anthrax vaccine candidate that contained a truncated PA (rPA63), the anthrax lethal factor (LF), and the capsular poly-gamma-D-glutamic acid (gammaDPGA) as the antigens and a synthetic double-stranded RNA (dsRNA), polyriboinosinic-polyribocytodylic acid (poly(I:C)) as the adjuvant. This study identified the optimal dose of nasal poly(I:C) in mice, demonstrated that nasal immunization of mice with the LF was capable of inducing functional anti-LF antibodies (Abs), and showed that nasal immunization of mice with the prototypic triantigen vaccine candidate induced strong immune responses against all three antigens. The immune responses protected macrophages against an anthrax lethal toxin challenge in vitro and enabled the immunized mice to survive a lethal dose of anthrax lethal toxin challenge in vivo. The anti-PGA Abs were shown to have complement-mediated bacteriolytic activity. After further optimization, this triantigen nasal vaccine candidate is expected to become one of the newer generation anthrax vaccines.  相似文献   

18.
Anthrax is an acute disease caused by Bacillus anthracis. Some animal species are relatively resistant to anthrax infection. This trait has been correlated to the extent of the local inflammatory reaction, suggesting innate immunity to be the first line of defense against B. anthracis infection in nonimmunized hosts. Group IIA secreted phospholipase A2 (sPLA2-IIA) is produced in particular by macrophages and possesses potent antibacterial activity especially against Gram-positive bacteria. We have previously shown in vitro that sPLA2-IIA kills both germinated B. anthracis spores and encapsulated bacilli. Here we show that sPLA2-IIA plays in vivo a protective role against experimental anthrax. Transgenic mice expressing human sPLA2-IIA are resistant to B. anthracis infection. In addition, in vivo administration of recombinant human sPLA2-IIA protects mice against B. anthracis infection. The protective effect was observed both with a highly virulent encapsulated nontoxinogenic strain and a wild-type encapsulated toxinogenic strain, showing that toxemia did not hinder the sPLA2-IIA-afforded protection. sPLA2-IIA, a natural component of the immune system, may thus be considered a novel therapeutic agent to be used in adjunct with current therapy for treating anthrax. Its anthracidal activity would be effective even against strains resistant to multiple antibiotics.  相似文献   

19.
The pag gene coding for protective antigen (PA), one of the three toxin components of Bacillus anthracis, has been cloned into the mobilizable shuttle vector pAT187 and transferred by conjugation from Escherichia coli to B. anthracis. Using this strategy, an insertionally mutated pag gene constructed and characterized in E. coli, was introduced into B. anthracis Sterne strain. This transconjugant was used to select a recombinant clone (RP8) carrying the inactivated pag gene on the toxin-encoding plasmid, pXO1. Strain RP8 was deficient for PA while still producing the two other toxin components, i.e. lethal factor (LF) and edema factor (EF). In contrast to spores from the wild-type Sterne strain, spores prepared from RP8 were totally non-lethal in mice. These results clearly establish the central role played by PA in B. anthracis pathogenicity.  相似文献   

20.
Crystallization of the protective antigen protein of Bacillus anthracis   总被引:1,自引:0,他引:1  
The protective antigen protein, one of the three separate proteins constituting the exotoxin system of Bacillus anthracis, has been crystallized in a form suitable for structural studies. The crystal form which is most amenable to x-ray analysis is orthorhombic, space group P2(1)2(1)2(1), a = 101.1 A, b = 95.4 A, c = 87.3 A, with one protective antigen monomer/asymmetric unit. The crystals diffract to approximately 3.0-A resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号